首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
The pupae of Bactrocera oleae (Diptera: Tephritidae) complete their development during autumn and winter in the soil, rather than in the drupe, resulting susceptible to edaphic predators. Environmentally friendly methods to control this olive pest involve the identification of its natural enemies. This study evaluated the role of Ocypus olens (Coleoptera: Staphylinidae) in the predation of B. oleae pupae, by means of molecular gut content analysis. Modified dry pitfall traps were used to collect live specimens from low-input olive orchards in Tuscany (Italy). Sampling was fine-tuned with a degree-day model estimating the presence of pest pupae in the soil. PCR analyses carried out on field-collected specimens demonstrated that O. olens is a predator of B. oleae, at least during autumn. These results are consistent with predictions of the degree-day model. Knowledge on species composition, traits and complementarity of the natural enemies of B. oleae pupae needs further investigation to advance conservation biological control strategies.  相似文献   

2.
The role of carabids (Coleoptera: Carabidae) for pest control service in perennial crop systems has been scarcely investigated. We addressed this knowledge gap exploring activity patterns and traits of adult carabids dwelling olive orchard agroecosystems as potential natural enemies of third instar larvae and pupae of Bactrocera oleae (Diptera: Tephritidae). Olive orchard supported a well-structured carabid assemblage, whose species phenologies revealed a temporal overlapping within the pest cycle. The assemblage of adjacent woody semi-natural habitats is more of conservation interest, but may play a weaker role in B. oleae control provisioning. We suggest the identification of carabids main traits for B. oleae conservation biological control as a cost-effective strategy for addressing future attention and resources only to those predators that satisfy basic requirements. This research may open new scenarios on management interventions to both conserve predators and encourage alternative approaches against olive orchards pest.  相似文献   

3.
A study was carried out on the impact of several olive Olea europaea L. (Lamiales: Oleaceae) varieties (Amfissis, Arbequina, Branquita de Elvas, Carolea, Kalamon, Koroneiki, Leccino, Manzanilla, Mastoidis, Moroccan Picholine, Picholine and Sourani) on the performance of the olive fruit fly Bactrocera oleae (Gmelin) (Diptera: Tephritidae). Measurements were made over a period of three successive years monitoring the biological parameters of B. oleae (weight of pupa, percentage of emergence, sex ratio, adult size and ovarian maturity) on the varieties of olive tree noted above. These measurements were taken as indices of developmental performance for B. oleae on the olive varieties. The results showed that B. oleae exhibited the highest performance when it was nurtured on the varieties Manzanilla, Moroccan Picholine, Leccino and Picholine rather than Koroneiki. Specifically, the mean weight of the pupae as well as the length of the developed adults was significantly higher than in those individuals that developed in smaller fruits such as Koroneiki. There were significantly higher recorded percentages of emerged adults (up to 80%), with a tendency to produce more female than male adults, while the developed females produced a significantly higher number of eggs. The highest olive fly performance was shown by individuals developing in Leccino and Carolea, with the females developing in Carolea showing the best reproductive performance compared with all the other varieties. These findings may be of ecological significance, and explain to some extent the observed variability in fruit infestation among olive varieties in the field.  相似文献   

4.
Introduced predators have caused some of the largest documented impacts of non-native species. Interactions among predators can have complex effects, leading to both synergistic and antagonistic outcomes. Complex interactions with native predators could play an important role in mediating the impact of non-native predators. We explore the role of the native predator context on the effect of the introduced predatory cladoceran Bythotrephes longimanus. While post-invasion impacts have been well described, studies have largely ignored the role of native predators. We used a field mesocosm experiment to determine whether Bythotrephes’ impact on prey communities is influenced by the presence of the ubiquitous native predatory insect larvae Chaoborus. The two predators exhibited niche complementarity as no change in total zooplankton prey abundance was detected across predator treatments. Rather, copepod abundances increased with decreasing abundances of Chaoborus, while cladocerans decreased with increasing abundances of Bythotrephes. Thus, the replacement of Chaoborus with Bythotrephes led to changes in the overall community structure of the zooplankton prey, but had little effect on prey total abundance. More interestingly, we found evidence of biotic resistance of impact, that is, the impact of Bythotrephes on the cladoceran community was altered when the two predators co-occurred. Specifically, the predation effect of Bythotrephes was more restricted to the shallower regions of the water column in the presence of Chaoborus, leading to a reduced impact on deeper dwelling prey taxa. Overall, our results demonstrate that the native predator context is important when trying to understand the effect of non-native predators and that variation in native predator abundances and assemblages could explain variation in impact across invaded habitats.  相似文献   

5.
Bactrocera dorsalis (Diptera: Tephritidae) is a serious menace to agricultural production worldwide. In order to prevent further damage, it is of paramount important that cost-effective strategies should be developed for their management. Gut bacteria has established diverse relationships with their insect hosts, which could be exploited in pest management programs to improve on control efficiency. In this study, gut bacteria isolates identified by culture dependent technique were incorporated into larval diets in an attempt to understand the roles they play in the development and survival of oriental fruit fly. From our results, the isolated bacteria belonged to four different phyla including the Firmicutes, Proteobacteria, Bacteroidetes and Actinobacteria. The response of the fly to different gut isolates varied greatly. Diets enriched with Enterococcus phoeniculicola had lower larval developmental duration, higher pupal weight, and an increased percentage survival. On the other hand, diets supplemented with Lactobacillus lactis had negative effects on B. dorsalis development. This study provides clues on how symbiotic bacteria could be exploited in mass rearing for an efficient implementation of the Sterile Insect Technique (SIT) in pest management programs.  相似文献   

6.

Background

The carambola fruit fly, Bactrocera carambolae Drew & Hancock is a high profile key pest that is widely distributed in the southwestern ASEAN region. In addition, it has trans-continentally invaded Suriname, where it has been expanding east and southward since 1975. This fruit fly belongs to Bactrocera dorsalis species complex. The development and application of a genetic sexing strain (Salaya1) of B. dorsalis sensu stricto (s.s.) (Hendel) for the sterile insect technique (SIT) has improved the fruit fly control. However, matings between B. dorsalis s.s. and B. carambolae are incompatible, which hinder the application of the Salaya1 strain to control the carambola fruit fly. To solve this problem, we introduced genetic sexing components from the Salaya1 strain into the B. carambolae genome by interspecific hybridization.

Results

Morphological characteristics, mating competitiveness, male pheromone profiles, and genetic relationships revealed consistencies that helped to distinguish Salaya1 and B. carambolae strains. A Y-autosome translocation linking the dominant wild-type allele of white pupae gene and a free autosome carrying a recessive white pupae homologue from the Salaya1 strain were introgressed into the gene pool of B. carambolae. A panel of Y-pseudo-linked microsatellite loci of the Salaya1 strain served as markers for the introgression experiments. This resulted in a newly derived genetic sexing strain called Salaya5, with morphological characteristics corresponding to B. carambolae. The rectal gland pheromone profile of Salaya5 males also contained a distinctive component of B. carambolae. Microsatellite DNA analyses confirmed the close genetic relationships between the Salaya5 strain and wild B. carambolae populations. Further experiments showed that the sterile males of Salaya5 can compete with wild males for mating with wild females in field cage conditions.

Conclusions

Introgression of sex sorting components from the Salaya1 strain to a closely related B. carambolae strain generated a new genetic sexing strain, Salaya5. Morphology-based taxonomic characteristics, distinctive pheromone components, microsatellite DNA markers, genetic relationships, and mating competitiveness provided parental baseline data and validation tools for the new strain. The Salaya5 strain shows a close similarity with those features in the wild B. carambolae strain. In addition, mating competitiveness tests suggested that Salaya5 has a potential to be used in B. carambolae SIT programs based on male-only releases.
  相似文献   

7.
Bruguiera hainesii (Rhizophoraceae) is one of the two Critically Endangered mangrove species listed in the IUCN Red List of Threatened Species. Although the species is vulnerable to extinction, its genetic diversity and the evolutionary relationships with other Bruguiera species are not well understood. Also, intermediate morphological characters imply that the species might be of hybrid origin. To clarify the genetic relationship between B. hainesii and other Bruguiera species, we conducted molecular analyses including all six Bruguiera species using DNA sequences of two nuclear genes (CesA and UNK) and three chloroplast regions (intergenic spacer regions of trnL-trnF, trnS-trnG and atpB-rbcL). For nuclear DNA markers, all nine B. hainesii samples from five populations were heterozygous at both loci, with one allele was shared with B. cylindrica, and the other with B. gymnorhiza. For chloroplast DNA markers, the two haplotypes found in B. hainesii were shared only by B. cylindrica. These results suggested that B. hainesii is a hybrid between B. cylindrica as the maternal parent and B. gymnorhiza as the paternal one. Furthermore, chloroplast DNA haplotypes found in B. hainesii suggest that hybridization has occurred independently in regions where the distribution ranges of the parental species meet. As the IUCN Red List of Threatened Species currently excludes hybrids (except for apomictic plant hybrids), the conservation status of B. hainesii should be reconsidered.  相似文献   

8.
Feeding of predatory mites (Phytoseiulus persimilis, Galendromus occidentalis, and Neoseiulus cucumeris) on different life stages of Tetranychus atlanticus under optimal conditions was studied. Daily and total consumption of prey by predators and selection of prey of different life stages were studied for 5 days and for the entire feeding period. Average daily food consumption [number of individuals] for the entire life period of mature mite females constituted 0.43 females + 5.0 [nymphs and males] + 3.4 eggs of Tetranychus atlanticus in P. persimilis; 0.12 females + 3.70 [nymphs and males] + 3.10 eggs in G. occidentalis; and 0.19 females + 4.10 [nymphs and males] + 3.50 eggs in N. cucumeris. During the entire period of feeding, P. persimilis preferred large individuals and at the postembryonic stages selected prey to a greater extent than G. occidentalis and N. cucumeris (61.8 and 55.1%, respectively). The use of a 5-day express-method is possible for estimation of some biological characteristics of phytoseiids that previously consumed the same food for a long period. In other cases, analysis of characteristics for the entire life period is necessary.  相似文献   

9.
Introduced vespid wasps (Vespula germanica and V. vulgaris) are highly efficient predators of native invertebrates. They have the potential to reduce populations of threatened species and change ecosystem dynamics, yet their impact is largely unknown in Australia. The introduction of vespid wasps has coincided with a decline in numbers of threatened Ptunarra brown butterflies (Oreixenica ptunarra) in Tasmania, Australia. The Ptunarra brown butterfly is endemic to Tasmania, where its habitat has been fragmented by clearance for agriculture and forestry. Local extinctions of the species were previously thought to be principally due to its inability to fly the long distances between habitat patches in this disjointed landscape. We investigate the importance of the new threat of vespid wasp predation in the decline of O. ptunarra in the highland grasslands of northwest Tasmania. Numbers of O. ptunarra analysed over a period of 15 years dramatically declined after the arrival of vespid wasps. Wasp control was trialled to determine whether it affected butterfly numbers. Current control methods decreased wasp numbers considerably, resulting in a small increase in butterfly numbers, indicating that wasp predation is keeping O. ptunarra at low densities. Without ongoing conservation measures, it is likely that butterfly numbers will stay low, potentially leading to genetic bottlenecks and more local extinctions. An increase in the intensity of wasp control, in combination with other conservation management methods, is required for the protection and recovery of O. ptunarra.  相似文献   

10.
A likely symbiotic association between tephritid fruit flies and gut bacteria has been recognized since the beginning of the last century. However, direct evidence for a link between gut bacteria and fruit fly fitness is still limited or absent for many species. Similar to other tephritids, the gut of Bactrocera minax (Enderlein) (Diptera: Tephritidae) is known to contain bacteria throughout the life stage, but what, if any, impact these bacteria have on B. minax fitness is entirely unknown. In order to elucidate the effects of bacteria on the fitness of B. minax, resident bacteria were isolated from the adult gut using culture-dependent techniques. Adult fly diets were subsequently supplemented with three bacterial isolates (Klebsiella pneumonia, Citrobacter braakii and Pantoea dispersa), or bacteria were removed from flies by antibiotics treatment: untreated adults provided a control. Adult fitness parameters (male and female longevity, female fecundity, male copulation number) were measured for the two treatments and one control group. Results were complex depending on the fitness parameter measured and the bacterial species. Compared to the controls, antibiotic treated B. minax had significantly decreased fecundity, but male and female longevity was increased. When flies were fed diets supplemented with any of the three bacterial isolates, female fecundity was significantly enhanced. However, only Citrobacter braakii significantly increased male mating frequency than control males. The results show that gut bacteria directly influence fitness of B. minax, but impacts are dependent on the bacterial species and the fitness parameters measured.  相似文献   

11.
Generalist predators have to deal with prey with sometimes very different morphologies and defensive behaviors. Therefore, such predators are expected to express plasticity in their predation strategy. Here we investigated the predatory behavior of the recluse spider Loxosceles rufipes (Araneae, Sicariidae) when attacking prey with different morphologies and defensive mechanisms. We expected L. rufipes to show different prey capture strategies and variable acceptance towards each prey type. Potential prey species were collected directly from the web or in the surroundings of the web-building site of L. rufipes. We collected and used the following in our experiments: termite workers (Nasutitermes sp.), lepidopteran larvae (Eurema salome), ants (Camponotus sp.) and isopods (Tylidae). We paired these prey with L. rufipes and recorded their behavior in captivity, quantifying acceptance rate, immobilization time and the sequence of behaviors by the predator. The acceptance rate was lower for isopods but not different among other prey. The immobilization time was higher for isopods than for termites and similar for the other pairwise comparisons. The behavioral sequence was similar for all prey except for isopods, which were also bit more often. Our combined results show plasticity in the behavior of L. rufipes and also show it subdues a potentially dangerous prey (ant) and an armored prey (isopod).  相似文献   

12.
Herbivore feeding on host plants may induce defense responses of the plant which influence other herbivores and interacting species in the vicinity, such as natural enemies. The present work evaluated the impact of pre-infestation with the tobacco whitefly Bemisia tabaci cryptic species MEAM 1, on the predation ability of the ladybird Propylea japonica, to the green peach aphid Myzus persicae, on tomato plants. The results show that B. tabaci pre-infestation density, duration, and leaf position, can impact prey consumed by P. japonica under various aphid densities. The aphids consumed by P. japonica in each treatment were fit using the Holling type II functional response equation. The predatory efficiency (a/T h) of P. japonica was the highest in the treatment with 60 aphids and 48-h infestation directly on damaged leaves. The predatory efficiencies of P. japonica decreased with a reduction of pre-infestation density and duration. We also observed that pre-infestation on young and undamaged leaves increased predation by P. japonica.  相似文献   

13.
Two new species of Metarhizium, M. bibionidarum and M. purpureogenum are described from Japan. Metarhizium bibionidarum is the phylogenetic sister species of M. pemphigi and a member of the M. flavoviride species complex. It is distinguished morphologically from M. pemphigi by its larger conidia. The species is based on a collection of an infected March fly larva (Diptera: Bibionidae) but is also known to occur on fruit beetle (Coleoptera: Scarabaeidae) encountered in France. Metarhizium purpureogenum was isolated from soil by plating and insect baiting methods and represents a unique phylogenetic lineage placed outside the M. anisopliae and M. flavoviride species complexes. Three isolates of M. purpureogenum excreted a distinctive red-purple pigment into agar medium when co-cultured with M. robertsii or Aspergillus oryzae.  相似文献   

14.
The Minichromosome maintenance protein [MCM (2-7)] complex is associated with helicase activity for replication fork formation during DNA replication. We identified and characterized each 12 putative MCM genes from Brassica oleracea and Brassica rapa. MCM genes were classified into nine groups according to their evolutionary relationships. A high number of syntenic regions were present on chromosomes C03 and A03 in B. oleracea and B. rapa, respectively, compared to the other chromosomes. Expression analysis showed that most of the MCM(2-7) helicase-subunit genes and their coregulating MCM genes were upregulated during hydroxyurea (HU) induced stress in B. oleracea. In B. rapa, MCM(2-7) helicase genes BrMCM2_2, BrMCM7_1, BrMCM7_2 and their co-regulating genes were upregulated during replication stress. During cold stress, BoMCM6 in B. oleracea and BrMCM5 in B. rapa were remarkably upregulated. During salt stress, BoMCM6_2, BoMCM7_1, BoMCM8, BoMCM9, and BoMCM10 were markedly upregulated in B. oleracea. Hence, our study identified the candidate MCM family genes those possess abiotic stress-responsive behavior and DNA replication stress tolerance. As the first genome-wide analysis of MCM genes in B. oleracea and B. rapa, this work provides a foundation to develop stress responsive plants. Further functional and molecular studies on MCM genes will be helpful to enhance stress tolerance in plants.  相似文献   

15.
Non-mammalian infection models have been developed over the last two decades, which is a historic milestone to understand the molecular basis of bacterial pathogenesis. They also provide small-scale research platforms for identification of virulence factors, screening for antibacterial hits, and evaluation of antibacterial efficacy. The fruit fly, Drosophila melanogaster is one of the model hosts for a variety of bacterial pathogens, in that the innate immunity pathways and tissue physiology are highly similar to those in mammals. We here present a relatively simple protocol to assess the key aspects of the polymicrobial interaction in vivo between the human opportunistic pathogens, Pseudomonas aeruginosa and Staphylococcus aureus, which is based on the systemic infection by needle pricking at the dorsal thorax of the flies. After infection, fly survival and bacteremia over time for both P. aeruginosa and S. aureus within the infected flies can be monitored as a measure of polymicrobial virulence potential. The infection takes ~24 h including bacterial cultivation. Fly survival and bacteremia are assessed using the infected flies that are monitored up to ~60 h post-infection. These methods can be used to identify presumable as well as unexpected phenotypes during polymicrobial interaction between P. aeruginosa and S. aureus mutants, regarding bacterial pathogenesis and host immunity.  相似文献   

16.
Understanding predator-prey dynamics is an important component of management strategy development for wildlife populations that are directly affected by predation. Ungulates often serve as a significant source of prey for many large mammal predators, and patterns of predation are known to influence population dynamics. Although black bear and wolf diets have been investigated extensively, prey preference has been less commonly examined, especially in analyses that take into account age class (i.e., juvenile and adult) of the ungulate prey. We examined black bear (Ursus americanus), wolf (Canis lupus), and hybrids (Canis spp.) prey preference in Ontario based on the availability of three ungulate species—elk (Cervus elaphus), moose (Alces alces), and white-tailed deer (Odocoileus virginianus). We analyzed the presence of prey items in black bear and wolf scats collected over 3 years by examining prey hair cuticular scale patterns. We applied correction factors to frequencies of occurrence of prey items found in predator scat and related diet composition to the availability of ungulates, determined by fecal pellet transect surveys. In addition, non-ungulate diet items were identified to obtain full diet composition profiles. We found that black bear diet consisted of more than 87% vegetation, and they were opportunistic, not selecting for any particular ungulate species in either adult or juvenile age class. Wolf diet was comprised mainly of ungulates (~?73.2%), muskrat (Ondatra zibethica; ~?8.5%), and beaver (Castor canadensis; ~?14.6%), and although moose were at least 1.5 times more abundant then each of the other ungulate prey species in the study area, wolves preferred elk, using moose less than expected. Although we found black bear diet to be opportunistic during the summer, wolves in our study heavily utilized both juvenile and adult ungulates, however, among ungulate species, displayed preference for elk. The preference displayed by wolves provides insight that wildlife managers can use to guide further investigation and assist with the development of strategies to ensure continued elk reintroduction success, and moose and white-tailed deer population sustainability.  相似文献   

17.
In this study, blood samples of 259 Acrocephalus sp. warblers were molecularly analysed for Anaplasmataceae and Rhodospirillaceae based on PCR amplification of 16S rRNA gene fragments. One bird blood sample (from Reed Warbler, Acrocephalus scirpaceus) yielded a sequence with 99.8% identity to Haematospirillum jordaniae. This is the first molecular evidence for the occurrence of this species in the blood of any vertebrate other than human. Another bird blood sample (from Marsh Warbler: Acrocephalus palustris) yielded a Wolbachia sequence, closely related to a moth endosymbiont with 99.8% identity. A nematode origin of Wolbachia DNA detected here in avian blood can be excluded, because results of phylogenetic analysis showed its closest alignment with insect wolbachiae. This is the first finding of insect Wolbachia DNA in the circulatory system of birds, which can be explained either by the inoculation of wolbachiae by blood-sucking vectors, or passing of Wolbachia DNA from the gut into the blood of this insectivorous bird species.  相似文献   

18.
Drosophila suzukii (Matsumura) has been recently detected causing damage to strawberries in Brazil. Infestation in strawberry culture has often been observed jointly with the presence of Zaprionus indianus Gupta. This study investigated the susceptibility of strawberries at three ripening stages to infestation of D. suzukii and Z. indianus and their interaction. In the laboratory, strawberries cv. Albion at different ripening stages (green, semi-ripe and ripe) were exposed to D. suzukii and Z. indianus for 24 h in choice and no-choice bioassays. Additionally, we evaluated the effects of mechanical damage incurred artificially or by D. suzukii oviposition on Z. indianus infestation. In no-choice bioassay, there were no significant differences in fruit susceptibility to D. suzukii infestation at different ripening stages. However, in choice bioassay, D. suzukii adults preferred to oviposit on R fruit. The presence of mechanical damage did not increase susceptibility of fruit to D. suzukii oviposition. For Z. indianus, there was greater susceptibility of R fruit in relation to SR and G fruit in both the choice and no-choice bioassays. There was a significant and positive interaction of mechanical damage and damage caused by D. suzukii to R fruit and infestation by Z. indianus, which was not observed in SR and G fruit. Although infestation of Z. indianus is related to attack damaged or decaying fruit, this work shows that this species has the ability to oviposit and develop in healthy strawberry fruit with and increased infestation level when the fruit has damage to its epidermis.  相似文献   

19.
Social insect colonies are high-value foraging targets for insectivores, prompting the evolution of complex colony defensive adaptations as well as specialized foraging tactics in social insect predators. Predatory ants that forage on other social insects employ a diverse range of behaviors targeted at specific prey species. Here, we describe a solitary foraging strategy of the ant Ectatomma tuberculatum, on nest guards of the stingless bee Tetragonisca angustula. We observed multiple instances of E. tuberculatum ambushing and successfully capturing the hovering and standing guards of T. angustula near nest entrances. The unique hovering behavior of the guard caste of this bee species, an adaptation to frequent cleptoparasitism by other stingless bees, may make these guards particularly vulnerable to ground-based, ambush attacks by E. tuberculatum. Likewise, the behavior of the foraging ants appears to adaptively exploit the defensive formations and activity patterns of these bees. These observations suggest an adaptive and targeted predatory strategy aimed at gathering external guard bees as prey from these heavily fortified nests.  相似文献   

20.
Predators often have nonconsumptive effects (NCEs) on prey. For example, upon detection of predator cues, prey can reduce feeding activities to hamper being detected by predators. Previous research showed that waterborne chemical cues from green crabs (Carcinus maenas, predator) limit the dogwhelk (Nucella lapillus, prey) consumption of barnacles regardless of dogwhelk density, even though individual predation risk for dogwhelks decreases with conspecific density. Such NCEs might disappear with dogwhelk density if dogwhelks feed on mussels, as mussel stands constitute better antipredator refuges than barnacle stands. Through a laboratory experiment, we effectively found that crab chemical cues limit the per-capita consumption of mussels by dogwhelks at low dogwhelk density but not at high density. The combination of tactile and chemical cues from crabs, however, limited the dogwhelk consumption of mussels at both dogwhelk densities. The occurrence of such NCEs at both dogwhelk densities could have resulted from tactile cues indicating a stronger predation risk than chemical cues alone. Overall, the present study reinforces the notions that prey evaluate conspecific density when assessing predation risk and that predator cue type affects their perception of risk.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号