首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
The antifungal plant defensin DmAMP1 interacts with fungal sphingolipids of mannosyldiinositolphosphorylceramide (M(IP)2C) class. We screened a Saccharomyces cerevisiae transposon (Tn) mutant library against DmAMP1 and identified one DmAMP1-resistant mutant with the Tn inserted in the M(IP)2C biosynthesis gene IPT1 (DmTn11) and one DmAMP1-hypersensitive mutant with the Tn inserted in rDNA (HsTnII). However, tetrad analysis pointed to HsTnII as a spontaneous mutant. Apparently, membranes of DmTn11 lack M(IP)2C, whereas membranes of HsTnII have increased M(IP)2C levels. In addition, DmTn11 and HsTnII are characterized by increased and reduced oxidative stress resistance/chronological life-span (CL), respectively. A putative involvement of M(IP)2C in oxidative stress and CL in yeast is discussed.  相似文献   

2.
Glutamate metabolism is linked to a number of fundamental metabolic pathways such as amino acid metabolism, the TCA cycle, and glutathione (GSH) synthesis. In the yeast Saccharomyces cerevisiae, glutamate is synthesized from α-ketoglutarate by two NADP+-dependent glutamate dehydrogenases (NADP-GDH) encoded by GDH1 and GDH3. Here, we report the relationship between the function of the NADP-GDH and stress-induced apoptosis. Gdh3-null cells showed accelerated chronological aging and hypersusceptibility to thermal and oxidative stress during stationary phase. Upon exposure to oxidative stress, Gdh3-null strains displayed a rapid loss in viability associated with typical apoptotic hallmarks, i.e. reactive oxygen species accumulation, nuclear fragmentation, DNA breakage, and phosphatidylserine translocation. In addition, Gdh3-null cells, but not Gdh1-null cells, had a higher tendency toward GSH depletion and subsequent reactive oxygen species accumulation than did WT cells. GSH depletion was rescued by exogenous GSH or glutamate. The hypersusceptibility of stationary phase Gdh3-null cells to stress-induced apoptosis was suppressed by deletion of GDH2. Promoter swapping and site-directed mutagenesis of GDH1 and GDH3 indicated that the necessity of GDH3 for the resistance to stress-induced apoptosis and chronological aging is due to the stationary phase-specific expression of GDH3 and concurrent degradation of Gdh1 in which the Lys-426 residue plays an essential role.  相似文献   

3.
The Saccharomyces cerevisiae inositol sphingolipid phospholipase C (Isc1p), a homolog of mammalian neutral sphingomyelinases, hydrolyzes complex sphingolipids to produce ceramide in vitro. Epitope-tagged Isc1p associates with the mitochondria in the post-diauxic phase of yeast growth. In this report, the mitochondrial localization of Isc1p and its role in regulating sphingolipid metabolism were investigated. First, endogenous Isc1p activity was enriched in highly purified mitochondria, and western blots using highly purified mitochondrial membrane fractions demonstrated that epitope-tagged Isc1p localized to the outer mitochondrial membrane as an integral membrane protein. Next, LC/MS was employed to determine the sphingolipid composition of highly purified mitochondria which were found to be significantly enriched in α-hydroxylated phytoceramides (21.7 fold) relative to the whole cell. Mitochondria, on the other hand, were significantly depleted in sphingoid bases. Compared to the parental strain, mitochondria from isc1Δ in the post-diauxic phase showed drastic reduction in the levels of α-hydroxylated phytoceramide (93.1% loss compared to WT mitochondria with only 2.58 fold enrichment in mitochondria compared to whole cell). Functionally, isc1Δ showed a higher rate of respiratory-deficient cells after incubation at high temperature and was more sensitive to hydrogen peroxide and ethidium bromide, indicating that isc1Δ exhibits defects related to mitochondrial function. These results suggest that Isc1p generates ceramide in mitochondria, and the generated ceramide contributes to the normal function of mitochondria. This study provides a first insight into the specific composition of ceramides in mitochondria.  相似文献   

4.
Mitochondria are key players in aging and cell death. It has been suggested that mitochondrial fragmentation, mediated by the Dnm1/Fis1 organelle fission machinery, stimulates aging and cell death. This was based on the observation that Saccharomyces cerevisiae Δdnm1 and Δfis1 mutants show an enhanced lifespan and increased resistance to cell death inducers. However, the Dnm1/Fis1 fission machinery is also required for peroxisome division. Here we analyzed the significance of peroxisome fission in yeast chronological lifespan, using yeast strains in which fission of mitochondria was selectively blocked. Our data indicate that the lifespan extension caused by deletion of FIS1 is mainly due to a defect in peroxisome fission and not caused by a block in mitochondrial fragmentation. These observations are underlined by our observation that deletion of FIS1 does not lead to lifespan extension in yeast peroxisome deficient mutant cells.  相似文献   

5.
Caloric restriction mimetics (CRMs) have been developed to mimic the effects of caloric restriction (CR). However, research reports for the effects of CRMs are often times inconsistent across different research groups. Therefore, in this study, we compared seven identified CRMs which extend the lifespans of various organisms including caffeine, curcumin, dapsone, metformin, rapamycin, resveratrol, and spermidine to CR for mitochondrial function in a single model, Saccharomyces cerevisiae. In this organism, rapamycin extended chronological lifespan (CLS), but other CRMs failed to extend CLS. Rapamycin enhanced mitochondrial function like CR did, but other CRMs did not. Both CR and rapamycin worked on mitochondrial function, but they worked at different windows of time during the chronological aging process.  相似文献   

6.
Cysteine synthesis is catalyzed by serine acetyltransferase (SAT) and O-acetylserine (thiol) lyase (OAS-TL) in the cytosol, plastids, and mitochondria of plants. Biochemical analyses of recombinant plant SAT and OAS-TL indicate that the reversible association of the proteins in the cysteine synthase complex (CSC) controls cellular sulfur homeostasis. However, the relevance of CSC formation in each compartment for flux control of cysteine synthesis remains controversial. Here, we demonstrate the interaction between mitochondrial SAT3 and OAS-TL C in planta by FRET and establish the role of the mitochondrial CSC in the regulation of cysteine synthesis. NMR spectroscopy of isolated mitochondria from WT, serat2;2, and oastl-C plants showed the SAT-dependent export of OAS. The presence of cysteine resulted in reduced OAS export in mitochondria of oastl-C mutants but not in WT mitochondria. This is in agreement with the stronger in vitro feedback inhibition of free SAT by cysteine compared with CSC-bound SAT and explains the high OAS export rate of WT mitochondria in the presence of cysteine. The predominant role of mitochondrial OAS synthesis was validated in planta by feeding [(3)H]serine to the WT and loss-of-function mutants for OAS-TLs in the cytosol, plastids, and mitochondria. On the basis of these results, we propose a new model in which the mitochondrial CSC acts as a sensor that regulates the level of SAT activity in response to sulfur supply and cysteine demand.  相似文献   

7.
Intracellular triacylglycerol (TAG) is a ubiquitous energy storage lipid also involved in lipid homeostasis and signaling. Comparatively, little is known about TAG’s role in other cellular functions. Here we show a pro-longevity function of TAG in the budding yeast Saccharomyces cerevisiae. In yeast strains derived from natural and laboratory environments a correlation between high levels of TAG and longer chronological lifespan was observed. Increased TAG abundance through the deletion of TAG lipases prolonged chronological lifespan of laboratory strains, while diminishing TAG biosynthesis shortened lifespan without apparently affecting vegetative growth. TAG-mediated lifespan extension was independent of several other known stress response factors involved in chronological aging. Because both lifespan regulation and TAG metabolism are conserved, this cellular pro-longevity function of TAG may extend to other organisms.  相似文献   

8.
High temperature requirement A2 (HtrA2)/Omi is a serine protease localized in mitochondria. In response to apoptotic stimuli, HtrA2 is released to the cytoplasm and cleaves many proteins, including XIAP, Apollon/BRUCE, WT1, and Ped/Pea-15, to promote apoptosis. However, the function of HtrA2 in mitochondria under normal conditions remains unclear. Here, we show that the mitochondrial proteins, LON protease 1 (LONP1) and prohibitin (PHB), are overexpressed in HtrA2−/− mouse embryonic fibroblast (MEF) cells and HtrA2 knock-down HEK293T cells. We also confirm the effect of the HtrA2 protease on the stability of the above mitochondrial quality control proteins in motor neuron degeneration 2 (mnd2) mice, which have a greatly reduced protease activity as a result of a Ser276Cys missense mutation of the HtrA2 gene. In addition, PHB interacts with and is directly cleaved by HtrA2. Luminescence assays demonstrate that the intracellular ATP level is decreased in HtrA2−/− cells compared to HtrA2+/+ cells. HtrA2 deficiency causes a decrease in the mitochondrial membrane potential, and reactive oxygen species (ROS) generation is greater in HtrA2−/− cells than in HtrA2+/+ cells. Our results implicate that HtrA2 might be an upstream regulator of mitochondrial homeostasis.  相似文献   

9.
Reduced supply of the amino acid methionine increases longevity across species through an as yet elusive mechanism. Here, we report that methionine restriction (MetR) extends yeast chronological lifespan in an autophagy-dependent manner. Single deletion of several genes essential for autophagy (ATG5, ATG7 or ATG8) fully abolished the longevity-enhancing capacity of MetR. While pharmacological or genetic inhibition of TOR1 increased lifespan in methionine-prototroph yeast, TOR1 suppression failed to extend the longevity of methionine-restricted yeast cells. Notably, vacuole-acidity was specifically enhanced by MetR, a phenotype that essentially required autophagy. Overexpression of vacuolar ATPase components (Vma1p or Vph2p) suffices to increase chronological lifespan of methionine-prototrophic yeast. In contrast, lifespan extension upon MetR was prevented by inhibition of vacuolar acidity upon disruption of the vacuolar ATPase. In conclusion, autophagy promotes lifespan extension upon MetR and requires the subsequent stimulation of vacuolar acidification, while it is epistatic to the equally autophagy-dependent anti-aging pathway triggered by TOR1 inhibition or deletion.  相似文献   

10.

Background

During the last three decades, the cell cycle and its control by cyclin-dependent kinases (CDKs) have been extensively studied in eukaryotes. This endeavour has produced an overall picture that basic mechanisms seem to be largely conserved among all eukaryotes. The intricate regulation of CDK activities includes, among others, CDK activation by CDC25 phosphatase at G2/M. In plants, however, studies of this regulation have lagged behind as a plant Cdc25 homologue or other unrelated phosphatase active at G2/M have not yet been identified.

Scope

Failure to identify a plant mitotic CDK activatory phosphatase led to characterization of the effects of alien cdc25 gene expression in plants. Tobacco, expressing the Schizosaccharomyces pombe mitotic activator gene, Spcdc25, exhibited morphological, developmental and biochemical changes when compared with wild type (WT) and, importantly, increased CDK dephosphorylation at G2/M. Besides changes in leaf shape, internode length and root development, in day-neutral tobacco there was dramatically earlier onset of flowering with a disturbed acropetal floral capacity gradient typical of WT. In vitro, de novo organ formation revealed substantially earlier and more abundant formation of shoot primordia on Spcdc25 tobacco stem segments grown on shoot-inducing media when compared with WT. Moreover, in contrast to WT, stem segments from transgenic plants formed shoots even without application of exogenous growth regulator. Spcdc25-expressing BY-2 cells exhibited a reduced mitotic cell size due to a shortening of the G2 phase together with high activity of cyclin-dependent kinase, NtCDKB1, in early S-phase, S/G2 and early M-phase. Spcdc25-expressing tobacco (‘Samsun’) cell suspension cultures showed a clustered, more circular, cell phenotype compared with chains of elongated WT cells, and increased content of starch and soluble sugars. Taken together, Spcdc25 expression had cytokinin-like effects on the characteristics studied, although determination of endogenous cytokinin levels revealed a dramatic decrease in Spcdc25 transgenics.

Conclusions

The data gained using the plants expressing yeast mitotic activator, Spcdc25, clearly argue for the existence and importance of activatory dephosphorylation at G2/M transition and its interaction with cytokinin signalling in plants. The observed cytokinin-like effects of Spcdc25 expression are consistent with the concept of interaction between cell cycle regulators and phytohormones during plant development. The G2/M control of the plant cell cycle, however, remains an elusive issue as doubts persist about the mode of activatory dephosphorylation, which in other eukaryotes is provided by Cdc25 phosphatase serving as a final all-or-nothing mitosis regulator.  相似文献   

11.
Natural products with anti-aging property have drawn great attention recently but examples of such compounds are exceedingly scarce. By applying a high-throughput assay based on yeast chronological lifespan measurement, we screened the anti-aging activity of 144 botanical materials and found that dried roots of Salvia miltiorrhiza Bunge have significant anti-aging activity. Tanshinones isolated from the plant including cryptotanshione, tanshinone I, and tanshinone IIa, are the active components. Among them, cryptotanshinone can greatly extend the budding yeast Saccharomyces cerevisiae chronological lifespan (up to 2.5 times) in a dose- and the-time-of-addition-dependent manner at nanomolar concentrations without disruption of cell growth. We demonstrate that cryptotanshinone prolong chronological lifespan via a nutrient-dependent regime, especially essential amino acid sensing, and three conserved protein kinases Tor1, Sch9, and Gcn2 are required for cryptotanshinone-induced lifespan extension. In addition, cryptotanshinone significantly increases the lifespan of SOD2-deleted mutants. Altogether, those data suggest that cryptotanshinone might be involved in the regulation of, Tor1, Sch9, Gcn2, and Sod2, these highly conserved longevity proteins modulated by nutrients from yeast to humans.  相似文献   

12.
MccJ25, an antimicrobial peptide, was unable to cause apoptosis of COS-7 cells in spite of inducing reactive-oxygen species overproduction as well as cytochrome c release from isolated mitochondria. Surprisingly, MccJ25-Ga, an amidated variant of MccJ25 that displays similar anti-mitochondrial effects, did induce apoptosis in COS-7. The only difference found between the activities of these peptides was the unpredicted inhibition of mitochondrial RNA synthesis by MccJ25-Ga. These results led us to hypothesize that both mitochondrial RNA polymerase and mitochondrial membrane might be the molecular targets of MccJ25-Ga in mitochondria and this combined effect may lead to apoptosis.  相似文献   

13.
Recent studies reveal that multifunctional protein β-arrestin 2 (Arrb2) modulates cell apoptosis. Survival and various aspects of liver injury were investigated in WT and Arrb2 KO mice after bile duct ligation (BDL). We found that deficiency of Arrb2 enhances survival and attenuates hepatic injury and fibrosis. Following BDL, Arrb2-deficient mice as compared with WT controls displayed a significant reduction of hepatocyte apoptosis as demonstrated by the TUNEL assay. Following BDL, the levels of phospho-Akt and phospho-glycogen synthase kinase 3β (GSK3β) in the livers were significantly increased in Arrb2 KO compared with WT mice, although p-p38 increased in WT but not in Arrb2-deficient mice. Inhibition of GSK3β following BDL decreases hepatic apoptosis and decreased p-p38 in WT mice but not in Arrb2 KO mice. Activation of Fas receptor with Jo2 reduces phospho-Akt and increases apoptosis in WT cells and WT mice but not in Arrb2-deficient cells and Arrb2-deficient mice. Consistent with direct interaction of Arrb2 with and regulating Akt phosphorylation, the expression of a full-length or N terminus but not the C terminus of Arrb2 reduces Akt phosphorylation and coimmunoprecipates with Akt. These results reveal that the protective effect of deficiency of Arrb2 is due to loss of negative regulation of Akt due to BDL and decreased downstream GSK3β and p38 MAPK signaling pathways.  相似文献   

14.
Lifespan is influenced by a large number of conserved proteins and gene-regulatory pathways. Here, we introduce a strategy for systematically finding such longevity factors in Saccharomyces cerevisiae and scoring the genetic interactions (epistasis) among these factors. Specifically, we developed an automated competition-based assay for chronological lifespan, defined as stationary-phase survival of yeast populations, and used it to phenotype over 5,600 single- or double-gene knockouts at unprecedented quantitative resolution. We found that 14% of the viable yeast mutant strains were affected in their stationary-phase survival; the extent of true-positive chronological lifespan factors was estimated by accounting for the effects of culture aeration and adaptive regrowth. We show that lifespan extension by dietary restriction depends on the Swr1 histone-exchange complex and that a functional link between autophagy and the lipid-homeostasis factor Arv1 has an impact on cellular lifespan. Importantly, we describe the first genetic interaction network based on aging phenotypes, which successfully recapitulated the core-autophagy machinery and confirmed a role of the human tumor suppressor PTEN homologue in yeast lifespan and phosphatidylinositol phosphate metabolism. Our quantitative analysis of longevity factors and their genetic interactions provides insights into the gene-network interactions of aging cells.  相似文献   

15.
Silent Information Regulator 2 (Sir2), a conserved NAD+-dependent histone deacetylase, has been implicated as one of the key factors in regulating stress response and longevity. Here, we report that the role of Sir2 in oxidative stress resistance and chronological lifespan is dependent on growth phase in yeast. In exponential phase, sir2Δ cells were more resistant to H2O2 stress and had a longer chronological lifespan than wild type. By contrast, in post-diauxic phase, sir2Δ cells were less resistant to H2O2 stress and had a shorter chronological lifespan than wild type cells. Similarly, the expression of antioxidant genes, which are essential to cope with oxidative stress, was regulated by Sir2 in a growth phasedependent manner. Collectively, our findings highlight the importance of the metabolic state of the cell in determining whether Sir2 can protect against or accelerate cellular aging of yeast.  相似文献   

16.
《Bioscience Hypotheses》2008,1(6):287-291
Budding yeast Saccharomyces cerevisiae has two distinct lifespans. The replicative lifespan is defined as the number of progeny cells that a mother cell can have prior to senescence while the chronological lifespan is a measure of the time nondividing cells remain viable. Mechanisms for cells to choose the type of lifespans appropriate to environmental conditions to minimize DNA damage should be critical for maintenance of viability, an interesting question worthy of further investigation. To this end, we hypothesize that chronologically aged cells are defective in the lifespan choosing mechanism so that DNA replication, characteristic of the replicative lifespan, initiates near end of the chronological lifespan. Replication may frequently stall due to the limited resources and oxidative stress, leading to replication fork stall and fatal DNA damage. We will use the 2D DNA gel electrophoresis to examine replication initiation and stall at rDNA in the chronologically aged cells.  相似文献   

17.

Background

Ceramides are intracellular lipid mediator implicated in various cellular responses, including oxidative stress and programmed cell death. Studies demonstrated strong links between ceramide and the mitochondria in the regulation of apoptosis. However, the mechanism of apoptosis induced by ceramides is not fully understood. The present study delineates importance of the redox state of cytochrome c for release of cytochrome c and apoptosis of human mammary adenocarcinoma MCF-7 and MDA-MB-231 cells induced by ceramides.

Methods

The study uses MCF-7 and MDA-MB-231 cells, isolated mitochondria, submitochondrial particles, and oxidized and reduced cytochrome c. Methods used include flow cytometry, immunoblotting, spectroscopy, and respirometry.

Results

We show that ceramides induce mitochondrial oxidative stress and release of cytochrome c from the mitochondria of these cells. Our findings show that ceramides react with oxidized cytochrome c whereas reduced cytochrome c does not react with ceramides. We also show that oxidized cytochrome c reacted with ceramides exerts lower reducibility and function to support mitochondrial respiration. Furthermore, our data show that glutathione protects cytochrome c of reacting with ceramides by increasing the reduced state of cytochrome c.

Conclusions

Ceramides induce oxidative stress and apoptosis in human mammary adenocarcinoma cells by interacting with oxidized cytochrome c leading to the release of cytochrome c from the mitochondria. Our findings suggest a novel mechanism for protective role of glutathione.

General significance

Our study suggests that the redox state of cytochrome c is important in oxidative stress and apoptosis induced by ceramides.  相似文献   

18.
FKBP38 is a member of the family of FK506-binding proteins that acts as an inhibitor of the mammalian target of rapamycin (mTOR). The inhibitory action of FKBP38 is antagonized by Rheb, an oncogenic small GTPase, which interacts with FKBP38 and prevents its association with mTOR. In addition to the role in mTOR regulation, FKBP38 is also involved in binding and recruiting Bcl-2 and Bcl-XL, two anti-apoptotic proteins, to mitochondria. In this study, we investigated the possibility that Rheb controls apoptosis by regulating the interaction of FKBP38 with Bcl-2 and Bcl-XL. We demonstrate in vitro that the interaction of FKBP38 with Bcl-2 is regulated by Rheb in a GTP-dependent manner. In cultured cells, the interaction is controlled by Rheb in response to changes in amino acid and growth factor conditions. Importantly, we found that the Rheb-dependent release of Bcl-XL from FKBP38 facilitates the association of this anti-apoptotic protein with the pro-apoptotic protein Bak. Consequently, when Rheb activity increases, cells become more resistant to apoptotic inducers. Our findings reveal a novel mechanism through which growth factors and amino acids control apoptosis.  相似文献   

19.

Background

Chronological aging of yeast cells is commonly used as a model for aging of human post-mitotic cells. The yeast Saccharomyces cerevisiae grown on glucose in the presence of ammonium sulphate is mainly used in yeast aging research. We have analyzed chronological aging of the yeast Hansenula polymorpha grown at conditions that require primary peroxisome metabolism for growth.

Methodology/Principal Findings

The chronological lifespan of H. polymorpha is strongly enhanced when cells are grown on methanol or ethanol, metabolized by peroxisome enzymes, relative to growth on glucose that does not require peroxisomes. The short lifespan of H. polymorpha on glucose is mainly due to medium acidification, whereas most likely ROS do not play an important role. Growth of cells on methanol/methylamine instead of methanol/ammonium sulphate resulted in further lifespan enhancement. This was unrelated to medium acidification. We show that oxidation of methylamine by peroxisomal amine oxidase at carbon starvation conditions is responsible for lifespan extension. The methylamine oxidation product formaldehyde is further oxidized resulting in NADH generation, which contributes to increased ATP generation and reduction of ROS levels in the stationary phase.

Conclusion/Significance

We conclude that primary peroxisome metabolism enhanced chronological lifespan of H. polymorpha. Moreover, the possibility to generate NADH at carbon starvation conditions by an organic nitrogen source supports further extension of the lifespan of the cell. Consequently, the interpretation of CLS analyses in yeast should include possible effects on the energy status of the cell.  相似文献   

20.
Model organisms have played an important role in the elucidation of multiple genes and cellular processes that regulate aging. In this study we utilized the budding yeast, Saccharomyces cerevisiae, in a large-scale screen for genes that function in the regulation of chronological lifespan, which is defined by the number of days that non-dividing cells remain viable. A pooled collection of viable haploid gene deletion mutants, each tagged with unique identifying DNA “bar-code” sequences was chronologically aged in liquid culture. Viable mutants in the aging population were selected at several time points and then detected using a microarray DNA hybridization technique that quantifies abundance of the barcode tags. Multiple short- and long-lived mutants were identified using this approach. Among the confirmed short-lived mutants were those defective for autophagy, indicating a key requirement for the recycling of cellular organelles in longevity. Defects in autophagy also prevented lifespan extension induced by limitation of amino acids in the growth media. Among the confirmed long-lived mutants were those defective in the highly conserved de novo purine biosynthesis pathway (the ADE genes), which ultimately produces IMP and AMP. Blocking this pathway extended lifespan to the same degree as calorie (glucose) restriction. A recently discovered cell-extrinsic mechanism of chronological aging involving acetic acid secretion and toxicity was suppressed in a long-lived ade4Δ mutant and exacerbated by a short-lived atg16Δ autophagy mutant. The identification of multiple novel effectors of yeast chronological lifespan will greatly aid in the elucidation of mechanisms that cells and organisms utilize in slowing down the aging process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号