首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 98 毫秒
1.
Uric acid is considered a major antioxidant in human blood that may protect against aging and oxidative stress. Despite its proposed protective properties, elevated levels of uric acid are commonly associated with increased risk for cardiovascular disease and mortality. Furthermore, recent experimental studies suggest that uric acid may have a causal role in hypertension and metabolic syndrome. All these conditions are thought to be mediated by oxidative stress. In this study we demonstrate that differentiation of cultured mouse adipocytes is associated with increased production of reactive oxygen species (ROS) and uptake of uric acid. Soluble uric acid stimulated an increase in NADPH oxidase activity and ROS production in mature adipocytes but not in preadipocytes. The stimulation of NADPH oxidase-dependent ROS by uric acid resulted in activation of MAP kinases p38 and ERK1/2, a decrease in nitric oxide bioavailability, and an increase in protein nitrosylation and lipid oxidation. Collectively, our results suggest that hyperuricemia induces redox-dependent signaling and oxidative stress in adipocytes. Since oxidative stress in the adipose tissue has recently been recognized as a major cause of insulin resistance and cardiovascular disease, hyperuricemia-induced alterations in oxidative homeostasis in the adipose tissue might play an important role in these derangements.  相似文献   

2.
apoE is a multi-functional protein expressed in several cell types and in several organs. It is highly expressed in adipose tissue, where it is important for modulating adipocyte lipid flux and gene expression in isolated adipocytes. In order to investigate a potential systemic role for apoE that is produced in adipose tissue, mice were generated with selective suppression of adipose tissue apoE expression and normal circulating apoE levels. These mice had less adipose tissue with smaller adipocytes containing fewer lipids, but no change in adipocyte number compared with control mice. Adipocyte TG synthesis in the presence of apoE-containing VLDL was markedly impaired. Adipocyte caveolin and leptin gene expression were reduced, but adiponectin, PGC-1, and CPT-1 gene expression were increased. Mice with selective suppression of adipose tissue apoE had lower fasting lipid, insulin, and glucose levels, and glucose and insulin tolerance tests were consistent with increased insulin sensitivity. Lipid storage in muscle, heart, and liver was significantly reduced. Adipose tissue macrophage inflammatory activation was markedly diminished with suppression of adipose tissue apoE expression. Our results establish a novel effect of adipose tissue apoE expression, distinct from circulating apoE, on systemic substrate metabolism and adipose tissue inflammatory state.  相似文献   

3.
Glutathione peroxidase 3 (GPx3) accounts for the major antioxidant activity in the plasma. Here, we demonstrate that down-regulation of GPx3 in the plasma of obese subjects is associated with adipose GPx3 dysregulation, resulting from the increase of inflammatory signals and oxidative stress. Although GPx3 was abundantly expressed in kidney, lung, and adipose tissue, we observed that GPx3 expression was reduced selectively in the adipose tissue of several obese animal models as decreasing plasma GPx3 level. Adipose GPx3 expression was greatly suppressed by prooxidative conditions such as high levels of TNFalpha and hypoxia. In contrast, the antioxidant N-acetyl cysteine and the antidiabetic drug rosiglitazone increased adipose GPx3 expression in obese and diabetic db/db mice. Moreover, GPx3 overexpression in adipocytes improved high glucose-induced insulin resistance and attenuated inflammatory gene expression whereas GPx3 neutralization in adipocytes promoted expression of proinflammatory genes. Taken together, these data suggest that suppression of GPx3 expression in the adipose tissue of obese subjects might constitute a vicious cycle to expand local reactive oxygen species accumulation in adipose tissue potentially into systemic oxidative stress and obesity-related metabolic complications.  相似文献   

4.
Oxidative stress and low-grade inflammation have been implicated in obesity and insulin resistance. As a selenium transporter, ubiquitously expressed selenoprotein P (SeP) is known to play a role in the regulation of antioxidant enzyme activity. However, SeP expression and regulation in adipose tissue in obesity and its role in inflammation and adipocyte biology remain unexplored. In this study, we examined Sepp1 gene expression and regulation in adipose tissue of obese rodents and characterized the role of Sepp1 in adipose inflammation and adipogenesis in 3T3-L1 adipocytes. We found that Sepp1 gene expression was significantly reduced in adipose tissue of ob/ob and high-fat diet-induced obese mice as well as in primary adipose cells isolated from Zucker obese rats. Rosiglitazone administration increased SeP protein expression in adipose tissue of obese mice. Treatment of either TNFα or H(2)O(2) significantly reduced Sepp1 gene expression in a time- and dose-dependent manner in 3T3-L1 adipocytes. Interestingly, Sepp1 gene silencing resulted in the reduction in glutathione peroxidase activity and the upregulation of inflammatory cytokines MCP-1 and IL-6 in preadipocytes, leading to the inhibition of adipogenesis and adipokine and lipogenic gene expression. Most strikingly, coculturing Sepp1 KD cells resulted in a marked inhibition of normal 3T3-L1 adipocyte differentiation. We conclude that SeP has an important role in adipocyte differentiation via modulating oxidative stress and inflammatory response.  相似文献   

5.
Expression of apoE in adipocytes has been shown to have an important role in modulating adipocyte triglyceride (TG) metabolism and gene expression that is independent of circulating and extracellular apoE. The impact of adipocyte expression of common human apoE isoforms was evaluated using adipocytes harvested from human apoE2, -3, and -4 knock-in mice. Expression of the apoE2 isoform was associated with an increase in adipocyte apoE gene expression and apoE synthesis. Newly synthesized apoE2 was unstable in adipocytes and demonstrated increased degradation and decreased secretion. ApoE2-expressing mice were hyperlipidemic, and had increased size of gonadal fat pads and of adipocytes, compared with apoE3 mice. In isolated cells, however, expression of the apoE2 isoform produced defective lipogenesis and increased TG hydrolysis. Incubation of adipose tissue with apoE3-containing TG-rich lipoproteins resulted in a significant increase in TG in adipose tissue from apoE3 and -E4 mice, but not apoE2 mice. Reduced capacity to internalize FFA as lipogenic substrate contributed to defective lipogenesis. Newly synthesized apoE2 is unstable in adipocytes and results in decreased adipocyte TG synthesis and defective FA uptake. These changes recapitulate those observed in apoE knockout adipocytes and have implications for understanding metabolic disturbances in humans expressing the E2 isoform.  相似文献   

6.
The synthesis of apoE by adipocytes has profound effects on adipose tissue lipid flux and gene expression. Using adipose tissue transplantation from wild-type (WT) to apoE knockout (EKO) mice, we show that adipose tissue also contributes to circulating apoE. Different from circulating apoE produced by bone marrow transplantation (BMT), however, adipose tissue-derived apoE does not correct hyperlipidemia or suppress atherosclerosis. ApoE secreted by macrophages has a more acidic isoform distribution, and it increases binding of reconstituted VLDL particles to hepatocytes and fibroblasts more effectively than apoE secreted by adipocytes. The incremental binding can be entirely accounted for by binding to the LDL receptor. After BMT into EKO hosts, plasma cholesterol and macrophage-derived apoE are largely within IDL/LDL- and HDL-sized particles. After adipose tissue transplantation, most cholesterol and adipocyte apoE remain in VLDL. After BMT, circulating apoE no longer demonstrates predominance of acidic isoforms compared with that circulating after fat transplantation. In conclusion, fat transplantation provides circulating apoE levels similar to those provided by bone marrow transplantation, but it does not suppress hyperlipidemia or atherosclerosis. A potential mechanism contributing to this difference is differential binding to cell surface lipoprotein receptors.  相似文献   

7.
High levels of oxidative stress were reported in obesity-linked type 2 diabetes and were associated with elevated formation of advanced glycation end products (AGEs). Many studies have focused on the effect of antioxidants on vascular and circulating cells such as macrophages. However, despite the major role of adipocytes in the etiology of diabetes, little is known about the effect of natural antioxidants on adipocyte response to oxidative stress. The present study reports the differential protective effects of plant nutrients toward adipose cells subjected to oxidative stress. Caffeic acid, quercetin, l-ascorbic acid, and α-tocopherol were tested on SW872 liposarcoma cells subjected to a free radical generator or to AGEs. Proliferation, viability, free radical formation, and superoxide dismutase expression were assessed in treated cells. Caffeic acid and quercetin appeared as the most potent antioxidant nutrients. Our findings clearly show a novel antioxidant role for caffeic acid and quercetin at the adipose tissue level. These new data confirm the beneficial role of phytotherapy as an interesting alternative mean for the development of novel therapeutical and nutritional strategy to prevent metabolic disorders inherent to obesity-linked diabetes.  相似文献   

8.
Carbonyl stress is one of the important mechanisms of tissue damage in vascular complications of diabetes. In the present study, we observed that the plasminogen activator inhibitor-1 (PAI-1) levels in serum and its gene expression in adipose tissue were up-regulated in aged OLETF rats, model animals of obese type 2 diabetes. To study the mechanism of PAI-1 up-regulation, we examined the effect of advanced glycation end products (AGEs) and the product of lipid peroxidation (4-hydroxy-2-nonenal (HNE)), both of which are endogenously generated under carbonyl stress. Stimulation of primary white adipocytes by either AGE or HNE resulted in the elevation of PAI-1 in culture medium and at mRNA levels. The up-regulation of PAI-1 was also observed by incubating the cells in high glucose medium (30 mm, 48 h). The stimulatory effects by AGE or high glucose were inhibited by antioxidant, pyrrolidine dithiocarbamate, and reactive oxygen scavenger, probucol, suggesting a pivotal role of oxidative stress in white adipocytes. We also found that the effect by HNE was inhibited by antioxidant, N-acetylcysteine and that a specific inhibitor of glutathione biosynthesis, l-buthionine-S,R-sulfoximine, augmented the effect of subthreshold effect of HNE. Bioimaging of reactive oxygen species (ROS) by a fluorescent indicator, 6-carboxy-2',7'-dichlorodihydrofluorescein diacetate, revealed ROS production in white adipocytes treated with AGE or HNE. These results suggest that cellular carbonyl stress induced by AGEs or HNE may stimulate PAI-1 synthesis in and release from adipose tissues through ROS formation.  相似文献   

9.
10.
ApoE is expressed in multiple mammalian cell types in which it supports cellular differentiated function. In this report we demonstrate that apoE expression in adipocytes is regulated by factors involved in modulating systemic insulin sensitivity. Systemic treatment with pioglitazone increased systemic insulin sensitivity and increased apoE mRNA levels in adipose tissue by 2-3-fold. Treatment of cultured 3T3-L1 adipocytes with ciglitazone increased apoE mRNA levels by 2-4-fold in a dose-dependent manner and increased apoE secretion from cells. Conversely, treatment of adipocytes with tumor necrosis factor (TNF) alpha reduced apoE mRNA levels and apoE secretion by 60%. Neither insulin nor a peroxisome proliferator-activated receptor (PPAR) alpha agonist regulated adipocyte apoE gene expression. In addition, treatment of human monocyte-derived macrophages with ciglitazone did not regulate expression of apoE. Additional analyses using reporter genes indicated that the effect of TNFalpha and PPARgamma agonists on the apoE gene was mediated via distinct gene control elements. The TNFalpha effect was mediated by elements within the proximal promoter, whereas the PPARgamma effect was mediated by elements within a downstream enhancer. However, the addition of TNFalpha substantially reduced the absolute levels of apoE reporter gene response even in the presence of ciglitazone. These results indicate for the first time that adipose tissue expression of apoE is modulated by physiologic regulators of insulin sensitivity.  相似文献   

11.
12.
The nutrient-sensing lipolytic enzyme adipose triglyceride lipase (ATGL) has a key role in adipose tissue function, and alterations in its activity have been implicated in many age-related metabolic disorders. In adipose tissue reduced blood vessel density is related to hypoxia state, cell death and inflammation. Here we demonstrate that adipocytes of poorly vascularized enlarged visceral adipose tissue (i.e. adipose tissue of old mice) suffer from limited nutrient delivery. In particular, nutrient starvation elicits increased activity of mitochondrial proline oxidase/dehydrogenase (POX/PRODH) that is causal in triggering a ROS-dependent induction of ATGL. We demonstrate that ATGL promotes the expression of genes related to mitochondrial oxidative metabolism (peroxisome proliferator-activated receptor-α, peroxisome proliferator-activated receptor-γ coactivator-1α), thus setting a metabolic switch towards fat utilization that supplies energy to starved adipocytes and prevents cell death, as well as adipose tissue inflammation. Taken together, these results identify ATGL as a stress resistance mediator in adipocytes, restraining visceral adipose tissue dysfunction typical of age-related metabolic disorders.  相似文献   

13.
Metallothionein (MT) is thought to have an antioxidant function and is strongly expressed during activation of thermogenesis and increased oxidative stress in brown adipose tissue (BAT). Localization and regulation of MT expression in BAT was therefore investigated in rats and mice. Immunohistochemical analysis of BAT from rats exposed to 4 degrees C for 24 h showed that MT and uncoupling protein 1 (UCP1) were coexpressed in differentiated adipocytes, and both cytoplasmic and nuclear localization of MT was observed. Cold induction of MT-1 expression in BAT was also observed in mice. Administration of norepinephrine to rats and isoproterenol to mice stimulated MT and UCP1 expression in BAT, implying a sympathetically mediated pathway for MT induction. In mice, zinc, and particularly dexamethasone, induced MT-2 expression in BAT and liver. Surprisingly, zinc also induced UCP1 in BAT, suggesting that elevated zinc may induce thermogenesis. We conclude that expression of MT in mature brown adipocytes upon beta-adrenoceptor activation is consistent with a role in protecting against physiological oxidative stress or in facilitating the mobilization or utilization of energy reserves.  相似文献   

14.
《Free radical research》2013,47(10):1206-1217
Abstract

Excessive expansion of white adipose tissue leads to hypoxia which is considered as a key factor responsible for adipose tissue dysfunction in obesity. Hypoxia induces inflammation, insulin resistance, and other obesity related complications. So the hypoxia-signalling pathway is expected to provide a new target for the treatment of obesity-associated complications. Inhibition or downregulation of the HIF-1 pathway could be an effective target for the treatment of obesity related hypoxia. In the present study, we evaluated the effect of hypoxia on functions of 3T3-L1 adipocytes emphasising on oxidative stress, antioxidant status, inflammation and mitochondrial functions. We have also evaluated the protective role of bilobalide, a bioactive from Gingko biloba, on hypoxia induced alterations. The results revealed that hypoxia significantly altered all the vital parameters of adipocyte biology like HIF-1α expression (103.47% ↑), lactate and glycerol release (184.34% and 69.1% ↑, respectively), reactive oxygen species (ROS) production (432.53% ↑), lipid and protein oxidation (376.6% and 566.6% ↑, respectively), reduction in antioxidant enzymes (superoxide dismutase and catalase) status, secretion of inflammatory markers (TNF-α, IL-6, IL-1β and IFN-γ) and mitochondrial functions (mitochondrial mass, membrane potential, permeability transition pore integrity, superoxide generation). Bilobalide significantly protected adipocytes from adverse effects of hypoxia in a dose-dependent manner by attenuating oxidative stress, inflammation and protecting mitochondria. Acriflavine (HIF-1 inhibitor) was used as positive control. On the basis of this study, a detailed investigation is needed to delineate the mechanism of action of bilobalide to develop it as therapeutic target for obesity.  相似文献   

15.
Obesity-induced endoplasmic reticulum (ER) stress contributes to low-grade chronic inflammation in adipose tissue and may cause metabolic disorders such as diabetes mellitus and dyslipidemia. Identification of high serpina A1 (alpha-1 antitrypsin, A1AT) expression in mouse adipose tissue and adipocytes prompted us to explore the role of A1AT in the inflammatory response of adipocytes under ER stress. We aimed to determine the role of A1AT expression in adipocytes with ER stress during regulation of adipocyte homeostasis and inflammation. To this end, we chemically induced ER stress in A1AT small interfering RNA-transfected differentiating adipocytes using thapsigargin. Induction of CCAAT-enhancer-binding protein homologous protein (CHOP), an ER stress marker, by thapsigargin was lower in A1AT-deficient SW872 adipocytes. Thapsigargin or the proinflammatory cytokine tumor necrosis factor (TNF)α increased basal expression of cytokines such as interleukin (IL)-1β and IL-8 in both SW872 and primary omental adipocytes. This thapsigargin- or TNFα-induced expression of proinflammatory genes was increased by A1AT deficiency. These findings indicate that adipose A1AT may suppress the ER stress response to block excessive expression of proinflammatory factors, which suggests that A1AT protects against adipose tissue dysfunction associated with ER stress activation.  相似文献   

16.
Hepatic glucose metabolism is strongly influenced by oxidative stress and pro-inflammatory stimuli. PON2 (paraoxonase 2), an enzyme with undefined antioxidant properties, protects against atherosclerosis. PON2-deficient (PON2-def) mice have elevated hepatic oxidative stress coupled with an exacerbated inflammatory response from PON2-deficient macrophages. In the present paper, we demonstrate that PON2 deficiency is associated with inhibitory insulin-mediated phosphorylation of hepatic IRS-1 (insulin receptor substrate-1). Unexpectedly, we observed a marked improvement in the hepatic IRS-1 phosphorylation state in PON2-def/apoE (apolipoprotein E)(-/-) mice, relative to apoE(-/-) mice. Factors secreted from activated macrophage cultures derived from PON2-def and PON2-def/apoE(-/-) mice are sufficient to modulate insulin signalling in cultured hepatocytes in a manner similar to that observed in vivo. We show that the protective effect on insulin signalling in PON2-def/apoE(-/-) mice is directly associated with altered production of macrophage pro-inflammatory mediators, but not elevated intracellular oxidative stress levels. We further present evidence that modulation of the macrophage inflammatory response in PON2-def/apoE(-/-) mice is mediated by a shift in the balance of NO and ONOO(-) (peroxynitrite) formation. Our results demonstrate that PON2 plays an important role in hepatic insulin signalling and underscores the influence of macrophage-mediated inflammatory response on hepatic insulin sensitivity.  相似文献   

17.
Protein carbonylation is the covalent modification of proteins by α,β-unsaturated aldehydes produced by nonenzymatic lipid peroxidation of polyunsaturated fatty acids. The most widely studied aldehyde product of lipid peroxidation, trans-4-hydroxy-2-nonenal (4-HNE), is associated with obesity-induced metabolic dysfunction and has demonstrated reactivity toward key proteins involved in cellular function. However, 4-HNE is only one of many lipid peroxidation products and the lipid aldehyde profile in adipose tissue has not been characterized. To further understand the role of oxidative stress in obesity-induced metabolic dysfunction, a novel LC–MS/MS method was developed to evaluate aldehyde products of lipid peroxidation and applied to the analysis of adipose tissue. 4-HNE and trans-4-oxo-2-nonenal (4-ONE) were the most abundant aldehydes present in adipose tissue. In high fat-fed C57Bl/6J and ob/ob mice the levels of lipid peroxidation products were increased 5- to 11-fold in epididymal adipose, unchanged in brown adipose, but decreased in subcutaneous adipose tissue. Epididymal adipose tissue of high fat-fed mice also exhibited increased levels of proteins modified by 4-HNE and 4-ONE, whereas subcutaneous adipose tissue levels of these modifications were decreased. High fat feeding of C57Bl/6J mice resulted in decreased expression of a number of genes linked to antioxidant biology selectively in epididymal adipose tissue. Moreover, TNFα treatment of 3T3-L1 adipocytes resulted in decreased expression of GSTA4, GPx4, and Prdx3 while upregulating the expression of SOD2. These results suggest that inflammatory cytokines selectively downregulate antioxidant gene expression in visceral adipose tissue, resulting in elevated lipid aldehydes and increased protein carbonylation.  相似文献   

18.
Intracellular proteins are degraded by a number of proteases, including the ubiquitin-proteasome pathway (UPP). Impairments in the UPP occur during the aging of a variety of tissues, although little is known in regards to age-related alterations to the UPP during the aging of adipose tissue. The UPP is known to be involved in regulating the differentiation of a variety of cell types, although the potential changes in the UPP during adipose differentiation have not been fully elucidated. How the UPP is altered in aging adipose tissue and adipocyte differentiation and the effects of proteasome inhibition on adipocyte homeostasis and differentiation are critical issues to elucidate experimentally. Adipogenesis continues throughout the life of adipose tissue, with continual differentiation of preadipocytes essential to maintaining tissue function during aging, and UPP alterations in mature adipocytes are likely to directly modulate adipose function during aging. In this study we demonstrate that aging induces alterations in the activity and expression of principal components of the UPP. Additionally, we show that multiple changes in the UPP occur during the differentiation of 3T3-L1 cells into adipocytes. In vitro data link observed UPP alterations to increased levels of oxidative stress and altered adipose biology relevant to both aging and differentiation. Taken together, these data demonstrate that changes in the UPP occur in response to adipose aging and adipogenesis and strongly suggest that proteasome inhibition is sufficient to decrease adipose differentiation, as well as increasing oxidative stress in mature adipocytes, both of which probably promote deleterious effects on adipose aging.  相似文献   

19.
The role of inflammation and oxidative stress in the development of obesity and associated metabolic disorders is under debate. We investigated the redox metabolism in a non-diabetic obesity model, i.e. 11-week-old obese Zucker rats. Antioxidant enzyme activities, lipophilic antioxidant (alpha-tocopherol, coenzymes Q) and hydrophilic antioxidant (glutathione, vitamin C) contents and their redox state (% oxidized form), were studied in inguinal white fat and compared with blood and liver. The adipose tissues of obese animals showed a specific higher content of hydrophilic molecules in a lower redox state than those of lean animals, which were associated with lower lipophilic molecule content and lipid peroxidation. Conversely and as expected, glutathione content decreased and its redox state increased in adipose tissues of rats subjected to lipopolysaccharide-induced systemic oxidative stress. In these in vivo models, oxidative stress and obesity thus had opposite effects on adipose tissue redox state. Moreover, the increase in glutathione content and the decrease of its redox state by antioxidant treatment promoted in vitro the accumulation of triglycerides in preadipocytes. Taken together and contrary to the emergent view, our results suggest that obesity is associated with an intracellular reduced redox state that promotes on its own the development of a deleterious proadipogenic process.  相似文献   

20.
Adipose tissue has been reported to contain relatively high levels of the specific mRNA for retinol-binding protein (RBP) (Makover A., Soprano, D.R., Wyatt, M. L., and Goodman, D.S. (1989) J. Lipid Res. 30, 171-180). Studies were conducted to explore retinoid and retinoid-binding protein storage and metabolism in adipose tissue. In these studies, we measured RBP and cellular retinol-binding protein (CRBP) mRNA levels and retinoid levels in 6 adipose depots in male rats. Total RNA was isolated from inguinal, dorsal, mesenteric, epididymal, perinephric, and brown adipose tissue, and average RBP and CRBP mRNA levels were determined by Northern blot analysis. The relative levels of RBP mRNA in these 6 anatomically different adipose depots averaged, respectively, 6.3, 6.7, 16, 34, 37, and 21% of the level in a rat liver RNA standard. Retinoid levels in the 6 depots were similar and averaged approximately 6-7 micrograms of retinol eq/g of adipose tissue. Since adipose tissue contains several cell types, the cellular localizations of RBP and CRBP expression and retinoid storage were examined. RNA was prepared from isolated rat adipocytes and stromal-vascular cells. Cellular levels of the mRNAs for RBP, CRBP, apolipoprotein E (apoE), lipoprotein lipase, adipocyte P2, and adipsin were measured by Northern blot analysis. RBP was expressed almost exclusively in the adipocytes and only weakly in the stromal-vascular cells. Both CRBP and apoE mRNA levels were relatively high in the stromal-vascular cell preparations and only very low mRNA levels were found in the adipocytes. Lipoprotein lipase, adipsin, and adipocyte P2 mRNAs were found in substantial levels in both the adipocytes and stromal-vascular cells, but with higher levels present in the adipocytes. Cultured adipocytes synthesized RBP protein and secreted it into the medium. Only adipocytes (not stromal-vascular cells) contained retinol, at levels between 0.65-0.8 micrograms of retinol eq/10(6) cells. These studies demonstrate that adipocytes store retinoid and synthesize and secrete RBP, and suggest that rat adipocytes may be dynamically involved in retinoid storage and metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号