首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Glutamine synthetase (GS) is the primary NH4 + assimilating enzyme of cyanobacteria. The specific activities and cellular protein concentration of GS in symbiotic cyanobacteria associated with the water fern Azolla caroliniana were determined and compared to free-living cultures of Nostoc sp. strain 7801, a strain originally isolated from symbiotic association with the bryophyte Anthoceros punctatus. Both the in vitro specific activity and concentration of GS in symbiotic cyanobacteria separated from A. caroliniana were approximately 3-fold lower than the free-living Nostoc sp. strain 7801 culture. These results imply depressed synthesis of GS by the symbiont associated with A. caroliniana.  相似文献   

2.
The symbiotic relationships between Azolla and Anabaena azollae were studied by means of autoradiography after the Azolla was administered by 3H-thymidine, 3H-uridine, 3H-leucine and 3H-glucose. The experimental results showed that the four labeled compounds mentioned above were transfered from Azolla to Anabaena azollae through cavity hairs. This indicated that there was a transfer way of substances from fern to algae. It is suggested that the symbiotic relationship between Azolla and Anabaena azollae is more complicated than we have known up to now. The fern not only get the NH3 which was formed by symbiont-blue alga, but also supplied some nitrogen-containing substances, such as amino acids (or proteins), ribonucleotides for symbiotic algae. Although the symbiont still retained photosynthetic ability, the ability of nitrogen fixation might be developed and the photosynthetic autotrophic ability might be dropped gradually in the long symbiotic life and the Anabaena azolla needed take a portion of substances from the Azolla as replenishment.  相似文献   

3.
A characteristic of N2-fixing cyanobacteria in symbiotic associations appears to be release of N2-derived NH4+. The specific activity of the primary ammonium-assimilating enzyme, glutamine synthetase (GS), was found to be three- to fourfold lower in Nostoc sp. strain 7801 grown in symbiotic association with the bryophyte Anthoceros punctatus than in free-living Nostoc sp. strain 7801. Quantitative immunological assays with antisera against GS purified from Nostoc sp. strain 7801 and from Escherichia coli indicated that similar amounts of the GS protein were present in symbiotic (50 micrograms mg-1) and free-living (68 micrograms mg-1) cultures. The conclusion from these experiments is that GS is regulated by a posttranslational mechanism in Anthoceros-associated Nostoc sp. strain 7801. However, the results of comparative catalytic and immunological experiments between N2- and NH4+-grown free-living Nostoc sp. strain 7801 implied control of GS synthesis. A correlation was not observed between the level of GS expression and the extent of symbiotic heterocyst differentiation in Nostoc sp. strain 7801 associated with A. punctatus.  相似文献   

4.
Phycobiliprotein degradation can be initiated in cultures of the cyanobacterium Anabaena by removal of combined nitrogen from the medium. Certain strains of Anabaena differentiate cells specialized for aerobic nitrogen fixation (heterocysts) under such conditions. We describe here a procedure for the preparation of extracts from heterocysts or vegetative cells that contain an activity capable of degrading only the phycobiliproteins in a mixture of soluble Anabaena proteins in vitro. This activity increased under nitrogen starvation conditions or in ammonia-replete cultures treated with the glutamine synthetase inhibitor methionine sulfoximine. The increase in activity induced by nitrogen starvation was prevented by chloramphenicol or by carbon starvation. Under all these conditions, phycobiliprotein degradative activity assayed in vitro was correlated with the loss of phycobiliprotein absorbance in vivo. Finally, starvation of a met auxotroph of Anabaena for methionine (in the presence of ammonia) did not induce phycobiliprotein degradation in vivo or the increase in proteinase activity. Together with direct measurements of ppGpp, these results indicate that proteolysis in Anabaena is not controlled by compounds associated with the stringent response in Escherichia coli. Since the increase in proteinase activity appears to be regulated by the same variables that control heterocyst differentiation, the activity should provide a useful biochemical marker for the early events of differentiation.  相似文献   

5.
The blue green algae Anabaena azollae has been isolated from the leaf cavity of water fern Azolla imbricata and grown aseptically in N-free medium. It was used for the study on the effects of white, red, yellow, green and blue light illuminations on the growth, acetylene reduction activity and heteroeyst formation. The results are summarized as follows: The growth rate under white, red and yellow light was greater than under green light and the yield of the former was increased nearly two folds than the latter after 7 days culture. However, the green light enhanced heterocyst formation up to 40% than the other light illuminations. Chlorophyll content was also higher under green light. Nitrogen fixation activity was proportional to the heterocyst formation. Whatever the light quality used, nitrogen fixation activity could be increased up to several folds by adding 0.2% fructose to the culture medium. When the fructose was added to the 5 days culture, green light illumination showed the highest nitrogen fixation activity. The significant reaction of Anabaena azollae to the green light seems to be a physiological feature of the symbiont.  相似文献   

6.
The N2-fixing Azolla-Anabaena symbiotic association is characterized in regard to individual host and symbiont contributions to its total chlorophyll, protein, and levels of ammonia-assimilating enzymes. The phycocyanin content of the association and the isolated blue-green algal symbiont was used as a standard for this characterization. Phycocyanin was measured by absorption and fluorescence emission spectroscopy. The phycocyanin content and total phycobilin complement of the symbiotic algae were distinct from those of Anabaena cylindrica and a free-living isolate of the Azolla endophyte. The algal symbiont accounted for less than 20% of the association's chlorophyll and protein. Acetylene reduction rates in the association (based solely on the amount of algal chlorophyll) were 30 to 50% higher than those attained when the symbiont was isolated directly from the fern. More than 75% of the association's glutamate dehydrogenase and glutamine synthetase activities are contributed by the host plant. The specific activity of glutamate dehydrogenase is greater than that of glutamine synthetase in the association and individual partners. Both the host and symbiont have glutamate synthase activity. The net distribution of these enzymes is discussed in regard to the probable roles of the host and symbiont in the assimilation of ammonia resulting from N2 fixation by the symbiont.  相似文献   

7.
Summary The symbiotic heterocystous cyanobacteriumAnabaena azollae present in the leaf cavities of the water fernAzolla spp. was studied. The cyanobacteria extracted from the leaf cavities showed differences in pigment composition in three species ofAzolla, i.e A.pinnata var.pinnata, A.caroliniana and A.filiculoides, as observed by pigment absorption and epifluorescence tests. These differences suggest that of these species the cyanobiont ofA. pinnata is the most actively nitrogenfixing form. This has been confirmed by nitrogen fixation (acetylene reduction) tests. Heterocysts of the symbiont ofA. pinnata were characterized by high chlorophylla and low phycocyanin content, a low fluorescence yield of chlorophyll in the heterocysts compared to vegetative cells and a gradient of phycocyanin concentration in the vegetative cells adjacent to heterocysts. This indicates that only photosystem I is present in the heterocyst. In the two otherAzolla species quantitative shifts in the pigment composition occurred suggesting a lower nitrogen fixation activity.In the cyanobiontAnabaena azollae the heterocyst frequency could reach a value of 44–45%. It is argued that there are two generations of heterocysts in a matureAzolla plant, which are concomitant with two peaks of nitrogen fixation activity correlated with leaf age,i.e. leaf number along the main axis of the plant. At both peaks of maximal N2-ase activity, only 20–25% of the heterocysts present are metabolically active as demonstrated by the reduction of Neotetrazolium chloride (NTC) in the heterocysts and darkening of nuclear emulsions by silver salt reduction. Vegetative cells of the cyanobiont reduce Neotetrazolium chloride (NTC) to formazan more rapidly than has been observed in the free-living heterocystous cyanobacteriumAnabaena cylindrica tested in parallel experiments. This feature may be due to a more permeable cell wall of the vegetative cells of the cyanobiont compared to the free-living form, since the vegetative cells of the symbiont play a role in cross-feeding of the host (Azolla).Evidence is obtained that only the heterocysts of the cyanobiont ofAzolla are involved in the nitrogen fixation process as in free-living heterocystous cyanobacterium species. This situation is different from other cyanobacterial symbioses such as inGunnera, Blasia andAnthoceros, where physiological modifications are reported in the symbiosis with another photosynthetic partner such as the absence of O2 evolution and the absence of photo-fixation of CO2 in the cyanobionts.Pigment composition and N2-ase activity in the symbiotic cyanobacteria of three Azolla species have indicated the superiority of theA. pinnata symbiont.A. pinnata var.pinnata is a semidomesticated form used in S.E. Asia for agricultural purposes (irrigated rice culture) to increase soil fertility.It is suggested that by selection (domestication) more efficient strains (clones) can be obtained, and further that with more advanced techniques such as gene mutation and genetic manipulation even more efficient and for agriculture more beneficial clones can be obtained.  相似文献   

8.
Anabaena sp. CA fails to synthesize heterocysts and nitrogenase when grown with KNO3 as the nitrogen source. By contrast, both heterocysts and proheterocysts are synthesized in NH4Cl-containing media to a level nearly commensurate with cells grown in the absence of combined nitrogen. The growth rate of the organism in NH4Cl-containing media was similar to that obtained with KNO3 as the nitrogen source and was independent of the presence of N2 in the atmosphere. Thus, our results indicate that the organism assimilated nitrate and ammonium nitrogen equally well to meet the nitrogen requirements for growth. Moreover, in contrast to previous studies with other cyanobacteria, the repressor singal for heterocyst differentiation in Anabaena sp. CA is not derived from the metabolism of ammonia but appears to be involved with nitrate metabolism. Nitrogenase activity was partially expressed in NH4Cl-grown cultures. Increasing the level of nitrogenase activity to a value representative of a N2-grown culture required both the inhibition of ammonia assimilation and de novo protein synthesis. An increase in the number of mature heterocysts was not required. The fact that high levels of exogenous ammonia only partially repress the synthesis of proteins required for the maximum expression of nitrogenase activity in Anabaena sp. CA has important implications.  相似文献   

9.
A method is described for the isolation of metabolically active heterocysts from Anabaena cylindrica. These isolated heterocysts accounted for up to 34% of the acetylene-reducing activity of whole filaments and had a specific activity of up to 1,560 nmol of C2H4 formed per mg of heterocyst chlorphyll per min. Activity of glutamine synthetase was coupled to activity of nitrogenase in isolated heterocysts as shown by acetylene-inhibitable formation of [13N]NH3 and of amidelabeled [13N]glutamine form [13N]N2. A method is also described for the production of 6-mCi amounts of [13N]NH3. Isolated heterocysts formed [13N]glutamine from [13N]NH3 and glutamate, and [14C]glutamine from NH3 and [14C]glutamate, in the presence of magnesium adenosine 5'-triphosphate. Methionine sulfoximine strongly inhibited these syntheses. Glutamate synthase is, after nitrogenase and glutamine synthetase, the third sequential enzyme involved in the assimilation of N2 by intact filaments. However, the kinetics of solubilization of the activity of glutamate synthase during cavitation of suspensions of A. cylindrica indicated that very little, if any, of the activity of that enzyme was located in heterocysts. Concordantly, isolated heterocysts failed to form substantial amounts of radioactive glutamate from either [13N]glutamine or alph-[14C]ketoglutarate in the presence of other substrates and cofactors of the glutamate synthase reaction. However, they formed [14C]glutamate rapidly from alpha-[14C]ketoglutarate by aminotransferase reactions, with various amino acids as the nitrogen donor. The implication of these findings with regard to the identities of the substances moving between heterocysts and vegetative cells are discussed.  相似文献   

10.
Distribution pattern and levels of nitrogenase (EC 1.7.99.2) and glutamine synthetase (GS, EC 6.3.1.2) were studied in N2-, NO3? and NH4+ grown Anabaena cylindrica (CCAP 1403/2a) using immunogold electron microscopy. In N2- and NO3? grown cultures, heterocysts were formed and nitrogenase activity was present. The nitrogenase antigen appeared within the heterocysts only and showed an even distribution. The level of nitrogenase protein in the heterocysts was identical with both nitrogen sources. In NO3? grown cells the 30% reduction in the nitrogenase activity was due to a corresponding decrease in the heterocyst frequency and not to a repressed nitrogenase synthesis. In NH4? grown cells, the nitrogenase activity was almost zero and new heterocysts were formed to a very low extent. The heterocysts found showed practically no nitrogenase protein throughout the cytoplasm, although some label occurred at the periphery of the heterocyst. This demonstrates that heterocyst differentiation and nitrogenase expression are not necessarily correlated and that while NH4+ caused repression of both heterocyst and nitrogenase synthesis, NO3? caused inhibition of heterocyst differentiation only. The glutamine synthetase protein label was found throughout the vegetative cells and the heterocysts of all three cultures. The relative level of the GS antigen varied in the heterocysts depending on the nitrogen source, whereas the GS level was similar in all vegetative cells. In N2- and NO3+ grown cells, where nitrogenase was expressed, the GS level was ca 100% higher in the heterocysts compared to vegetative cells. In NH4+ grown cells, where nitrogenase was repressed, the GS level was similar in the two cell types. The enhanced level of GS expressed in heterocysts of N2 and NO3? grown cultures apparently is related to nitrogenase expression and has a role in assimilation of N2derived ammonia.  相似文献   

11.
Rhodopseudomonas globiformis strain 7950 grew with a variety of amino acids, urea, or N2 as sole nitrogen sources. Cultures grown on N2 reduced acetylene to ethylene; this activity was absent from cells grown on nonlimiting NH 4 + . Glutamate dehydrogenase could not be detected in extracts of cells of strain 7950, although low levels of an alanine dehydrogenase were present. Growth ofR. globiformis on NH 4 + was severely inhibited by the glutamate analogue and glutamine synthetase inhibitor, methionine sulfoximine. High levels of glutamine synthetase (as measured in the -glutamyl transferase assay) were observed in cell extracts of strain 7950 regardless of the nitrogen source, although N2 and amino acid grown cells contained somewhat higher glutamine synthetase contents than cells grown on excess NH 4 + . Levels of glutamate synthase inR. globiformis were consistent with that reported from other phototrophic bacteria. Both glutamate synthase and alanine dehydrogenase were linked to NADH as coenzyme. We conclude thatR. globiformis is capable of fixing N2, and assimilates NH 4 + primarily via the glutamine synthetase/glutamate synthase pathway.Abbreviations GS glutamine synthetase - GOGAT Glutamineoxoglutarate aminotransferase - GDH Glutamate dehydrogenase - ADH Alanine dehydrogenase - MSO Methionine sulfoximine  相似文献   

12.
13.
Under conditions of starvation for fixed nitrogen, cells of the filamentous cyanobacterium Anabaena variabilis Kütz, degrade much of their protein prior to heterocyst differentiation. Cells starved for a source of fixed nitrogen initially degraded about 2% of their protein per hour; by 24 h after nitrogen stepdown about 40% of the protein was degraded. Most of the acid-soluble radiolabeled material was excreted into the medium. Proteolysis was completely inhibited by chloramphenicol, by cyanide, or in the dark, hut was only partially inhibited in the presence of dichlorophenyl dimethylurea. Methionine sulfoximine (MSX) (an inhibitor of glutamine synthetase) in the presence of ammonia caused heterocysts to form. MSX treated cells degraded protein; however, the amount of protein degraded was much less than in cells starved for ammonia. Glutamine, which can serve as a nitrogen source for this strain, did not prevent starvation-induced proteolysis and did not prevent the differentiation of heterocysts.  相似文献   

14.
The specific activities of glutamine synthetase (GS) and glutamate synthase (GOGAT) were 4.2- and 2.2-fold higher, respectively, in cells of Azospirillum brasilense grown with N2 than with 43 mM NH4+ as the source of nitrogen. Conversely, the specific activity of glutamate dehydrogenase (GDH) was 2.7-fold higher in 43 mM NH4+-grown cells than in N2-grown cells. These results indicate that NH4+ could be assimilated and that glutamate could be formed by either the GS-GOGAT or GDH pathway or both, depending on the cellular concentration of NH4+. The routes of in vivo synthesis of glutamate were identified by using 13N as a metabolic tracer. The products of assimilation of 13NH4+ were, in order of decreasing radioactivity, glutamine, glutamate, and alanine. The formation of [13N]glutamine and [13N]glutamate by NH4+-grown cells was inhibited in the additional presence of methionine sulfoximine (an inhibitor of GS) and diazooxonorleucine (an inhibitor of GOGAT). Incorporation of 13N into glutamine, glutamate, and alanine decreased in parallel in the presence of carrier NH4+. These results imply that the GS-GOGAT pathway is the primary route of NH4+ assimilation by A. brasilense grown with excess or limiting nitrogen and that GDH has, at best, a minor role in the synthesis of glutamate.  相似文献   

15.
Summary Random Tn5 mutagenesis of antibiotic-resistant derivatives of Rhizobium phaseoli CFN42 yielded several independent mutants that were sensitive to methionine sulfoximine (MSs), a specific inhibitor of glutamine synthetase (GS). These MSs mutants were analyzed for GSI and GSII activities and for their symbiotic properties. Four classes of MSs mutants have been distinguished. Class I strains are impaired in their synthesis of glutamine and in their symbiotic properties. Class II strains have wild type levels of GSI and GSII activities but have a reduced capacity to fix nitrogen. Class III strains have lost GSII activity, but their symbiotic properties are wild type. In class IV mutants neither glutamine synthesis nor symbiotic properties are affected. Mutants of classes I, III, and IV all have the Tn5 inserted into the chromosome, whereas in class II mutants the Tn5 is located in plasmid p42e, a plasmid different from the previously identified symbiotic plasmid p42d.  相似文献   

16.
AIMS: The aim of the present investigation was to study the effects of different inorganic carbon and nitrogen sources on nitrate uptake and heterocyst differentiation in the culture of cyanobacterium Anabaena sp. PCC 7120. METHODS AND RESULTS: Anabaena was cultivated in media BG11 containing combined nitrogen and supplementary NaHCO3 or CO2. Cell growth, heterocyst differentiation, nitrate reductase (NR, EC 1.7.7.2), glucose-6-phosphate dehydrogenase (G6PDH, EC 1.1.1.49) and NO uptake were analysed. The cells cultivated in BG11(0) medium with aeration were taken as reference. Experimental results showed that the differentiation frequency of heterocysts when the cells were cultivated with elevated CO2 was higher than that of the cells grown with air or bicarbonate. Heterocysts appeared unexpectedly when CO2 was introduced into the medium containing nitrate. However, no heterocysts emerged when CO2 was added to medium containing NH or urea, or when NaHCO3 was supplied to the medium with nitrate. Both nitrate uptake rate and nitrate reduction enzyme activity were depressed by the supplement of CO2 to the culture. The activity of G6PDH was enhanced with the increase in heterocyst differentiation frequency. CONCLUSION: CO2 might compete with NO for energy and electrons in the uptake process and CO2 appears favoured. This led to a high intracellular C/N ratio and a relative N limitation. So the process of heterocyst differentiation was activated to supplement nitrogen uptake. SIGNIFICANCE AND IMPACT OF THE STUDY: This study provided an attractive possibility to form more heterocysts by rapid growth of Anabaena cells cultivated in the medium containing nitrate in order to increase nitrogen fixation and hydrogen production.  相似文献   

17.
D. Cammaerts  M. Jacobs 《Planta》1985,163(4):517-526
Glutamate-dehydrogenase (GDH, EC 1.4.1.2) activity and isoenzyme patterns were investigated in Arabidopsis thaliana plantlets, and parallel studies were carried out on glutamine synthetase (GS, EC 6.3.1.2). Both NADH-GDH and NAD-GDH activities increased during plant development whereas GS activity declined. Leaves deprived of light showed a considerable enhancement of NADH-GDH activity. In roots, both GDH activities were induced by ammonia whereas in leaves nitrogen assimilation was less important. It was demonstrated that the increase in GDH activity was the result of de-novo protein synthesis. High nitrogen levels were first assimilated by NADH-GDH, while GS was actively involved in nitrogen metabolism only when the enzyme was stimulated by a supply of energy, generated by NAD-GDH or by feeding sucrose. When methionine sulfoximine, an inhibitor of GS, was added to the feeding solution, NADH-GDH activity remained unaffected in leaves whereas NAD-GDH was induced. In roots, however, there was a marked activation of GDH and no inactivation of GS. It was concluded that NADH-GDH was involved in the detoxification of high nitrogen levels while NAD-GDH was mainly responsible for the supply of energy to the cell during active assimilation. Glutamine synthetase, on the other hand was involved in the assimilation of physiological amounts of nitrogen. A study of the isoenzyme pattern of GDH indicated that a good correlation existed between the relative activity of the isoenzymes and the ratio of aminating to deaminating enzyme activities. The NADH-GDH activity corresponded to the more anodal isoenzymes while the NAD-GDH activity corresponded to the cathodal ones. The results indicate that the two genes involved in the formation of GDH control the expression of enzymes with different metabolic functions.Abbreviations GDH glutamate dehydrogenase - GS glutamine synthetase - MSO methionine sulfoximine  相似文献   

18.
Glutamine synthetase (GS; EC 6.3.1.2) from Streptomyces cattleya was purified using a single affinity-gel chromatography step, and some of its properties were determined. Levels of GS in S. cattleya cells varied by a factor of 8 depending upon the source of nitrogen in the growth medium. Of 24 nitrogen sources examined only glutamine or NH4Cl utilization resulted in very low GS activity. Addition of NH4Cl to a culture with high GS levels appeared to stop further synthesis and resulted in a progressive decrease in the specific activity of the enzyme. The GS inhibitor methionine sulphoximine (MSX) inhibited GS activity but had no effect on exponentially growing cells. The presence of MSX either lengthened or shortened the period between spore inoculation and initiation of exponential growth, depending on the source of nitrogen. In glutamine minimal medium MSX produced earlier and more efficient spore germination while in glutamate or nitrate minimal medium germination was delayed by its presence.  相似文献   

19.
Anabaena azollae, a presumptive isolate from Azolla filiculoides, was immobilized in polyurethane foam, hydrophilic polyvinyl foam and alginate. When viewed by low-temperature scanning electron microscopy a thick mucilage layer covered the surface of both cells and matrix; this closely resembles the mode of attachment of the symbiont Anabaena in the Azolla leaf cavity. The heterocyst frequency of the immobilized A. azollae doubled relative to free-living cells and reached a level of 14–17%. Immobilization induced increases in both hydrogen production via nitrogenase or hydrogenase and in the rates and stabilization of acetylene reduction (N2-fixation). Ammonia production by immobilized cells with L-methionine-D,L-sulfoximine (MSX) is greater than that of freeliving cells. Immobilized cells without MSX were, however, able to excrete ammonium at lower rates thus emulating the characteristic of the symbiotic cyanobacteria (A. azollae) in the leaf cavity of Azolla.Abbreviations Chl chlorophyll - GS glutamine synthetase - MSX L-methionine-D,L-sulfoximine - SEM scanning electron microscopy - PU polyurethane - PV polyvinyl  相似文献   

20.
Ammonium suppresses nitrogenase activity in Anabaena flos-aquae (Lyng) Breb. at all pH values tested. l-Methionine-dl-sulfoximine at 1 millimolar totally inhibited glutamine synthetase, and 10 micromolar partially inhibited. Both concentrations protected nitrogenase activity from ammonium-induced suppression at pH 7.1 and 8.1. At pH 9.3 and 10.2, methionine sulfoximine did not alleviate the suppression of nitrogenase by ammonium. This pH-dependent protection of nitrogenase activity is a result of the noncompetitive inhibition of the ammonium transporter by methionine sulfoximine. At pH 7.1 and 8.2, ammonium is protonated and methionine sulfoximine inhibits its entry into the cell. At pH 9.3 and 10.2, unprotonated ammonia is abundant and may enter the cell independent of the transport system. The effects of ammonium are closely mimicked by the ammonium analog methylamine. These results suggest that ammonium per se is an important in vivo regulator of nitrogen fixation and its function can be mimicked by methylamine. Previous studies employing methionine sulfoximine may have to be re-evaluated in light of the inhibitory effects of methionine sulfoximine on the ammonium transporter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号