首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AtAGP17 and AtAGP19 are members of the lysine-rich arabinogalactan protein (AGP) subfamily in Arabidopsis. Detailed anatomical analysis of promoter activity of the AtAGP19 gene was carried out using transgenic Arabidopsis plants expressing a P(AtAGP19):GUS fusion. AtAGP19 promoter activity was tissue-specific and associated with vascular bundles, particularly differentiating xylem elements. Peptide-specific antibodies were raised against the Lys-rich regions of AtAGP17 and AtAGP19 and used to study the organ-specific expression patterns of these two AGPs. AtAGP17 and AtAGP19 were most abundant in roots and flowers, moderately abundant in stems, seedlings and siliques and virtually absent in leaves. Antibodies specific for AtAGP17 and AtAGP19, as reported here, represent valuable tools for understanding the biology of these two AGPs.  相似文献   

2.
3.
Zhang Y  Yang J  Showalter AM 《Planta》2011,233(4):675-683
Arabinogalactan-proteins (AGPs) are a family of highly glycosylated hydroxyproline-rich glycoproteins (HRGPs). AtAGP17, 18 and 19 comprise the lysine-rich classical AGP subfamily in Arabidopsis. Overexpression of GFP–AtAGP17/18/19 fusion proteins in Arabidopsis revealed localization of the fusion proteins on the plant cell surface of different organs. Subcellular localization of the fusion proteins at the plasma membrane was further determined by plasmolysis of leaf trichome cells. To elucidate AtAGP17/18/19 function(s), these AGPs were expressed without the green fluorescent protein (GFP) tag under the control of 35S cauliflower mosaic virus promoter. In contrast to AtAGP17/AtAGP19 overexpressors which showed phenotypes identical to wild-type plants, AtAGP18 overexpressors displayed several phenotypes distinct from wild-type plants. Specifically, these overexpressors had smaller rosettes and shorter stems and roots, produced more branches and had less viable seeds. Moreover, these AtAGP18 overexpressors exhibited similar phenotypes to tomato LeAGP-1 overexpressors, suggesting these two AGP genes may have similar function(s) in Arabidopsis and tomato.  相似文献   

4.
AtAGP17, AtAGP18 and AtAGP19 are homologous genes encoding three putative glycosylphosphatidylinositol (GPI)-anchored classical arabinogalactan-proteins (AGPs) in Arabidopsis. They are distinguished from other AGPs by a short, C-terminal lysine-rich region. Organ-specific expression of these genes was revealed by Northern blot analysis. AtAGP17 was strongly expressed in leaves and stems, and weakly expressed in flowers and roots; AtAGP18 was strongly expressed in flowers, and moderately expressed in roots, stems and young leaves; and AtAGP19 was strongly expressed in stems, moderately expressed in flowers and roots, and weakly expressed in young leaves. One of these genes, AtAGP17, was expressed and purified as a green fluorescent protein (GFP) fusion protein in transgenic tobacco cells using hydrophobic interaction chromatography, size exclusion chromatography and reverse phase high-performance liquid chromatography. The fusion (glyco)protein produced a characteristic AGP 'smear' with a molecular mass of 80-150 kDa when detected by Western blot analysis. Glycosyl composition and linkage analyses of purified GFP-AtAGP17 showed that carbohydrate accounted for approximately 86% of the molecule, with arabinose and galactose as major, and rhamnose and glucuronic acid as minor glycosyl residues and with 1,3,6-galactose, 1,4-glucuronic acid, 1,3-galactose and terminal arabinose as major linkages. GFP-AtAGP17 was also precipitated by beta-Yariv reagent, further confirming that AtAGP17 is a bona fide AGP. Confocal fluorescence microscopy of plasmolysed, transformed cells indicated that AtAGP17 is localized on the plasma membrane and in Hechtian strands. Hydroxyproline (Hyp) glycoside profiles of GFP-AtAGP17 in conjunction with the deduced protein sequence also served to corroborate the Hyp contiguity hypothesis, which predicts contiguous Hyp residues as attachment sites for arabinosides and clustered, non-contiguous Hyp residues as attachment sites for arabinogalactan polysaccharides.  相似文献   

5.
Arabinogalactan proteins (AGPs), a family of hydroxyproline-rich glycoproteins, occur throughout the plant kingdom. The lysine-rich classical AGP subfamily in Arabidopsis consists of three members, AtAGP17, 18 and 19. In this study, AtAGP19 was examined in terms of its gene expression pattern and function. AtAGP19 mRNA was abundant in stems, with moderate levels in flowers and roots and low levels in leaves. AtAGP19 promoter-controlled GUS activity was high in the vasculature of leaves, roots, stems and flowers, as well as styles and siliques. A null T-DNA knockout mutant of AtAGP19 was obtained and compared to wild-type (WT) plants. The atagp19 mutant had: (i) smaller, rounder and flatter rosette leaves, (ii) lighter-green leaves containing less chlorophyll, (iii) delayed growth, (iv) shorter hypocotyls and inflorescence stems, and (v) fewer siliques and less seed production. Several abnormalities in cell size, number, shape and packing were also observed in the mutant. Complementation of this pleiotropic mutant with the WT AtAGP19 gene restored the WT phenotypes and confirmed that AtAGP19 functions in various aspects of plant growth and development, including cell division and expansion, leaf development and reproduction.  相似文献   

6.
Arabinogalactan-proteins (AGPs) are a family of complex proteoglycans widely distributed in plants. The Arabidopsis rat1 mutant, previously characterized as resistant to Agrobacterium tumefaciens root transformation, is due to a mutation in the gene for the Lys-rich AGP, AtAGP17. We show that the phenotype of rat1 correlates with down-regulation of AGP17 in the root as a result of a T-DNA insertion into the promoter of AGP17. Complementation of rat1 plants by a floral dip method with either the wild-type AGP17 gene or cDNA can restore the plant to a wild-type phenotype in several independent transformants. Based on changes in PR1 gene expression and a decrease in free salicylic acid levels upon Agrobacterium infection, we suggest mechanisms by which AGP17 allows Agrobacterium rapidly to reduce the systemic acquired resistance response during the infection process.  相似文献   

7.
The pollen specificity of the Arabidopsis arabinogalactan protein (AGP) genes AGP6 and AGP11 suggests that they are integral to pollen biogenesis, and their high percent of sequence similarity may indicate a potential for overlapping function. Arabidopsis agp6 agp11 double null mutants have been studied in our laboratory, and in the present work, we characterize the germination and growth of its pollen. When compared to wild type, mutant agp6 agp11 pollen displayed reduced germination and elongation, both in vivo and in vitro, and precocious germination inside the anthers, provided that sufficient moisture was available. This characteristic was not observed in wild type plants, even in water content conditions which for the mutant were sufficient for pollen germination. Therefore, an additional distinctive phenotypic trait of arabinogalactan proteins AGP6 and AGP11 may be to avert untimely germination of pollen. Such AGPs may control germination through water uptake, suggesting an important biological function of this gene family in pollen.  相似文献   

8.
In the Arabidopsis root, patterning of the epidermal cell types is position-dependent. The epidermal cell pattern arises early during root development, and can be visualized using reporter genes driven by the GLABRA (GL)2 promoter as markers. The GL2 gene is preferentially expressed in the differentiating hairless cells (atrichoblasts) during a period in which epidermal cell identity is believed to be established. We show that AtAGP30 is also expressed in atrichoblasts. This gene encodes an arabinogalactan-protein (AGP) that is known to play a role in root regeneration and increases abscisic acid (ABA)-response rates. Although the expression level of this gene is regulated by the plant growth factors ABA and ethylene, only ABA was found to affect the tissue-specific pattern of expression. ABA also disrupts the expression pattern of the GL2::GUS (beta-glucuronidase) reporter gene. Our results indicate that ABA regulates epidermal cell-type-specific gene expression in the meristematic zone of the Arabidopsis root, while ethylene is known to act at later stages of epidermal differentiation. Despite its effects on the early stages of root epidermal patterning, ABA does not affect root hair formation on mature wild-type epidermal cells, suggesting that other developmental cues, like positional information, can progressively over-ride the ABA-mediated disruption of early epidermal patterning.  相似文献   

9.
10.
11.
Arabinogalactan-proteins (AGPs) are a family of highly glycosylated hydroxyproline-rich glycoproteins present throughout the plant kingdom. A synthetic chemical reagent, ( β - d -Gal)3 Yariv reagent, specifically binds AGPs and can be used for histochemical staining, isolating and probing the function of AGPs. Here, the role of AGPs in tomato ( Lycopersicon esculentum Mill. cv. UC82B) seed germination and seedling growth was examined by following expression of AGPs during these events and by treatment with ( β - d -Gal)3 Yariv to perturb AGP function. AGP expression changed during germination and seedling development both quantitatively and qualitatively as revealed by analysis of total AGP content, crossed electrophoresis patterns, RNA blots using LeAGP-1 probe, and western blots with LeAGP-1, JIM13, and MAC207 antibodies. ( β - d -Gal)3 Yariv treatment of seeds and developing seedlings did not affect percent seed germination, but markedly inhibited seedling growth in roots and to a lesser degree in shoots. Root growth inhibition encompassed reductions in overall root length, epidermal root cell elongation, root cell numbers and root hair formation. This growth inhibition was reversible following removal of ( β - d -Gal)3 Yariv. In a related experiment, water uptake by tomato seedlings was greatly inhibited by ( β - d -Gal)3 Yariv treatment. Based on these experiments, AGPs are clearly associated with tomato seedling development and likely to function in root growth, more specifically in cell elongation, cell proliferation, root hair formation and water uptake.  相似文献   

12.
Arabinogalactan proteins (AGPs) are plant‐specific extracellular glycoproteins implicated in a variety of processes during growth and development. AGP biosynthesis involves O‐galactosylation of hydroxyproline (Hyp) residues followed by a stepwise elongation of the complex sugar chains. However, functionally dominant Hyp O‐galactosyltransferases, such that their disruption produces phenocopies of AGP‐deficient mutants, remain to be identified. Here, we purified and identified three potent Hyp O‐galactosyltransferases, HPGT1, HPGT2 and HPGT3, from Arabidopsis microsomal fractions. Loss‐of‐function analysis indicated that approximately 90% of the endogenous Hyp O‐galactosylation activity is attributable to these three enzymes. AGP14 expressed in the triple mutant migrated much faster on SDS‐PAGE than when expressed in wild‐type, confirming a considerable decrease in levels of glycosylation of AGPs in the mutant. Loss‐of‐function mutant plants exhibited a pleiotropic phenotype of longer lateral roots, longer root hairs, radial expansion of the cells in the root tip, small leaves, shorter inflorescence stems, reduced fertility and shorter siliques. Our findings provide genetic evidence that Hyp‐linked arabinogalactan polysaccharide chains are critical for AGP function and clues to how arabinogalactan moieties of AGPs contribute to cell‐to‐cell communication during plant growth and development.  相似文献   

13.
This paper reports the isolation of cDNAs encoding the protein backbone of two arabinogalactan-proteins (AGPs), one from pear cell suspension cultures (AGP Pc 2) and the other from suspension cultures of Nicotiana alata (AGP Na 2). The proteins encoded by these cDNAs are quite different from the 'classical' AGP backbones described previously for AGPs isolated from pear suspension cultures and extracts of N. alata styles. The cDNA for AGP Pc 2 encodes a 294 amino acid protein, of which a relatively short stretch (35 amino acids) is Hyp/Pro rich; this stretch is flanked by sequences which are dominated by Asn residues. Asn residues are not a feature of the 'classical' AGP backbones in which Hyp/Pro, Ser, Ala and Thr account for most of the amino acids. The cDNA for AGP Na 2 encodes a 437 amino acid protein, which contains two distinct domains: one rich in Hyp/Pro, Ser, Ala, Thr and the other rich in Asn, Tyr and Ser. The composition and sequence of the Pro-rich domain resembles that of the 'classical' AGP backbone. The Asn-rich domains of the two cDNAs described have no sequence similarity; in both cases they are predicted to be processed to give a mature backbone with a composition similar to that of the 'classical' AGPs. The study shows that different AGPs can differ in the amino acid sequence in the protein backbone, as well as the composition and sequence of the arabinogalactan side-chains. It also shows that differential expression of genes encoding AGP protein backbones, as well as differential glycosylation, can contribute to the tissue specificity of AGPs.  相似文献   

14.
BACKGROUND: Arabinogalactan proteins (AGPs) are complex proteoglycans of the cell wall found in the entire plant kingdom and in almost all plant organs. AGPs encompass a large group of heavily glycosylated cell-wall proteins which share common features, including the presence of glycan chains especially enriched in arabinose and galactose and a protein backbone particularly rich in hydroxyproline residues. However, AGPs also exhibit strong heterogeneities among their members in various plant species. AGP ubiquity in plants suggests these proteoglycans are fundamental players for plant survival and development. SCOPE: In this review, we first present an overview of current knowledge and specific features of AGPs. A section devoted to major tools used to study AGPs is also presented. We then discuss the distribution of AGPs as well as various aspects of their functional properties in root tissues and pollen tubes. This review also suggests novel directions of research on the role of AGPs in the biology of roots and pollen tubes.  相似文献   

15.
Arabinogalactan-protein (AGP) epitopes are known to display developmentally regulated patterns of expression in several plant tissues. Therefore, AGPs have been suggested to play a role in plant development. Somatic embryogenesis is regulated by AGPs as well as by EP3 endochitinases. Using four different methods we have analysed the composition of AGPs in immature carrot seeds. The results obtained show that: (1) the native electrophoretic mobility of such AGPs changes during development; (2) AGP epitopes in immature seeds are developmentally regulated; (3) enzymatically released fragments of AGPs show that the composition of these molecules changes as a function of development; and (4) the biological activity of AGPs on the formation of somatic embryos changes depending on the age of the seeds. Our results suggest that degradation of maternally derived AGPs occurs after fertilization, while cellularization of the endosperm leads to synthesis of a new set of AGPs. The presence of an endochitinase cleavage site as well as the capacity to increase somatic embryogenesis only occurred in AGPs that were isolated from seeds in which the endosperm had been cellularized. Apparently, both EP3 endochitinases and somatic embryogenesis-promoting AGPs are developmentally regulated in immature carrot seeds.  相似文献   

16.
Arabinogalactan-proteins (AGPs) are a class of hyperglycosylated, hydroxyproline-rich glycoproteins that are widely distributed in the plant kingdom. AtAGP17, 18 and 19 are homologous genes encoding three classical lysine-rich AGPs in Arabidopsis. We observed subcellular localization of AtAGP18 at the plasma membrane by expressing a translational fusion gene construction of AtAGP18 attached to a green fluorescent protein (GFP) tag in Arabidopsis plants. We also overexpressed AtAGP18 without the GFP tag in Arabidopsis plants, and the resulting transgenic plants had a short, bushy phenotype. Here we discuss putative roles of AtAGP18 as a glycosylphosphatidylinositol (GPI)-anchored protein involved in a signal transduction pathway regulating plant growth and development.Key words: Arabidopsis thaliana, arabinogalactan-proteins, co-receptor, glycosylphosphatidylinositol, lipid rafts, overexpressionArabinogalactan-proteins (AGPs) are plant cell surface glycoproteins or proteoglycans which are thought to play important roles in various aspects of plant growth and development, such as somatic embryogenesis, cell proliferation and elongation, pattern formation and hormone signaling.1 The lysine-rich classical AGP subfamily in Arabidopsis contains three members: AtAGP17, 18 and 19. The subcellular localization of AtAGP17 and AtAGP18 was previously studied in our laboratory by expressing GFP-AtAGP17/18 fusion proteins in tobacco cell cultures.2,3 In a recent report, we used Arabidopsis plants to overexpress GFP-AtAGP17/18/19 fusion proteins to observe subcellular localization of the lysine-rich AGPs in planta, in contrast to our previous plant cell culture work.4 Moreover, the lysine-rich AGPs alone (i.e., AtAGP17/18/19 without the GFP tag) were overexpressed in Arabidopsis plants, and only AtAGP18 overexpressors had a distinctive phenotype. This phenotype included shorter stems, more branches and less seeds, indicating a role for AtAGP18 in plant growth and development.4 In this addendum, we further discuss the putative biological role of AtAGP18 on a molecular level and its possible mode of action in cellular signaling.Classical AGPs are frequently predicted to have a glycosylphosphatidylinositol (GPI) anchor, which would allow for the localization of such AGPs to the outer surface of the plasma membrane. Biochemical analyses were carried out to support this hypothesis in tobacco, pear,5 rose6 and Arabidopsis.7 The lysine-rich classical AGPs, AtAGP17 and 18, were predicted to have a GPI anchor.8 To test this idea, tobacco cell cultures expressing GFP-AtAGP17/18 fusion proteins were plasmolyzed and GFP fluorescence was observed on the plasma membrane.2,3 To corroborate this finding in planta, GFP-AtAGP17/18 were expressed in Arabidopsis plants and leaf trichome cells were plasmolyzed. Enhanced GFP fluorescence was observed at the plasma membrane of these transgenic trichome cells, indicating the presence of GFP-AtAGP17/18 at the plasma membrane.4 The localization of these lysine-rich classical AGPs at the plasma membrane suggests possible biological roles in sensing extracellular signals. They are likely associated with lipid rafts involved in cell signaling for the following reasons. In plants as well as animals, there are sterol-enriched, detergent-resistant plasma membrane microdomains called lipid rafts. Lipid rafts are known to be involved in signal transduction and are enriched in transmembrane receptors and GPI-anchored proteins, including AGPs.911 The accumulation of these proteins in such microdomains may allow for interactions between these proteins in sensing extracellular signals which lead to various intracellular events. Interestingly, a recent study shows that lipid rafts from hybrid aspen cells contain callose synthase and cellulose synthase, and these enzymes are active since in vitro polysaccharide synthesis by the isolated detergent-resistant membranes was observed. These results demonstrate that lipid rafts are involved in cell wall polysaccharide biosynthesis.12 In addition, an Arabidopsis pnt mutant study shows GPI-anchored proteins are required in cell wall synthesis and morphogenesis.13 These observations, coupled with previous observations that cellulose synthases as well as AGPs interact with microtubules, suggest that AGPs in lipid rafts may have a role in signal events, including those regulating cellulose and/or callose biosynthesis or deposition.14,15To examine the role of LeAGP-1, a lysine-rich AGP in tomato, transgenic tomato plants were produced which expressed GFP-LeAGP-1 under the control of the cauliflower mosaic virus 35S promoter.16 The tomato LeAGP-1 overexpressors and Arabidopsis AtAGP18 overexpressors both have a bushy phenotype similar to transgenic tobacco plants overproducing cytokinins.4,16,17 Cytokinins are an important class of plant hormones involved in many plant growth and development processes, such as cell growth and division, differentiation and other physiological processes.18 Therefore, Sun et al. proposed that LeAGP-1 might function in concert with the cytokinin signal transduction pathway.16 Since the overexpression phenotypes of AtAGP18 are similar to those of LeAGP-1, AtAGP18 is also likely associated with the cytokinin signal transduction pathway. The prevailing model for cytokinin signaling in Arabidopsis is similar to the two-component system in bacteria and yeast. In this model, the cytokinin receptor contains an extracellular domain, a kinase domain and a receiver domain. When the cytokinin receptor senses cytokinin signals, it auto-phosphorylates at a His residue in the kinase domain. The phosphoryl group is then transferred to an Asp residue in the receiver domain. Subsequently, the phosphoryl group is transferred to a His residue in the histidine phosphotransfer protein (Hpt) and the Hpt translocates to the nucleus and transfers the phosphoryl group to an Asp residue in a downstream response regulator to activate it.19 This model is consistent with our hypothesis since the cytokinin receptor in this model is a receptor kinase located in the plasma membrane with an extra-cellular domain that can potentially interact with AtAGP18. AtAGP18 may function as a co-receptor that first binds to cytokinins, then either directly interacts with cytokinin receptors or brings the cytokinins to cytokinin receptors in the plasma membrane. The first scenario is analogous to the interaction of contactin and contactin-associated protein (Caspr) in neurons. In this model, contactin is a GPI-anchored protein on the cell surface that binds to signal molecules and interacts with the transmembrane receptor Caspr to transmit signals to the cell interior.20 The second scenario is analogous to fibroblast growth factor (FGF) signal activation in which heparan sulfate proteoglycans bind to FGF molecules and bring them to the FGF receptor.21Based on all the above observations and findings, a hypothetical model for AtAGP18 function is proposed in Figure 1. The model shows AtAGP18 located on the outer surface of the plasma membrane in lipid rafts where it could act as a co-receptor to sense extracellular signals (such as cytokinin) and interact with transmembrane proteins, possibly receptor kinases or ion channels, in the lipid rafts to initiate signaling by triggering various intracellular events. Interestingly, receptor tyrosine kinases and ion channels are known to be present in lipid rafts.9,22 Moreover, AGPs are likely associated with ion channels since addition of the AGP-binding reagent Yariv phenylglycoside resulted in elevated cytoplasmic calcium concentrations in tobacco cells and lily pollen tubes.15,23,24 Clearly, additional work will be required to verify such a model, and to better understand how AtAGP18 might sense extracellular signals and interact with the transmembrane proteins in the lipid rafts.Open in a separate windowFigure 1Model for atAGP18 functioning in cellular signaling to control plant growth and development. In this model, lipid rafts are enriched in glycosphingolipids, sterols, transmembrane proteins (such as receptors, receptor kinases and ion channel proteins) and GPI-anchored proteins including AtAGP18. (a) AtAGP18 acts as a co-receptor by binding to signaling molecules and directly interacting with transmembrane proteins in the lipid rafts. (B) AtAGP18 acts as a co-receptor by binding to signaling molecules and bringing the signaling molecules to transmembrane proteins in the lipid rafts. Upon activation by the extracellular signals, the transmembrane proteins initiate signaling and lead to various intracellular events (e.g., phosphorylation similar to the two-component signaling system, influx of calcium ions). The different components of the AtAGP18 molecule and the various lipid components of lipid rafts and plasma membrane are shown in the boxed inset. Hpt, histidine phosphotransfer protein.  相似文献   

17.
18.
Two monoclonal antibodies (ZUM 15 and ZUM 18) directed against carrot (Daucus carota L.) seed arabinogalactan proteins (AGPs) were used to isolate specific AGP fractions. For both carrot and tomato (Lycopersicon esculentum Mill.) seed AGPs analyzed by crossedelectrophoresis, the ZUM 15 and ZUM 18 AGP fractions showed one identical peak. However, the Rf values for the two species were different: 0.82 for carrot seed AGPs and 0.52 for tomato seed AGPs. When the fractionated AGPs (carrot or tomato) were added to carrot cell lines they had a dramatic effect on the culture. One AGP fraction (ZUM 15 AGPs) was able to induce vacuolation of embryogenic cells. Those cells failed to produce embryos. The other AGP fraction (ZUM 18 AGPs) increased the percentage of embryognic cells from about 40% up to 80% within one week and this subsequently resulted in the formation of more embryos on hormone-free medium. This activity was higher than that of unfractionated carrot seed AGPs, while the optimum concentration was 50-fold lower. Since both ZUM 18 AGPs (carrot or tomato) yielded identical responses it can be concluded that neither the Rf value nor the source are essential for biological activity. The dose-response curve of ZUM 18 AGPs showed a sharp optimum. When the AGPs that also bound to the antibody ZUM 15 were removed, the dose-response curve of the remaining AGPs (containing only the ZUM 18 epitope, not the ZUM 15 epitope) resembled a saturation curve. Regardless of its concentration, the fraction in which AGP molecules contained both epitopes showed no appreciable embryogenesis-promoting activity. The biological activity of AGPs was therefore determined by the presence of embryogenesis-enhancing and-inhibiting epitopes. The inhibiting and enhancing epitopes can be located on separate molecules or one single AGP molecule.  相似文献   

19.
Arabinogalactan proteins (AGPs) are extensively glycosylated hydroxyproline‐rich glycoproteins ubiquitous in all plant tissues and cells. AtAGP6 and AtAGP11, the only two functionally known pollen‐specific classical AGP encoding genes in Arabidopsis, are reported to have redundant functions in microspore development. BcMF18 and BcMF8 isolated from Brassica campestris are the orthologues of AtAGP6 and AtAGP11, respectively. In contrast to the functional redundancy of AtAGP6 and AtAGP11, single‐gene disruption of BcMF8 led to deformed pollen grains with abnormal intine development and ectopic aperture formation in B. campestris. Here, we further explored the action of BcMF18 and its relationship with BcMF8. BcMF18 was specifically expressed in pollen during the late stages of microspore development. Antisense RNA transgenic lines with BcMF18 reduction resulted in aberrant pollen grains with abnormal cellulose distribution, lacking intine, cytoplasm and nuclei. Transgenic plants with repressive expression of both BcMF8 and BcMF18 showed a hybrid phenotype, expressing a mixture of the phenotypes of the single gene knockdown plant lines. In addition, we identified functional diversity between BcMF18/BcMF8 and AtAGP6/AtAGP11, mainly reflected by the specific contribution of BcMF18 and BcMF8 to pollen wall formation. These results suggest that, unlike the orthologous genes AtAGP6 and AtAGP11 in Arabidopsis, BcMF18 and BcMF8 are both integral to pollen biogenesis in B. campestris, acting through independent pathways during microspore development.  相似文献   

20.

Background and Aims

Stigmatic receptivity plays a clear role in pollination dynamics; however, little is known about the factors that confer to a stigma the competence to be receptive for the germination of pollen grains. In this work, a developmental approach is used to evaluate the acquisition of stigmatic receptivity and its relationship with a possible change in arabinogalactan-proteins (AGPs).

Methods

Flowers of the domestic apple, Malus × domestica, were assessed for their capacity to support pollen germination at different developmental stages. Stigmas from these same stages were characterized morphologically and different AGP epitopes detected by immunocytochemistry.

Key Results

Acquisition of stigmatic receptivity and the secretion of classical AGPs from stigmatic cells occurred concurrently and following the same spatial distribution. While in unpollinated stigmas AGPs appeared unaltered, in cross-pollinated stigmas AGPs epitopes vanished as pollen tubes passed by.

Conclusions

The concurrent secretion of AGPs with the acquisition of stigmatic receptivity, together with the differential response in unpollinated and cross-pollinated pistils point out a role of AGPs in supporting pollen tube germination and strongly suggest that secretion of AGPs is associated with the acquisition of stigma receptivity.Key words: AGPs, arabinogalactan proteins, apple, Malus × domestica, pollen, pollen tube, stigma, stigmatic receptivity, flower receptivity  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号