首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Enzymatic and lipid transfer reactions involved in reverse cholesterol transport were studied in healthy and lecithin:cholesterol acyltransferase (LCAT), deficient subjects. Fasting plasma samples obtained from each individual were labeled with [3H]cholesterol and subsequently fractionated by gel chromatography. The radioactivity patterns obtained corresponded to the elution volumes of the three major ultracentrifugally isolated lipoprotein classes (very low density lipoproteins (VLDL), low density lipoproteins (LDL), and high density lipoproteins (HDL)). In healthy subjects, the LCAT activity was consistently found in association with the higher molecular weight portion of HDL. Similar observations were made when exogenous purified LCAT was added to the LCAT-deficient plasma prior to chromatography. Incubation of the plasma samples at 37 degrees C resulted in significant reduction of unesterified cholesterol (FC) and an increase in esterified cholesterol (CE). Comparison of the data of FC and CE mass measurements of the lipoprotein fractions from normal and LCAT-deficient plasma indicates that: (i) In normal plasma, most of the FC for the LCAT reaction originates from LDL even when large amounts of FC are available from VLDL. (ii) The LCAT reaction takes place on the surface of HDL. (iii) The product of the LCAT reaction (CE) may be transferred to either VLDL or LDL although VLDL appears to be the preferred acceptor when present in sufficient amounts. (iv) CE transfer from HDL to lower density lipoproteins is at least partially impaired in LCAT-deficient patients. Additional studies using triglyceride-rich lipoproteins indicated that neither the capacity to accept CE from HDL nor the lower CE transfer activity were responsible for the decreased amount of CE transferred to VLDL and chylomicrons in LCAT-deficient plasma.  相似文献   

2.
Lipid classes and their fatty acids were studied in the major lipoprotein fractions from canine, in comparison with human, plasma. In dogs, high-density-lipoprotein (HDL), the main carrier of plasma phospholipid (PL), cholesterol ester (CE) and free cholesterol, was the most abundant lipoprotein, followed by low and very-low density lipoproteins (LDL and VLDL). Notably, LDL and VLDL contributed similarly to the total dog plasma triacylglycerol (TG). The PL composition was similar in all three lipoproteins, dominated by phosphatidylcholine (PC). Even though the content and composition of lipids within and among lipoproteins differed markedly between dog and man, the total amount of circulating lipid was similar. All canine lipoproteins were relatively richer than those from humans in long-chain (C20-C22) n-6 and n-3 polyunsaturated fatty acids (PUFA) but had comparable proportions of total saturated and monoenoic fatty acids, with 18:2n-6 being the main PUFA in both mammals. The fatty acid profile of canine and human lipoproteins differed because they had distinct proportions of their major lipids. There were more n-3 and n-6 long-chain PUFA in canine than in human plasma, because dogs had more HDL, their HDL had more PC and CE, and both these lipids were richer in such PUFA.  相似文献   

3.
Although the direct conversion of very low density lipoproteins (VLDL) into low density (LDL) and high density (HDL) lipoproteins only requires lipoprotein lipase (LPL) as a catalyst and albumin as the fatty acid acceptor, the in vitro-formed LDL and HDL differ chemically from their native counterparts. To investigate the reason(s) for these differences, VLDL were treated with human milk LPL in the presence of albumin, and the LPL-generated LDL1-, LDL2-, and HDL-like particles were characterized by lipid and apolipoprotein composition. Results showed that the removal of apolipoproteins B, C, and E from VLDL was proportional to the degree of triglyceride hydrolysis with LDL2 particles as the major and LDL1 and HDL + VHDL particles as the minor products of a complete in vitro lipolysis of VLDL. In comparison with native counterparts, the in vitro-formed LDL2 and HDL + VHDL were characterized by lower levels of triglyceride and cholesterol ester and higher levels of free cholesterol and lipid phosphorus. The characterization of lipoprotein particles present in the in vitro-produced LDL2 showed that, as in plasma LDL2, lipoprotein B (LP-B) was the major apolipoprotein B-containing lipoprotein accounting for over 90% of the total apolipoprotein B. Other, minor species of apolipoprotein B-containing lipoproteins included LP-B:C-I:E and LP-B:C-I:C-II:C-III. The lipid composition of in vitro-formed LP-B closely resembled that of plasma LP-B. The major parts of apolipoproteins C and E present in VLDL were released to HDL + VHDL as simple, cholesterol/phospholipid-rich lipoproteins including LP-C-I, LP-C-II, LP-C-III, and LP-E. However, some of these same simple lipoprotein particles were present after ultracentrifugation in the LDL2 density segment because of their hydrated density and/or because they formed, in the absence of naturally occurring acceptors (LP-A-I:A-II), weak associations with LP-B. Thus, the presence of varying amounts of these cholesterol/phospholipid-rich lipoproteins in the in vitro-formed LDL2 appears to be the main reason for their compositional difference from native LDL2. These results demonstrate that the formation of LP-B as the major apolipoprotein B-containing product of VLDL lipolysis only requires LPL as a catalyst and albumin as the fatty acid acceptor. However, under physiological circumstances, other modulating agents are necessary to prevent the accumulation and interaction of phospholipid/cholesterol-rich apolipoprotein C- and E-containing particles.  相似文献   

4.
Mice bearing the Ehrlich ascites tumor were fed diets rich in either coconut oil or sunflower oil. From 20 to 40% less lipid was present in the ascites tumor fluid when the mice were fed the sunflower oil diet. This was associated with a reduction in the amount of very low density lipoproteins (VLDL) and high density lipoproteins (HDL), the main lipoprotein fractions present in the ascites tumor fluid. The VLDL from the mice fed sunflower oil contained more cholesteryl esters and a lower free to esterified cholesterol ratio than those from the mice fed coconut oil. Very little change occurred in the composition of the HDL. All of the lipids contained in both lipoprotein fractions exhibited appreciable differences in fatty acid composition. Much more monoenoic and less polyenoic fatty acid were present in the lipids from the mice fed the coconut oil diet, but no appreciable change in saturated fatty acid content occurred. Similar changes in fatty acid composition were observed in the blood plasma of the tumor-bearing mice. There was no qualitative difference in the apolipoprotein patterns of either the ascites fluid VLDL or HDL. Pyrene fluorescence studies indicated that the fluidity of the VLDL was increased when the mice were fed the sunflower oil diets. No difference in HDL fluidity, however, was observed by this technique. These results indicate that the amount, composition, and physical properties of certain of the lipoproteins contained in the ascites tumor fluid can be modified by changing the composition of the dietary fat fed to mice bearing the Ehrlich ascites tumor.  相似文献   

5.
The net transfer of core lipids between lipoproteins is facilitated by cholesteryl ester transfer protein (CETP). We have recently documented CETP deficiency in a family with hyperalphalipoproteinemia, due to a CETP gene splicing defect. The purpose of the present study was to characterize the plasma lipoproteins within the low density lipoprotein (LDL) density range and also the cholesteryl ester fatty acid distribution amongst lipoproteins in CETP-deficient subjects. In CETP deficiency, the conventional LDL density range contained both an apoE-rich enlarged high density lipoprotein (HDL) (resembling HDLc), and also apoB-containing lipoproteins. Native gradient gel electrophoresis revealed clear speciation of LDL subclasses, including a distinct population larger in size than normal LDL. Anti-apoB affinity-purified LDL from the CETP-deficient subjects were shown to contain an elevated triglyceride to cholesteryl ester ratio, and also a high ratio of cholesteryl oleate to cholesteryl linoleate, compared to their own HDL or to LDL from normal subjects. Addition of purified CETP to CETP-deficient plasma results in equilibration of very low density lipoprotein (VLDL) cholesteryl esters with those of HDL. These data suggest that, in CETP-deficient humans, the cholesteryl esters of VLDL and its catabolic product, LDL, originate predominantly from intracellular acyl-CoA:cholesterol acyltransferase (ACAT). The CETP plays a role in the normal formation of LDL, removing triglyceride and transferring LCAT-derived cholesteryl esters into LDL precursors.  相似文献   

6.
Suckling rat plasma contains (in mg/dl): chylomicrons (85 +/- 12); VLDL (50 +/- 6); LDL (200 +/- 23); HDL1 (125 +/- 20); and HDL2 (220 +/- 10), while lymph contains (in mg/dl): chylomicrons (9650 +/- 850) and VLDL (4570 +/- 435) and smaller amounts of LDL and HDL. The lipid composition of plasma and lymph lipoproteins are similar to those reported for adults, except that LDL and HDL1 have a somewhat higher lipid content. The apoprotein compositions of plasma lipoproteins are similar to those of adult lipoproteins except for the LDL fraction, which contains appreciable quantities of apoproteins other than apoB. Although the LDL fraction was homogeneous by analytical ultracentrifugation and electrophoresis, the apoprotein composition suggests the presence of another class of lipoproteins, perhaps a lipid-rich HDL1. The lipoproteins of lymph showed low levels of apoproteins E and C. The triacylglycerols in chylomicrons and VLDL of both lymph and plasma are rich in medium-chain-length fatty acids, whereas those in LDL and HDL have little or none. Phospholipids in all lipoproteins lack medium-chain-length fatty acids. The cholesteryl esters of the high density lipoproteins are enriched in arachidonic acid, whereas those in chylomicrons, VLDL, and LDL are enriched in linoleic acid, suggesting little or no exchange of cholesteryl esters between these classes of lipoproteins. The fatty acid composition of phosphatidylcholine, sphingomyelin, and lysophosphatidylcholine were relatively constant in all lipoprotein fractions, suggesting ready exchange of these phospholipids. However, the fatty acid composition of phosphatidylethanolamine in plasma chylomicrons and VLDL differed from that in plasma LDL, HDL1, and HDL2. LDL, HDL1, and HDL2 were characterized by analytical ultracentrifugation and shown to have properties similar to that reported for adult lipoproteins. The much higher concentration of triacylglycerol-rich lipoproteins in lymph, compared to plasma, suggests rapid clearance of these lipoproteins from the circulation.  相似文献   

7.
The effect of heparin injection (50 IU/kg body weight) on plasma lipoprotein concentration and composition as well as on platelet aggregation and 14C-serotonin release was studied in normal fasted subjects, normal subjects 4 hr after a fatty meal (postprandial state), and in primary type V hyperlipoproteinemic patients. Heparin injection resulted in a reduction in plasma triglyceride, cholesterol, and phospholipids as well as in the inhibition of platelet function in either the presence or the absence of the plasma environment. Heparin injection resulted in catabolism of triglyceride-rich lipoproteins and increment of cholesterol and protein in the high-density lipoprotein (HDL) density range. In fasted normal subjects, very-low-density lipoprotein (VLDL) was reduced by 50%; in the postprandial state, both VLDL and chylomicrons decreased similarly; but in phenotype V hyperlipoproteinemia, only chylomicrons (but not VLDL) degraded. Heparin injection also caused increased electrophoretic mobility of plasma lipoprotein. Upon incubation of similar lipoprotein concentration, derived before and after heparin injection, with normal washed platelets, we found that in all the groups all the lipoproteins (except HDL) derived after heparin injection caused reduction in platelet activity. High-density lipoproteins derived after heparin injection, especially from type V hyperlipoproteinemic subjects, increased normal platelet activity, and this probably represents an effect of chylomicron remnant particles in the HDL density range. Our study thus demonstrates altered composition and concentration of plasma lipoprotein after heparin injection and may suggest the appearance of remnant particles with atherogenic properties.  相似文献   

8.
Very low-density lipoprotein (VLDL) is the main plasma carrier of triacylglycerol that is elevated in pathological conditions such as diabetes, metabolic syndrome, obesity and dyslipidemia. How variations in triacylglycerol levels influence structural stability and remodeling of VLDL and its metabolic product, low-density lipoproteins (LDL), is unknown. We applied a biochemical and biophysical approach using lipoprotein remodeling by lipoprotein lipase and cholesterol ester transfer protein, along with thermal denaturation that mimics key aspects of lipoprotein remodeling in vivo. The results revealed that increasing the triacylglycerol content in VLDL promotes changes in the lipoprotein size and release of the exchangeable apolipoproteins. Similarly, increased triacylglycerol content in LDL promotes lipoprotein remodeling and fusion. These effects were observed in single-donor lipoproteins from healthy subjects enriched in exogenous triolein, in single-donor lipoproteins from healthy subjects with naturally occurring differences in endogenous triacylglycerol, and in LDL and VLDL from pooled plasma of diabetic and normolipidemic patients. Consequently, triacylglycerol-induced destabilization is a general property of plasma lipoproteins. This destabilization reflects a direct effect of triacylglycerol on lipoproteins. Moreover, we show that TG can act indirectly by increasing lipoprotein susceptibility to oxidation and lipolysis and thereby promoting the generation of free fatty acids that augment fusion. These in vitro findings are relevant to lipoprotein remodeling and fusion in vivo. In fact, fusion of LDL and VLDL enhances their retention in the arterial wall and, according to the response-to-retention hypothesis, triggers atherosclerosis. Therefore, enhanced fusion of triacylglycerol-rich lipoproteins suggests a new causative link between elevated plasma triacylglycerol and atherosclerosis.  相似文献   

9.
Although numerous studies have investigated the relationship between cholesteryl ester transfer protein (CETP) and high density lipoprotein (HDL) remodeling, the relationship between CETP and low density lipoproteins (LDL) is still not fully understood. In the present study, we examined the effect of the inhibition of CETP on both LDL oxidation and the uptake of the oxidized LDL, which were made from LDL under condition of CETP inhibition, by macrophages using a monoclonal antibody (mAb) to CETP in incubated plasma. The 6-h incubation of plasma derived from healthy, fasting human subjects led to the transfer of cholesteryl ester (CE) from HDL to VLDL and LDL, and of triglycerides (TG) from VLDL to HDL and LDL. These net mass transfers of neutral lipids among the lipoproteins were eliminated by the mAb. The incubation of plasma either with or without the mAb did not affect the phospholipid compositions in any lipoproteins. As a result, the LDL fractionated from the plasma incubated with the mAb contained significantly less CE and TG in comparison to the LDL fractionated from the plasma incubated without the mAb. The percentage of fatty acid composition of LDL did not differ among the unincubated plasma, the plasma incubated with the mAb, and that incubated without the mAb. When LDL were oxidized with CuSO4, the LDL fractionated from the plasma incubated with the mAb were significantly resistant to the oxidative modification determined by measuring the amount of TBARS and by continuously monitoring the formation of the conjugated dienes, in comparison to the LDL fractionated from the plasma incubated without the mAb. The accumulation of cholesteryl ester of oxidized LDL, which had been oxidized for 2 h with CuSO4, in J774.1 cells also decreased significantly in the LDL fractionated from the plasma incubated with mAb in comparison to the LDL fractionated from the plasma incubated without the mAb. These results indicate that CETP inhibition reduces the composition of CE and TG in LDL and makes the LDL resistant to oxidation. In addition, the uptake of the oxidized LDL, which was made from the LDL under condition of CETP inhibition, by macrophages also decreased.  相似文献   

10.
Lipoprotein lipase enhances the cholesteryl ester transfer protein (CETP)-mediated transfer of cholesteryl esters from plasma high density lipoproteins (HDL) to very low density lipoproteins (VLDL). In time course studies the stimulation of cholesteryl ester transfer by bovine milk lipase was correlated with accumulation of fatty acids in VLDL remnants. As the amount of fatty acid-poor albumin in the incubations was increased, there was decreased accumulation of fatty acids in VLDL remnants and a parallel decrease in the stimulation of cholesteryl ester transfer by lipolysis. Addition of sodium oleate to VLDL and albumin resulted in stimulation of the CETP-mediated transfer of cholesteryl esters from HDL to VLDL. The stimulation of transfer of cholesteryl esters into previously lipolyzed VLDL was abolished by lowering the pH from 7.5 to 6.0, consistent with a role of lipoprotein ionized fatty acids. CETP-mediated cholesteryl ester transfer from HDL to VLDL was also augmented by phosholipase A2 and by a bacterial lipase which lacked phospholipase activity. When VLDL and HDL were re-isolated after a lipolysis experiment, both lipoproteins stimulated CETP activity. Postlipolysis VLDL and HDL bound much more CETP than native VLDL or HDL. Lipolysis of apoprotein-free phospholipid/triglyceride emulsions also resulted in enhanced binding of CETP to the emulsion particles. Incubation conditions which abolished the enhanced cholesteryl ester transfer into VLDL remnants reduced binding of CETP to remnants, emulsions, and HDL. In conclusion, the enhanced CETP-mediated transfer of cholesteryl esters from HDL to VLDL during lipolysis is related to the accumulation of products of lipolysis, especially fatty acids, in the lipoproteins. Lipids accumulating in VLDL remnants and HDL as a result of lipolysis may augment binding of CETP to these lipoproteins, leading to more efficient transfer of cholesteryl esters from HDL to VLDL.  相似文献   

11.
The amount of individual fatty acids contained in the main human lipoproteins VLDL, LDL, lipoprotein (a), HDL2, and HDL3 were determined by two different methods. In Method I, the lipids were first extracted by the classical Folch procedure and then transesterified with BF3/methanol and separated by capillary GC. In Method II the lipoprotein solution was freeze dried prior to transesterification with BF3/methanol. In all lipoproteins except VLDL significantly more fatty acids were found with Method II as compared to Method I. For total fatty acids the increase was up to 17.5%, for polyunsaturated fatty acids up to 24.5%. The total fatty acid content determined by Method II resembled closely the content independently derived from the enzymatically determined lipid composition. The results indicate that in case of lipoproteins quantification of fatty acids should be made with freeze-dried samples rather than with Folch extracts.  相似文献   

12.
In the present study we measured interleukin-18 (IL-18) and tumour necrosis factor-alpha (TNF-alpha) levels by enzyme linked immunosorbent assay (ELISA) in sera from 65 diabetic [30 with type 1 insulin dependent diabetes mellitus (IDDM) and 35 with type 2 non-insulin dependent diabetes mellitus (NIDDM)] patients and 15 healthy volunteers, to investigate their associations with metabolic parameters and to elucidate their roles in the pathogenesis of diabetic complications especially diabetic nephropathy. Levels of IL-18 and TNF-alpha were significantly higher in both IDDM and NIDDM individuals as compared to the control group. Similarly, their levels in patients with diabetic nephropathy increased gradually according to the clinical stage of the disease, being highest in macroalbuminuric stage. Correlation analyses showed that the serum IL-18 and TNF-alpha concentration were positively correlated with each other and positively with fasting plasma glucose (FPG), 2h postprandial glucose, glycosylated hemoglobin (HbA1c), triglyceride, and urinary albumin levels and negative correlation between TNF-alpha and high density lipoprotein cholesterol (HDL-C) were also found in diabetic subjects. High serum levels of IL-18 and TNF-alpha suggested that they might play a role in the pathogenesis of DM and in the development of nephropathy in diabetic patients whether of type 1 or 2.  相似文献   

13.
Stimulated peripheral blood mononuclear cells (PBMC) can oxidize normal lipoproteins, and sufficiently oxidized lipoproteins are cytotoxic. However, the role of lipid peroxidation in the inhibition of mitogen-stimulated PBMC proliferation by physiologic concentrations of normal lipoproteins is unclear. In the present investigation, normal low density lipoprotein (LDL) and very low density lipoprotein (VLDL) suppressed [3H]thymidine incorporation and gamma interferon production in concanavalin A-stimulated PBMC without causing cell death. This suppression was accompanied by parallel increases in lipid peroxidation products measured as thiobarbituric acid reactive substances (TBARS). In contrast, high density lipoprotein (HDL) failed to inhibit PBMC and TBARS remains low. Differences between the PBMC suppression from LDL, VLDL, and HDL were best accounted for by normalizing the lipoprotein concentrations by their total lipid content. Moreover, the antioxidants superoxide dismutase and butylated hydroxytoluene each substantially ameliorated the inhibition of PBMC caused by LDL, and reduced the levels of lipid peroxidation products that were generated. Altogether, these results suggest that reactive oxygen species generated by stimulated PMBC may cause oxidative alterations of normal lipoproteins that may, in turn, account for much of the previously reported inhibition of PBMC by normal lipoproteins.  相似文献   

14.
We determined HLA types in 110 Japanese patients with non-insulin-dependent diabetes mellitus (NIDDM) and studied the relationship between the HLA phenotypes and clinical features. Sixty-nine patients with insulin-dependent diabetes mellitus (IDDM) and 100 healthy blood donors served as controls. Concerning HLA DR and DQ loci, frequencies of DR4, DRw9 and DQw3.2 were higher, and those of DR2, DRw8, DRw11, DRw12 and DQw1 were lower in patients with IDDM compared than in healthy controls. There were no differences between NIDDM and normal controls in the frequency of a particular HLA DR antigen except for a decreased frequency in DRw11 in the former. The frequency of DQw3.2 antigen in NIDDM was intermediate between IDDM and normal controls. There were some differences between DQw3.2-positive and -negative NIDDM patients in clinical features. Those who showed low C-peptide responses during oral glucose tolerance test were more frequently found among DQw3.2-positive NIDDM patients. These results suggest that Type 1 diabetes mellitus may have a mild clinical course and is found among the Japanese NIDDM population.  相似文献   

15.
The liver is a major source of the plasma lipoproteins; however, direct studies of the regulation of lipoprotein synthesis and secretion by human liver are lacking. Dense monolayers of Hep-G2 cells incorporated radiolabeled precursors into protein ([35S]methionine), cholesterol ([3H]mevalonate and [14C]acetate), triacylglycerol, and phospholipid ([3H]glycerol), and secreted them as lipoproteins. In the absence of free fatty acid in the media, the principal lipoprotein secretory product that accumulated had a density maximum of 1.039 g/ml, similar to serum low density lipoprotein (LDL). ApoB-100 represented greater than 95% of the radiolabeled apoprotein of these particles, with only traces of apoproteins A and E present. Inclusion of 0.8 mM oleic acid in the media resulted in a 54% reduction in radiolabeled triacylglycerol in the LDL fraction and a 324% increase in triacylglycerol in the very low density lipoprotein (VLDL) fraction. Similar changes occurred in the secretion of newly synthesized apoB-100. The VLDL contained apoB-100 as well as apoE. In the absence of exogenous free fatty acid, the radiolabeled cholesterol was recovered in both the LDL and the high density lipoprotein (HDL) regions. Oleic acid caused a 50% decrease in HDL radiolabeled cholesterol and increases of radiolabeled cholesterol in VLDL and LDL. In general, less than 15% of the radiolabeled cholesterol was esterified, despite the presence of cholesteryl ester in the cell. Incubation with oleic acid did not cause an increase in the total amount of radiolabeled lipid or protein secreted. We conclude that human liver-derived cells can secrete distinct VLDL and LDL-like particles, and the relative amounts of these lipoproteins are determined, at least in part, by the availability of free fatty acid.  相似文献   

16.
Polyunsaturated fatty acids are known to affect plasma lipids and lipoproteins but there is no information on the effect of essential fatty acid (EFA) deficiency on lipoprotein composition. The purpose of this study was to characterize lipoproteins from 17 cystic fibrosis (CF) patients in relationship to their EFA status (eicosatrienoic/arachidonic acid ratio) and compare them with those of 10 healthy siblings (SIB) and of 10 unrelated controls. In 7 EFA-deficient (EFAD) and 10 EFA-sufficient (EFAS) patients, hypocholesterolemia was associated with a decrease of HDL-cholesterol and of LDL-cholesterol which was more marked in the EFAD group. Similarly, although triglyceride enrichment of VLDL, LDL, HDL2, and HDL3 with a concomitant reduction of cholesteryl esters from all particles except HDL2 was observed in both CF groups, it was more sizable in the EFAD patients. These changes led to an increase in the particle size of VLDL, LDL, and HDL2 whereas the distribution of HDL3 was skewed to smaller particles. Alterations in the apoprotein composition of particles were greater in EFAD than in EFAS. A decrease of total postheparin lipolytic activity was observed in the two groups of CF patients as well as in siblings. It was entirely accounted for by hepatic lipase (mumol FFA/ml per h) which was more severely diminished in EFAD (2.8 +/- 0.6) than in EFAS (4.4 +/- 0.7) and SIB (5.1 +/- 0.5). Although the two groups of CF children differed in terms of growth, severity of malabsorption, and vitamin E status, these data suggest that disturbance of lipoprotein concentration, composition, size, and metabolism (hepatic lipase) may be in part related to EFA deficiency. Further studies are necessary to explore the effect of EFA deficiency on hepatic lipase activity.  相似文献   

17.
Incubation of low (LDL), intermediate (IDL), or very low density lipoproteins (VLDL) with palmitic acid and either high density lipoproteins (HDL), delipidated HDL, or purified apolipoprotein (apo) A-I resulted in the formation of lipoprotein particles with discoidal structure and mean particle diameters ranging from 146 to 254 A by electron microscopy. Discs produced from IDL or LDL averaged 26% protein, 42% phospholipid, 5% cholesteryl esters, 24% free cholesterol, and 3% triglycerides; preparations derived from VLDL contained up to 21% triglycerides. ApoA-I was the predominant protein present, with smaller amounts of apoA-II. Crosslinking studies of discs derived from LDL or IDL indicated the presence of four apoA-I molecules per particle, while those derived from large VLDL varied more in size and contained as many as six apoA-I molecules per particle. Incubation of discs derived from IDL or LDL with purified lecithin:cholesterol acyltransferase (LCAT), albumin, and a source of free cholesterol produced core-containing particles with size and composition similar to HDL2b. VLDL-derived discs behaved similarly, although the HDL products were somewhat larger and more variable in size. When discs were incubated with plasma d greater than 1.21 g/ml fraction rather than LCAT, core-containing particles in the size range of normal HDL2a and HDL3a were also produced. A variety of other purified free fatty acids were shown to promote disc formation. In addition, some mono and polyunsaturated fatty acids facilitated the formation of smaller, spherical particles in the size range of HDL3c. Both discoidal and small spherical apoA-I-containing lipoproteins were generated when native VLDL was incubated with lipoprotein lipase in the presence of delipidated HDL. We conclude that lipolysis product-mediated dissociation of lipid-apoA-I complexes from VLDL, IDL, or LDL may be a mechanism for formation of HDL subclasses during lipolysis, and that the availability of different lipids may influence the type of HDL-precursors formed by this mechanism.  相似文献   

18.
This study aimed to investigate the interrelationship of plasma lipid profile, lipid peroxidation, and erythrocyte antioxidative defense in patients with insulin-dependent (IDDM) and non-insulin-dependent (NIDDM) diabetes mellitus. Plasma levels of total cholesterol, triglycerides, and lipid peroxides and the activities of copper, zinc superoxide dismutase (CuZnSOD), catalase, glutathione peroxidase (GSH-Px), as well as the amount of glutathione in erythrocytes, were determined in IDDM, NIDDM, and nondiabetic control subjects. Additionally, morphology of erythrocytes in all subjects was examined. Plasma levels of total cholesterol and triglycerides were significantly increased in NIDDM compared with controls. Also, the lipid peroxide level was higher in NIDDM than in either control or IDDM subjects. CuZnSOD activity in erythrocytes was elevated in NIDDM patients compared with the control. In NIDDM patients, more extensive erythrocyte spherocytosis and echinocytosis compared with both control and IDDM subjects were observed. In contrast with the IDDM group, the observed abnormality in lipid metabolism in NIDDM patients is closely associated with increased lipid peroxidation, changes in antioxidative defense, and erythrocyte morphology.  相似文献   

19.
Uniformly fatty livers from orotic acid-fed rats secreted almost no very low density lipoproteins (VLDL) but normal amounts of nascent high density lipoproteins (HDL) accumulated in perfusates. When lecithin:cholesterol acyltransferase (LCAT) was inhibited, nascent HDL were uniformly discoidal and lacked cholesteryl esters. Lipid and apoprotein compositions of nascent HDL from normal and fatty livers were similar whether LCAT was inhibited or not. Apolipoprotein B-100 was not detected in perfusates of uniformly fatty livers, but small amounts of apolipoprotein B-48 were present in HDL2 fractions. Nascent lipoproteins were not seen in Golgi compartments, but lipid-rich particles were clearly evident in endoplasmic reticulum cisternae adjacent to the cis face of the Golgi complex, suggesting that orotic acid blocks VLDL secretion by preventing translocation of nascent particles from the endoplasmic reticulum to the cis Golgi compartment. The accumulation of normal amounts of discoidal HDL in liver perfusates despite virtual absence of triglyceride-rich lipoproteins in Golgi secretory compartments, the space of Disse, and the perfusate is inconsistent with the concept that nascent HDL are exclusively a product of surface remnants cast off during lipolysis of chylomicrons and VLDL.  相似文献   

20.
Platelet-activating factor acetylhydrolase (PAF-AH) is a phospholipase A2 associated with lipoproteins that hydrolyzes platelet-activating factor (PAF) and oxidized phospholipids. We have developed an ELISA for PAF-AH that is more sensitive than previous methods, and have quantified HDL-associated and non-HDL-associated PAF-AH in healthy, hyperlipidemic, and diabetic subjects. In healthy subjects, plasma total PAF-AH concentration was positively correlated with PAF-AH activity and with plasma total cholesterol, triacylglycerol, LDL cholesterol and apolipoprotein B (apoB) concentrations (all P < 0.01). HDL-associated PAF-AH concentration was correlated positively with plasma apoA-I and HDL cholesterol. Subjects with hyperlipidemia (n = 73) and diabetes mellitus (n = 87) had higher HDL-associated PAF-AH concentrations than did controls (P < 0.01). Non-HDL-associated PAF-AH concentration was lower in diabetic subjects than in controls (P < 0.01). Both hyperlipidemic and diabetic subjects had lower ratios of PAF-AH to apoB (P < 0.01) and higher ratios of PAF-AH to apoA-I (P < 0.01) than did controls. Our results show that the distribution of PAF-AH mass between HDLs and LDLs is determined partly by the concentrations of the lipoproteins and partly by the mass of enzyme per lipoprotein particle, which is disturbed in hyperlipidemia and diabetes mellitus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号