首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
Stripe rust, caused by Puccinia striiformis f.sp. tritici (Pst), is one of the most widespread and destructive diseases of wheat worldwide. Resistance breeding is constantly pursued for decades to tackle the variations of prevalent Pst races. Zhongliang 12 has strong resistance to abiotic stresses, wide adaptability, higher resistance to stripe rust and excellent biological characteristics. To identify the resistance gene(s) against stripe rust, Zhongliang 12 was crossed with stripe rust susceptible genotype Mingxian 169, and F1, F2, F2 : 3 and BC1 progenies were tested with Chinese Pst race CYR30 and CYR31 in seedling stage in greenhouse. Zhongliang 12 possessed different dominant genes for resistance to each race. Linkage maps were constructed with four simple sequence repeats (SSRs) markers, Xwmc695, Xcfd20, Xbarc121 and Xbarc49, for the gene on wheat chromosome 7AL conferring resistance to CYR30 (temporarily designated as Yrzhong12‐1) with genetic distance ranging from 3.1 to 10.8 cM and four SSR markers, Xpsp3003, Xcfd2129, Xwmc673 and Xwmc51, for the gene on wheat chromosome 1AL conferring resistance to CYR31 (temporarily designated as Yrzhong12‐2) with genetic distance ranging from 3.9 cM to 9.3 cM. The molecular markers closely linked to each gene should be useful in marker‐assisted selection in breeding programmes for against stripe rust.  相似文献   

2.
The cell wall of filamentous fungi, comprised of chitin, polysaccharide and glycoproteins, maintains the integrity of hyphae and protect them from defence responses by potential host plants. Here, we report that one polysaccharide deacetylase of Puccinia striiformis f. sp. tritici (Pst), Pst_13661, suppresses Bax‐induced cell death in plants and Pst_13661 is highly induced during early stages of the interaction between wheat and Pst. Importantly, the transgenic wheat expressing the RNA interference (RNAi) construct of Pst_13661 exhibits high resistance to major Pst epidemic races CYR31, CYR32 and CYR33 by inhibiting growth and development of Pst, indicating that Pst_13661 is an available pathogenicity factor and is a potential target for generating broad‐spectrum resistance breeding material of wheat. It forms a homo‐polymer and has high affinity for chitin and germ tubes of Pst compared with the control. Besides, Pst_13661 suppresses chitin‐induced plant defence in plants. Hence, we infer that Pst_13661 may modify the fungal cell wall to prevent recognition by apoplastic surveillance systems in plants. This study opens new approaches for developing durable disease‐resistant germplasm by disturbing the growth and development of fungi and develops novel strategies to control crop diseases.  相似文献   

3.
Stripe rust (yellow rust), caused by Puccinia striiformis f.sp. tritici (Pst), is a serious disease of wheat worldwide, including China. Growing resistant cultivars is the most cost‐effective and environmentally friendly approach to control the disease. To assess the stripe rust resistance in commercial wheat cultivars and advanced lines in the Yellow and Huai River Valley Wheat Region, 115 wheat cultivars (lines) collected from 13 provinces in this region were evaluated with the most prevalent Chinese Pst races CYR32, CYR33 and the new race V26 at seedling stage. In addition, these wheat entries were inoculated with the mixed races of CYR32 and CYR33 at the adult‐plant stage in the field. The results indicated that 53 (46.1%) cultivars (lines) had all‐stage resistance to all the three races, and 16 (13.9%) cultivars (lines) showed adult‐plant resistance. The possible stripe rust resistance genes in these entries were postulated by the closely linked markers of all‐stage resistance genes Yr5, Yr9, Yr10, Yr15 and Yr26 and adult‐plant resistance gene Yr18. Molecular analysis indicated that resistance genes Yr5, Yr9, Yr10, Yr18 and Yr26 were found in 5 (4.3%), 38 (33.0%), 1 (0.9%), 2 (1.7%) and 8 (7.0%) entries, respectively. No entry was found to carry the Yr15 gene. In future breeding programs, Yr5, Yr15 and Yr18 should be used to pyramid with other effective genes to develop wheat cultivars with high‐level and durable resistance to stripe rust, whereas Yr9, Yr10 and Yr26 should not be used or used in a limited way due to the virulent races present in China.  相似文献   

4.
Stripe rust, caused by Puccinia striiformis f.sp. tritici (Pst), is one of the most damaging diseases of wheat worldwide, especially in China. Growing resistant cultivars is the most effective approach to control the disease, but few effective resistance genes are available. Guinong 22, one of the wheat cultivars used for differentiated Chinese race of the pathogen, has unknown resistance gene(s) to stripe rust. Genetic analysis, molecular mapping and allelic analysis were used in this study to determine the inheritance and chromosomal location of the gene(s) in Guinong 22 with the most prevalent Pst race CYR33. Genetic analysis indicated that a single recessive gene yrGn22 confers the resistance to CYR33. A total of 450 simple sequence repeat (SSR) primer pairs and 31 pairs of sequence‐tagged site (STS) or conserved primers were selected to screen the resistant bulk and susceptible bulk as well as the parents. Seven polymorphic SSR markers and two STS markers were then used to genotype 113 F2 individual plants. Linkage analysis indicated that all nine markers were linked to yrGn22, with genetic distances ranging from 2.2 to 11.1 cM. Based on the chromosomal locations of the linked markers, yrGn22 was located on wheat chromosome 1B near the centromere. The pedigree, common markers, chromosome location, resistance and allelism tests indicated that yrGn22 is either linked to Yr26 or possibly the same gene.  相似文献   

5.
Actin filament assembly in plants is a dynamic process, requiring the activity of more than 75 actin‐binding proteins. Central to the regulation of filament assembly and stability is the activity of a conserved family of actin‐depolymerizing factors (ADFs), whose primarily function is to regulate the severing and depolymerization of actin filaments. In recent years, the activity of ADF proteins has been linked to a variety of cellular processes, including those associated with response to stress. Herein, a wheat ADF gene, TaADF4, was identified and characterized. TaADF4 encodes a 139‐amino‐acid protein containing five F‐actin‐binding sites and two G‐actin‐binding sites, and interacts with wheat (Triticum aestivum) Actin1 (TaACT1), in planta. Following treatment of wheat, separately, with jasmonic acid, abscisic acid or with the avirulent race, CYR23, of the stripe rust pathogen Puccinia striiformis f. sp. tritici, we observed a rapid induction in accumulation of TaADF4 mRNA. Interestingly, accumulation of TaADF4 mRNA was diminished in response to inoculation with a virulent race, CYR31. Silencing of TaADF4 resulted in enhanced susceptibility to CYR23, demonstrating a role for TaADF4 in defense signaling. Using a pharmacological‐based approach, coupled with an analysis of host response to pathogen infection, we observed that treatment of plants with the actin‐modifying agent latrunculin B enhanced resistance to CYR23, including increased production of reactive oxygen species and enhancement of localized hypersensitive cell death. Taken together, these data support the hypothesis that TaADF4 positively modulates plant immunity in wheat via the modulation of actin cytoskeletal organization.  相似文献   

6.
MicroRNAs (miRNAs) play very important roles in plant defense responses. However, little is known about their roles in the susceptibility interaction between wheat and Puccinia striiformis f. sp. tritici (Pst). In this study, two miRNA libraries were constructed from the leaves of the cultivar Xingzi 9104 inoculated with the virulent Pst race CYR32 and sterile water, respectively. A total of 1316 miRNA candidates, including 173 known miRNAs that were generated from 98 pre‐miRNAs, were obtained. The remaining 1143 miRNA candidates included 145 conserved and 998 wheat‐specific miRNAs that were generated from 87 and 1088 pre‐miRNAs, respectively. The 173 known and 145 conserved miRNAs were sub‐classified into 63 miRNA families. The target genes of wheat miRNAs were also confirmed using degradome sequencing technology. Most of the annotated target genes were related to signal transduction or energy metabolism. Additionally, we found that miRNAs and their target genes form complicated regulation networks. The expression profiles of miRNAs and their corresponding target genes were further analyzed by quantitative real‐time polymerase chain reaction (qRT‐PCR), and the results indicate that some miRNAs are involved in the compatible wheat‐Pst susceptibility interaction. Importantly, tae‐miR1432 was highly expressed when wheat was challenged with CYR32, and the corresponding target gene, predicted to be a calcium ion‐binding protein, also exhibited upregulated expression but a divergent expression trend. PC‐3P‐7484, a specific wheat miRNA, was highly expressed in the wheat response to Pst infection, while the expression of the corresponding target gene ubiquillin was dramatically downregulated. These data provide the foundation for evaluating the important regulatory roles of miRNAs in wheat‐Pst susceptibility interaction.  相似文献   

7.
Calcineurin B‐like interacting protein kinase (CIPKs) has been shown to be required for biotic stress tolerance of plants in plant‐pathogen interactions. However, the roles of CIPKs in immune signalling of cereal crops and an in‐depth knowledge of substrates of CIPKs in response to biotic stress are under debate. In this study, we identified and cloned a CIPK homologue gene TaCIPK10 from wheat. TaCIPK10 was rapidly induced by Puccinia striiformis f. sp. tritici (Pst) inoculation and salicylic acid (SA) treatment. In vitro phosphorylation assay demonstrated that the kinase activity of TaCIPK10 is regulated by Ca2+ and TaCBL4. Knockdown TaCIPK10 significantly reduced wheat resistance to Pst, whereas TaCIPK10 overexpression resulted in enhanced wheat resistance to Pst by the induction of defense response in different aspects, including hypersensitive cell death, ROS accumulation and pathogenesis‐relative genes expression. Moreover, TaCIPK10 physically interacted with and phosphorylated TaNH2, which was homologous to AtNPR3/4. Silencing of TaNH2 in wheat resulted in enhanced susceptibility to the avirulent Pst race, CYR23, indicating its positive role in wheat resistance. Our results demonstrate that TaCIPK10 positively regulate wheat resistance to Pst as molecular links between of Ca2+ and downstream components of defense response and TaCIPK10 interacts with and phosphorylates TaNH2 to regulate wheat resistance to Pst.  相似文献   

8.
9.
10.
The Roegneria kamoji accession ZY 1007 was resistant to the mixed predominant races of Puccinia striiformis f.sp. tritici (Pst) in China based on field tests at adult‐plant stage. The seedling resistance evaluation of ZY 1007 showed that it was resistant to stripe rust physiological strains CYR29, CYR33 and PST‐V26, which were the predominant races of Pst in China. The female parent R. kamoji cv. Gansi No.1 (susceptible to Pst) was crossed with ZY 1007 (resistant to Pst). Parents, F1 and F2 populations were tested in a field inoculated with the mixed urediniospores. ZY 1007 and all the observed 11 F1 hybrid plants were resistant, while plants of Gansi No.1 were susceptible. Among the 221 F2 plants, 168 plants were resistant and 53 were susceptible, and the segregation of resistant and susceptible plants fits 3R:1S ratio (χ2 = 0.074, P > 0.75). It confirmed that the resistance of stripe rust in ZY 1007 was controlled by a single dominant gene and temporarily designated as YrK1007.  相似文献   

11.
12.
Plants sense various pathogens and activate immunity responses through receptor-like kinases (RLKs). Cysteine-rich receptor-like kinases (CRKs) are involved in massive transduction pathways upon perception of a pathogen. However, the roles of CRKs in response to stripe rust are unclear. In the present study, we identified a CRK gene (designated TaCRK10) from wheat variety Xiaoyan 6 (XY6) that harbors high-temperature seedling-plant (HTSP) resistance to stripe rust caused by fungal pathogen Puccinia striiformis f. sp. tritici (Pst). The expression level of TaCRK10 was induced by Pst inoculation and high temperature treatment. Knockdown of TaCRK10 by virus-induced gene silencing resulted in attenuated wheat HTSP resistance to Pst, whereas there is no effect on Pst development and host responses under normal temperatures. Notably, overexpression of TaCRK10 in susceptible variety Fielder provided resistance only under normal temperatures at 14 days with reactive oxygen species accumulation and defense-related gene expression of the salicylic acid pathway. Moreover, TaCRK10 physically interacted with and phosphorylated a histone variant TaH2A.1, which belongs to the H2A.W group. Silencing of TaH2A.1 suppressed wheat resistance to Pst, indicating that TaH2A.1 plays a positive role in wheat resistance to Pst. Thus, TaCRK10 serves as an important sensor of Pst infection and high temperatures, and it activates wheat resistance to Pst through regulating nuclear processes. This knowledge helps elucidate the molecular mechanism of wheat HTSP resistance to Pst and promotes efforts in developing wheat varieties with resistance to stripe rust.  相似文献   

13.
白鹏飞  杨倩  康振生  郭军 《西北植物学报》2012,32(11):2151-2156
通过电子克隆与RT-PCR相结合的方法,在条锈菌诱导的小麦叶片中克隆获得1个新的LSD1型锌指蛋白基因TaLOL2,并用qRT-PCR技术分析了其转录表达特征。结果显示:(1)小麦锌指蛋白基因TaLOL2的cDNA全长1 095bp,编码179个氨基酸。(2)TaLOL2含有3个典型的zf-LSD1型(CxxCxRxxLMYxxGASxVxCxxC)保守结构域,与水稻、拟南芥、大麦等植物LSD1型锌指蛋白序列具有高度相似性,其中与水稻OsLOL2相似度达86.0%。(3)进化树分析表明,TaLOL2与水稻、拟南芥和大麦中部分含有3个保守zf-LSD1锌指结构的基因亲缘关系较近,而与其它包含不同数目的zf-LSD1锌指结构的基因亲缘关系较远。(4)qRT-PCR定量分析表明,TaLOL2在条锈菌侵染前期呈上调表达,在亲和及非亲和反应中差异表达。研究表明,TaLOL2参与了条锈菌诱导的小麦抗病防卫反应,很可能作为正调控因子参与了小麦-条锈菌非亲和互作中对条锈菌的抗性信号途径。  相似文献   

14.
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases worldwide and is also an important disease in China. The wheat translocation line H9014-121-5-5-9 was originally developed from interspecific hybridization between wheat (Triticum aestivum L.) line 7182 and Psathyrostachys huashanica Keng. This translocation line showed resistance to predominant stripe rust races in China when it was tested with nine races of Pst. To determine the inheritance and map the resistance gene, segregating populations were developed from the cross between H9014-121-5-5-9 and the susceptible cultivar Mingxian 169. The seedlings of the F1, F2, and F2:3 generations were tested with race CYR31. The results showed that the resistance in H9014-121-5-5-9 was conferred by a single dominant gene. Bulked segregant analysis and simple sequence repeat (SSR) markers were used to identify polymorphic markers associated with the resistance gene locus. Seven polymorphic SSR markers were linked to the resistance gene. A linkage map was constructed according to the genotypes of the seven SSR markers and the resistance gene. Based on the SSR marker positions on the wheat chromosome, the resistance gene was assigned on chromosome 1AL, temporarily designated YrHA. Based on chromosomal location, reaction patterns and pedigree analysis, YrHA should be a novel resistance gene to stripe rust. The molecular markers of the new resistance gene in H9014-121-5-5-9 could be useful for marker-assisted selection in breeding programs against stripe rust.  相似文献   

15.
LHY (late elongated hypocotyl) is an important gene that regulates and controls biological rhythms in plants. Additionally, LHY is highly expressed in the SSH (suppression subtractive hybridization) cDNA library-induced stripe rust pathogen (CYR32) in our previous research. To identify the function of the LHY gene in disease resistance against stripe rust, we used RACE-PCR technology to clone TaLHY in the wheat variety Chuannong19. The cDNA of TaLHY is 3085 bp long with an open reading frame of 1947 bp. TaLHY is speculated to encode a 70.3 kDa protein of 648 amino acids , which has one typical plant MYB-DNA binding domain; additionally, phylogenetic tree shows that TaLHY has the highest homology with LHY of Brachypodium distachyon(BdLHY-like). Quantitative fluorescence PCR indicates that TaLHY has higher expression in the leaf, ear and stem of wheat but lower expression in the root. Infestation of CYR32 can result in up-regulated expression of TaLHY, peaking at 72 h. Using VIGS (virus-induced gene silencing) technology to disease-resistant wheat in the fourth leaf stage, plants with silenced TaLHY cannot complete their heading stage. Through the compatible interaction with the stripe rust physiological race CYR32, Chuannong 19 loses its immune capability toward the stripe rust pathogen, indicating that TaLHY may regulate and participate in the heading of wheat, as well as the defense responses against stripe rust infection.  相似文献   

16.
Wheat stripe (yellow) rust, caused by Puccinia striiformis West. f. sp. tritici (Pst), is one of the most destructive diseases in many wheat-growing countries, especially in China, the largest stripe rust epidemic area in the world. Growing the resistant cultivars is an effective, economic and environmentally friendly way to control this disease. Wheat cultivar Zhengmai 7698 has shown a high-level resistance to wheat stripe rust. To elucidate its genetic characteristics and location of the resistance gene, Zhengmai 7698 was crossed with susceptible variety Taichung 29 to produce \(\hbox {F}_{{1}}\), \(\hbox {F}_{{2}}\) and \(\hbox {BC}_{{1}}\) progeny generations. The genetic analysis showed that the stripe rust resistance in Zhengmai 7698 to Pst predominant race CYR32 was controlled by a single-dominant gene, namedYrZM. Bulked segregant analysis and simple sequence repeat (SSR) markers were used to map the gene. Four SSR markers, Xbarc198, Xwmc179, Xwmc786 and Xwmc398 on chromosome 6BL were polymorphic between the parents and resistance, and susceptible bulks. A linkage genetic map was constructed using 212 \(\hbox {F}_{{2}}\) plants in the sequential order of Xwmc398, Xwmc179, YrZM, Xbarc198, Xwmc786. As this gene is effective against predominant race CYR32, it is useful in combination with other resistance genes for developing new wheat cultivars with resistance to stripe rust.  相似文献   

17.
18.
Wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst) is one of the most destructive wheat diseases resulting in significant losses to wheat production worldwide. The development of disease-resistant varieties is the most economical and effective measure to control diseases. Altering the susceptibility genes that promote pathogen compatibility via CRISPR/Cas9-mediated gene editing technology has become a new strategy for developing disease-resistant wheat varieties. Calcineurin B-like protein (CBL)-interacting protein kinases (CIPKs) has been demonstrated to be involved in defence responses during plant-pathogen interactions. However, whether wheat CIPK functions as susceptibility factor is still unclear. Here, we isolated a CIPK homoeologue gene TaCIPK14 from wheat. Knockdown of TaCIPK14 significantly increased wheat resistance to Pst, whereas overexpression of TaCIPK14 resulted in enhanced wheat susceptibility to Pst by decreasing different aspects of the defence response, including accumulation of ROS and expression of pathogenesis-relative genes. We generated wheat Tacipk14 mutant plants by simultaneous modification of the three homoeologues of wheat TaCIPK14 via CRISPR/Cas9 technology. The Tacipk14 mutant lines expressed race-nonspecific (RNS) broad-spectrum resistance (BSR) to Pst. Moreover, no significant difference was found in agronomic yield traits between Tacipk14 mutant plants and Fielder control plants under greenhouse and field conditions. These results demonstrate that TaCIPK14 acts as an important susceptibility factor in wheat response to Pst, and knockout of TaCIPK14 represents a powerful strategy for generating new disease-resistant wheat varieties with BSR to Pst.  相似文献   

19.
20.
Rust fungi are devastating plant pathogens and cause a large economic impact on wheat production worldwide. To overcome this rapid loss of resistance in varieties, we generated stable transgenic wheat plants expressing short interfering RNAs (siRNAs) targeting potentially vital genes of Puccinia striiformis f. sp. tritici (Pst). Protein kinase A (PKA) has been proved to play important roles in regulating the virulence of phytopathogenic fungi. PsCPK1, a PKA catalytic subunit gene from Pst, is highly induced at the early infection stage of Pst. The instantaneous silencing of PsCPK1 by barley stripe mosaic virus (BSMV)‐mediated host‐induced gene silencing (HIGS) results in a significant reduction in the length of infection hyphae and disease phenotype. These results indicate that PsCPK1 is an important pathogenicity factor by regulating Pst growth and development. Two transgenic lines expressing the RNA interference (RNAi) construct in a normally susceptible wheat cultivar displayed high levels of stable and consistent resistance to Pst throughout the T3 to T4 generations. The presence of the interfering RNAs in transgenic wheat plants was confirmed by northern blotting, and these RNAs were found to efficiently down‐regulate PsCPK1 expression in wheat. This study addresses important aspects for the development of fungal‐derived resistance through the expression of silencing constructs in host plants as a powerful strategy to control cereal rust diseases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号