首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By convention, the term "mitochondrial diseases" refers to disorders of the mitochondrial respiratory chain, which is the only metabolic pathway in the cell that is under the dual control of the mitochondrial genome (mtDNA) and the nuclear genome (nDNA). Therefore, a genetic classification of the mitochondrial diseases distinguishes disorders due to mutations in mtDNA, which are governed by the relatively lax rules of mitochondrial genetics, and disorders due to mutations in nDNA, which are governed by the stricter rules of mendelian genetics. Mutations in mtDNA can be divided into those that impair mitochondrial protein synthesis in toto and those that affect any one of the 13 respiratory chain subunits encoded by mtDNA. Essential clinical features for each group of diseases are reviewed. Disorders due to mutations in nDNA are more abundant not only because most respiratory chain subunits are nucleus-encoded but also because correct assembly and functioning of the respiratory chain require numerous steps, all of which are under the control of nDNA. These steps (and related diseases) include: (i) synthesis of assembly proteins; (ii) intergenomic signaling; (iii) mitochondrial importation of nDNA-encoded proteins; (iv) synthesis of inner mitochondrial membrane phospholipids; (v) mitochondrial motility and fission.  相似文献   

2.
Mitochondrial diseases associated with mutations within mitochondrial genome are a subgroup of metabolic disorders since their common consequence is reduced metabolic efficiency caused by impaired oxidative phophorylation and shortage of ATP. Although the vast majority of mitochondrial proteins (approximately 1500) is encoded by nuclear genome, mtDNA encodes 11 subunits of respiratory chain complexes, 2 subunits of ATP synthase, 22 tRNAs and 2 rRNAs. Up to now, more than 250 pathogenic mutations have been described within mtDNA. The most common are point mutations in genes encoding mitochondrial tRNAs such as 3243A-->G and 8344T-->G that cause, respectively, MELAS (mitochondrial encephalopathy, lactic acidosis and stroke-like episodes) or MIDD (maternally-inherited diabetes and deafness) and MERRF (myoclonic epilepsy with ragged red fibres) syndromes. There have been also found mutations in genes encoding subunits of ATP synthase such as 8993T-->G substitution associated with NARP (neuropathy, ataxia and retinitis pigmentosa) syndrome. It is worth to note that mitochondrial dysfunction can also be caused by mutations within nuclear genes coding for mitochondrial proteins.  相似文献   

3.
Mitochondrial respiratory chain deficiencies represent one of the major causes of metabolic disorders that are related to genetic defects in mitochondrial or nuclear DNA. The mitochondrial protein synthesis allows the synthesis of the 13 respiratory chain subunits encoded by mtDNA. Altogether, about 100 different proteins are involved in the translation of the 13 proteins encoded by the mitochondrial genome emphasizing the considerable investment required to maintain mitochondrial genetic system. Mitochondrial protein synthesis deficiency can be caused by mutations in any component of the translation apparatus including tRNA, rRNA and proteins. Mutations in mitochondrial rRNA and tRNAs have been first identified in various forms of mitochondrial disorders. Moreover abnormal translation due to mutation in nuclear genes encoding tRNA-modifying enzymes, ribosomal proteins, aminoacyl-tRNA synthetases, elongation and termination factors and translational activators have been successively described. These deficiencies are characterized by a huge clinical and genetic heterogeneity hampering to establish genotype-phenotype correlations and an easy diagnosis. One can hypothesize that a new technique for gene identification, such as exome sequencing will rapidly allow to expand the list of genes involved in abnormal mitochondrial protein synthesis.  相似文献   

4.
Mitochondrial genetics and disease   总被引:19,自引:0,他引:19  
Mitochondrial respiratory chain diseases are a highly diverse group of disorders whose main unifying characteristic is the impairment of mitochondrial function. As befits an organelle containing gene products encoded by both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA), these diseases can be caused by inherited errors in either genome, but a surprising number are sporadic, and a few are even caused by environmental factors.  相似文献   

5.
The high frequency of mitochondrial DNA (mtDNA) mutations in somatic mammalian cells, which is more than two orders of magnitude higher than the mutation frequency of nuclear DNA (nDNA), significantly correlates with development of a variety of mitochondrial diseases (neurodegenerative diseases, cardiomyopathies, type II diabetes mellitus, cancer, etc.). A direct cause—consequence relationship has been established between mtDNA mutations and aging phenotypes in mammals. However, the unclear nature of the high frequency of mtDNA mutations requires a comprehensive consideration of factors that contribute to this phenomenon: oxidative stress, features of structural organization and repair of the mitochondrial genome, ribonucleotide reductase activity, replication errors, mutations of nuclear genes encoding mitochondrial proteins.  相似文献   

6.
The role of nuclear DNA (nDNA)-encoded proteins in the regulation of mitochondrial fission and fusion has been documented, yet the role of mitochondrial DNA (mtDNA) and encoded proteins in mitochondrial biogenesis remains unknown. Long-term treatment of a lymphoblastoid cell line Molt-4 with ethidium bromide generated mtDNA-deficient rho0 mutants. Depletion of mtDNA in rho0 cells produced functional and morphological changes in mitochondria without affecting the nuclear genome and encoded proteins. Indeed, the gene encoding subunit II of mitochondrial cytochrome c oxidase (COX II), a prototypical mitochondrial gene, was reduced in rho0 mutants blunting the activity of mitochondrial cytochrome coxidase. Yet, the amount of the nuclear beta-actin gene and the activity of citrate synthase, a mitochondrial matrix enzyme encoded by nDNA, remained unaffected in rho0 cells. Loss of mtDNA in rho0 cells was associated with significant distortion of mitochondrial structure, decreased electron density of the matrix and disorganized inner and outer membranes, resulting in the appearance of 'ghost-like' mitochondria. However, the number of mitochondria-like structures was not significantly different between mtDNA-deficient and parental cells. Thus, we conclude that cells lacking mtDNA still generate mitochondrial scaffolds, albeit with aberrant function.  相似文献   

7.
Mitochondria contain a separate protein-synthesis machinery to produce the polypeptides encoded in mitochondrial DNA (mtDNA), and many mtDNA disease mutations affect this machinery. In humans, the mitochondrial rRNAs and tRNAs are encoded by mtDNA, whereas all proteins involved in mitochondrial translation are encoded by nuclear genes. Recently, several articles have discussed the identification of pathological mutations in nuclear genes encoding components of this protein-synthesis machinery, suggesting that these types of mutation are a frequent cause of human genetic diseases.  相似文献   

8.
Complex I (CI) represents a major entry point of electrons in the mitochondrial electron transport chain (ETC). It consists of 45 different subunits, encoded by the mitochondrial (mtDNA) and nuclear DNA (nDNA). In humans, mutations in nDNA-encoded subunits cause severe neurodegenerative disorders like Leigh Syndrome with onset in early childhood. The pathophysiological mechanism of these disorders is still poorly understood. Here we summarize the current knowledge concerning the consequences of nDNA-encoded CI mutations in patient-derived cells, present mouse models for human CI deficiency, and discuss potential treatment strategies for CI deficiency.  相似文献   

9.
10.
The causes of most neurodegenerative diseases, including sporadic Alzheimer's disease (AD), remain enigmatic. There is, however, increasing evidence implicating mitochondrial dysfunction resulting from deafferentiation of disconnected neural circuits in the pathogenesis of energy deficit in AD. The patterns of reduced expression of both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) encoded genes is consistent with a physiological down-regulation of the mitochondrial respiratory chain in response to reduced neuronal activity. On the other hand, the role(s) of somatic cell or maternally inherited mtDNA mutations in the pathogenesis of mitochondrial dysfunction in AD are still controversial.  相似文献   

11.
12.
Biochemical diagnosis of mitochondrial respiratory chain disorders requires caution to avoid misdiagnosis of secondary enzyme defects, and can be improved by the use of conservative diagnostic criteria. Pathogenic mutations causing mitochondrial disorders have now been identified in more than 30 mitochondrial DNA (mtDNA) genes encoding respiratory chain subunits, ribosomal- and t-RNAs. mtDNA mutations appear to be responsible for most adult patients with mitochondrial disease and approximately a quarter of paediatric patients. A family history suggesting maternal inheritance is the exception rather than the norm for children with mtDNA mutations, many of whom have de novo mutations. Prenatal diagnosis and pre-implantation genetic diagnosis can be offered to some women at risk of transmitting a mtDNA mutation, particularly those at lower recurrence risk. Mutations in more than 30 nuclear genes, including those encoding for respiratory chain subunits and assembly factors, have now been shown to cause mitochondrial disorders, creating difficulties in prioritising which genes should be studied by mutation analysis in individual patients. A number of approaches offer promise to guide the choice of candidate genes, including Blue Native-PAGE immunoblotting and microarray expression analysis.  相似文献   

13.
Instability of the mitochondrial genome (mtDNA) is a general problem from yeasts to humans. However, its genetic control is not well documented except in the yeast Saccharomyces cerevisiae. From the discovery, 50 years ago, of the petite mutants by Ephrussi and his coworkers, it has been shown that more than 100 nuclear genes directly or indirectly influence the fate of the rho(+) mtDNA. It is not surprising that mutations in genes involved in mtDNA metabolism (replication, repair, and recombination) can cause a complete loss of mtDNA (rho(0) petites) and/or lead to truncated forms (rho(-)) of this genome. However, most loss-of-function mutations which increase yeast mtDNA instability act indirectly: they lie in genes controlling functions as diverse as mitochondrial translation, ATP synthase, iron homeostasis, fatty acid metabolism, mitochondrial morphology, and so on. In a few cases it has been shown that gene overexpression increases the levels of petite mutants. Mutations in other genes are lethal in the absence of a functional mtDNA and thus convert this petite-positive yeast into a petite-negative form: petite cells cannot be recovered in these genetic contexts. Most of the data are explained if one assumes that the maintenance of the rho(+) genome depends on a centromere-like structure dispensable for the maintenance of rho(-) mtDNA and/or the function of mitochondrially encoded ATP synthase subunits, especially ATP6. In fact, the real challenge for the next 50 years will be to assemble the pieces of this puzzle by using yeast and to use complementary models, especially in strict aerobes.  相似文献   

14.
Saada A 《DNA and cell biology》2004,23(12):797-806
Mitochondrial DNA (mtDNA) depends on numerous nuclear encoded factors and a constant supply of deoxyribonucleoside triphosphates (dNTP), for its maintenance and replication. The function of proteins involved in nucleotide metabolism is perturbed in a heterogeneous group of disorders associated with depletion, multiple deletions, and mutations of the mitochondrial genome. Disturbed homeostasis of the mitochondrial dNTP pools are likely the underlying cause. Understanding of the biochemical and molecular basis of these disorders will promote the development of new therapeutic approaches. This article reviews the current knowledge of deoxyribonucleotide metabolism in relation to disorders affecting mtDNA integrity.  相似文献   

15.
Qualitative and quantitative changes in mitochondrial DNA (mtDNA) have been shown to be common causes of inherited neurodegenerative and muscular diseases, and have also been implicated in ageing. These diseases can be caused by primary mtDNA mutations, or by defects in nuclear‐encoded mtDNA maintenance proteins that cause secondary mtDNA mutagenesis or instability. Furthermore, it has been proposed that mtDNA copy number affects cellular tolerance to environmental stress. However, the mechanisms that regulate mtDNA copy number and the tissue‐specific consequences of mtDNA mutations are largely unknown. As post‐mitotic tissues differ greatly from proliferating cultured cells in their need for mtDNA maintenance, and as most mitochondrial diseases affect post‐mitotic cell types, the mouse is an important model in which to study mtDNA defects. Here, we review recently developed mouse models, and their contribution to our knowledge of mtDNA maintenance and its role in disease.  相似文献   

16.
Crimi M  O'Hearn SF  Wallace DC  Comi GP 《IUBMB life》2005,57(12):811-818
Mitochondria are ubiquitous in eukaryotic cells where they generate much of the cellular energy by the process of oxidative phosphorylation (OXPHOS). The approximately 1500 genes of the mitochondrial genome are distributed between the cytoplasmic, maternally-inherited, mitochondrial DNA (mtDNA) which encodes 37 genes and the nuclear DNA (nDNA) which encompasses the remaining mitochondrial genes. The interplay between the mtDNA and nDNA encoded mitochondrial genes and their role in mitochondrial disorders is still largely unclear. One approach for elucidating the pathophysiology of mitochondrial diseases has been to look at changes in the expression of mtDNA and nDNA-encoded genes in response to specific mitochondrial genetic defects. Initial studies of gene expression changes in response to mtDNA defect employed blot technologies to analyze changes in the expression of individual genes one at a time. While Southern/Northern blot experiments confirmed the importance of nDNA-mtDNA interactions in the pathophysiology of mitochondrial myopathy, the methodology used limited the number of genes that could be analyzed from each patient. This barrier has been overcome, in part by the advent of DNA microarray technology. In DNA microarrays gene sequences or oligonucleotides homologous to gene sequences are arrayed on a solid support. The RNA from the subject is then isolated, the mRNA converted to cDNA and the cDNA labeled with a fluorescent probe. The labeled cDNA is hybridized on the microarray and the fluorescence bound to each array is then quantified. Recently, these technologies have been applied to mitochondrial disease patient tissues and the presence of coordinate changes in mitochondrial gene expression confirmed.  相似文献   

17.
18.
Diseases caused by defects of mitochondrial carriers: a review   总被引:2,自引:0,他引:2  
A strikingly large number of mitochondrial DNA (mtDNA) mutations have been found to be the cause of respiratory chain and oxidative phosphorylation defects. These mitochondrial disorders were the first to be investigated after the small mtDNA had been sequenced in the 80s. Only recently numerous diseases resulting from mutations in nuclear genes encoding mitochondrial proteins have been characterized. Among these, nine are caused by defects of mitochondrial carriers, a family of nuclear-coded proteins that shuttle a variety of metabolites across the mitochondrial membrane. Mutations of mitochondrial carrier genes involved in mitochondrial functions other than oxidative phosphorylation are responsible for carnitine/acylcarnitine carrier deficiency, HHH syndrome, aspartate/glutamate isoform 2 deficiency, Amish microcephaly, and neonatal myoclonic epilepsy; these disorders are characterized by specific metabolic dysfunctions, depending on the physiological role of the affected carrier in intermediary metabolism. Defects of mitochondrial carriers that supply mitochondria with the substrates of oxidative phosphorylation, inorganic phosphate and ADP, are responsible for diseases characterized by defective energy production. Herein, all the mitochondrial carrier-associated diseases known to date are reviewed for the first time. Particular emphasis is given to the molecular basis and pathogenetic mechanism of these inherited disorders.  相似文献   

19.
Dilated cardiomyopathy (DCM) is widely accepted as a pluricausal or multifactorial disease. Because of the linkage between energy metabolism in the mitochondria and cardiac muscle contraction, it is reasonable to assume that mitochondrial abnormalities may be responsible for some forms of DCM. We analysed the whole mitochondrial genome in a series of 45 patients with DCM for alterations and compared the findings with those of 62 control subjects. A total of 458 sequence changes could be identified. These sequence changes were distributed among the whole mitochondrial DNA (mtDNA). An increased number of novel missense mutations could be detected nearly in all genes encoding for protein subunits in DCM patients. In genes coding for NADH dehydrogenase subunits the number of mtDNA mutations detected in patients with DCM was significantly increased (p < 0.05) compared with control subjects. Eight mutations were found to occur in conserved amino acids in the above species. The c.5973G > A (Ala-Trp) and the c.7042T > G (Val-Asp) mutations were located in highly conserved domains of the gene coding for cytochrome c oxidase subunit. Two tRNA mutations could be detected in the mtDNA of DCM patients alone. The T-C transition at nt 15,924 is connected with respiratory enzyme deficiency, mitochondrial myopathy, and cardiomyopathy. The c.16189T > C mutation in the D-loop region that is associated with susceptibility to DCM could be detected in 15.6% of patients as well as in 9.7% of controls. Thus, mutations altering the function of the enzyme subunits of the respiratory chain can be relevant for the pathogenesis of dilated cardiomyopathy.  相似文献   

20.
Breast cancer is a heterogeneous disease and genetic factors play an important role in its genesis. Although mutations in tumor suppressors and oncogenes encoded by the nuclear genome are known to play a critical role in breast tumorigenesis, the contribution of the mitochondrial genome to this process is unclear. Like the nuclear genome, the mitochondrial genome also encodes proteins critical for mitochondrion functions such as oxidative phosphorylation (OXPHOS), which is known to be defective in cancer including breast cancer. Mitochondrial DNA (mtDNA) is more susceptible to mutations due to limited repair mechanisms compared to nuclear DNA (nDNA). Thus changes in mitochondrial genes could also contribute to the development of breast cancer. In this review we discuss mtDNA mutations that affect OXPHOS. Continuous acquisition of mtDNA mutations and selection of advantageous mutations ultimately leads to generation of cells that propagate uncontrollably to form tumors. Since irreversible damage to OXPHOS leads to a shift in energy metabolism towards enhanced aerobic glycolysis in most cancers, mutations in mtDNA represent an early event during breast tumorigenesis, and thus may serve as potential biomarkers for early detection and prognosis of breast cancer. Because mtDNA mutations lead to defective OXPHOS, development of agents that target OXPHOS will provide specificity for preventative and therapeutic agents against breast cancer with minimal toxicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号