首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
Both the frequency and the temporal pattern of action potentialproduction in an insect olfactory receptor neuron are stronglyaffected by odorant composition and the time course over whichstimulus concentration varies. To investigate the temporal characteristicsof the neurophysiological responses of these neurons, we deviseda stimulus delivery system that allows us to repeatedly presentwell-mixed, constant concentration odor pulses with relativelysharp onsets and offsets. Here we compare neurophysiologicalresponses to several different stimulation regimens, includingpulses of different durations and repetition rates. During stimulationwith high concentrations of pheromone, the temporal patternof neural activity from olfactory receptor neurons on the antennaof Trichoplusia ni (Hübner) is characterized by an initialphasic period (100–200 ms), followed by a tonic periodwhich is typically maintained for the remaining duration ofthe stimulus. Different olfactory receptor neurons appear tovary among themselves in the relative distribution between thephasic and tonic portions of the overall discharge. During stimulationregimens involving rapid repeated pulses of odorants, a portionof the phasic response levels is preserved during each pulse.Consequently, T. ni males probably detect much of the fluctuationin concentration of pheromone that may normally occur downwindfrom the site of pheromone release.  相似文献   

2.
Reaction time (RT) and error rate that depend on stimulus duration were measured in a luminance-discrimination reaction time task. Two patches of light with different luminance were presented to participants for ‘short’ (150 ms) or ‘long’ (1 s) period on each trial. When the stimulus duration was ‘short’, the participants responded more rapidly with poorer discrimination performance than they did in the longer duration. The results suggested that different sensory responses in the visual cortices were responsible for the dependence of response speed and accuracy on the stimulus duration during the luminance-discrimination reaction time task. It was shown that the simple winner-take-all-type neural network model receiving transient and sustained stimulus information from the primary visual cortex successfully reproduced RT distributions for correct responses and error rates. Moreover, temporal spike sequences obtained from the model network closely resembled to the neural activity in the monkey prefrontal or parietal area during other visual decision tasks such as motion discrimination and oddball detection tasks.  相似文献   

3.
Smith  DV; Li  CS 《Chemical senses》1998,23(2):159-169
The effects of gamma-aminobutyric acid (GABA) and the GABAA receptor antagonist bicuculline methiodide (BICM) on the activity of taste- responsive neurons in the nucleus of the solitary tract (NST) were examined electrophysiologically in urethane-anesthetized hamsters. Single neurons in the NST were recorded extracellularly and drugs (21 nl) were microinjected into the vicinity of the cell via a multibarrel pipette. The response of each cell was recorded to lingual stimulation with 0.032 M NaCl, 0.032 M sucrose, 0.0032 M citric acid and 0.032 M quinine hydrochloride (QHCl). Forty-six neurons were tested for the effects of GABA; the activity of 29 cells (63%) was inhibited by 5 mM GABA. Whether activity was elicited in these cells by repetitive anodal current stimulation (25 microA, 0.5 s, 0.1 Hz) of the tongue (n = 13 cells) or the cells were spontaneously active (n = 13 cells), GABA produced a dose-dependent (1, 2 and 5 mM) decrement in activity. Forty- seven NST neurons were tested for the effects of BICM on their responses to chemical stimulation of the tongue; the responses of 28 cells (60%) were enhanced by 10 mM BICM. The gustatory responses of 26 of these cells were tested with three concentrations (0.2, 2 and 10 mM) of BICM, which produced a dose-dependent increase in both spontaneous activity and taste-evoked responses. Nine of these neurons were sucrose- best, seven were NaCl-best, eight were acid-best and two responded best to QHCl. The responses to all four tastants were enhanced, with no difference among neuron types. For 18 cells that were tested with two or more gustatory stimuli, BICM increased their breadth of responsiveness to their two most effective stimuli. These data show that approximately 60% of the taste-responsive neurons in the rostral NST are inhibited by GABA and/or subject to a tonic inhibitory influence, which is mediated by GABAA receptors. The modulation of these cells by GABA provides a mechanism by which the breadth of tuning of the cell can be sharpened. Modulation of gustatory activity following a number of physiological changes could be mediated by such a GABAergic circuit.   相似文献   

4.
Gustatory sensitivities of the hamster's soft palate   总被引:4,自引:1,他引:3  
The response properties of taste receptors distributed on thesoft palate of the hamster were studied by recording integratedresponses from the greater superficial petrosal (GSP) nerveStimuli were concentration series of sucrose, NaCl, HCl andquinine hydrochloride (QHCl), and several other 0.1 M saltsand 0.5 M sugars. For comparison, integrated responses wererecorded from the chorda tympani (CT) nerve in many of the sameanimals from which recordings were made from the GSP. Responsesin each preparation were scaled relative to the phasic responseto 0.1 M NaCl and were then expressed for each nerve as a proportionof the total response magnitude (TRM)—the sum of all theresponses to the four concentration series. In this way, therelative response of each nerve to all of the stimuli couldbe evaluated. There were significant differences between theGSP and CT nerves in the responses to NaCl, QHCl and sucrose.Both the phasic and tonic responses to sucrose were larger inthe GSP than in the CT, whereas the tonic responses to NaCland QHCl were smaller. The slopes of the concentration-responsefunctions for NaCl, HCl and sucrose were significantly differentbetween the two nerves. The responses to 0.1 M sodium and lithiumsalts were significantly greater in the CT than in the GSP;whereas the 0.5 M sugars elicited responses in the GSP thatwere 2–3 times greater than in the CT nerve. A comparisonof the relative responsiveness to 0.3M sucrose, 0 3 M NaCl,0.01 M QHCl, 0.01 M HCl and distilled water among the GSP, CT,glossopharyngeal (IXth) nerve and superior laryngeal nerve (SLN)indicated that the vast majority of information about sucroseand NaCl is transmitted to the brainstem by the VIIth nerve. 1Present address: Department of Oral Physiology, Kagoshima UniversityDental School, Kagoshima 890, Japan  相似文献   

5.
Smith DV  Ye MK  Li CS 《Chemical senses》2005,30(5):421-434
Previous studies have shown a modulatory influence of limbic forebrain areas, such as the central nucleus of the amygdala and lateral hypothalamus, on the activity of taste-responsive cells in the nucleus of the solitary tract (NST). The bed nucleus of the stria terminalis (BST), which receives gustatory afferent information, also sends descending axons to the NST. The present studies were designed to investigate the role of the BST in the modulation of NST gustatory activity. Extracellular action potentials were recorded from 101 taste-responsive cells in the NST of urethane-anesthetized hamsters and analyzed for a change in excitability following bilateral electrical stimulation of the BST. The response of NST taste cells to stimulation of the BST was predominately inhibitory. Orthodromic inhibitory responses were observed in 29 of 101 (28.7%) NST taste-responsive cells, with four cells inhibited bilaterally. An increase in excitability was observed in seven of the 101 (6.9%) NST taste cells. Of the 34 cells showing these responses, 25 were modulated by the ipsilateral BST and 15 by the contralateral; four were inhibited bilaterally and two inhibited ipsilaterally and excited contralaterally. The duration of inhibitory responses (mean = 177.9 ms) was significantly longer than that of excitatory responses (35.4 ms). Application of subthreshold electrical stimulation to the BST during taste trials inhibited or excited the taste responses of every BST-responsive NST cell tested with this protocol. NST neurons that were most responsive to sucrose, NaCl, citric acid or quinine hydrochloride were all affected by BST stimulation, although citric acid-best cells were significantly more often modulated and NaCl-best less often modulated than expected by chance. These results combine with excitatory and inhibitory modulation of NST neurons by the insular cortex, lateral hypothalamus and central nucleus of the amygdala to demonstrate extensive centrifugal modulation of brainstem gustatory neurons.  相似文献   

6.
This study examines the contribution of GABAergic inhibition to the discharge pattern and recovery properties of 110 bat inferior collicular neurons by means of bicuculline application to their recording sites. When stimulated with single pulses, 74 (67%) neurons discharged one or two impulses (phasic responders), 19 (17%) discharged three to ten impulses (phasic bursters) and 17 (16%) discharged impulses throughout the entire stimulus duration (tonic responders). Bicuculline application changed phasic responders into phasic bursters or tonic responders, increased the number of impulses by 10–2000% and shortened the response latency of most neurons. When stimulated with pairs of sound pulses, the recovery cycles of these neurons can be described as: (1) long inhibition (n = 49, 45%); (2) short inhibition (n = 41, 37%); and (3) fast recovery (n = 20, 18%) based upon the 50% recovery time that was either longer than 20 ms, between 10 and 20 ms or shorter than 10 ms. Bicuculline application shortened the 50% recovery time of most neurons by 11–2350% allowing them to respond to pairs of sound pulses at very short interpulse intervals. These data demonstrate that GABAergic inhibition contributes significantly to auditory temporal processing. Accepted: 18 April 1997  相似文献   

7.
The integrated responses to gustatory stimuli applied to thesoft palate were recorded from the greater superficial petrosalnerve (GSP) and were compared with those from the chorda tympaninerve (CT) innervating the anterior part of the tongue in therat. Stimuli included various concentrations of NaCl, sucrose,HCl and quinine hydrochloride, and 0.5 M of six sugars. Theinhibitory effects of amiloride on the responses to sodium salts,including various concentration of NaCl, 0.1 M sodium acetateand 0.01 M sodium saccharin, were also tested. Both the phasicand tonic responses to sugars in the GSP were significantlylarger than those in the CT, whereas both responses to NaClin the GSP were significantly smaller than those in the CT.Although amiloride at 50 µM significantly depressed thephasic and tonic responses to NaCl with a wide range of concentrationin the CT, little inhibitory effect was observed in the GSP.The tonic response to sodium acetate, when dissolved in amiloridesolution, was depressed to 15% of the control in the CT, andslightly but significantly depressed to 70% in the GSP. Theseresponse characteristics of the GSP may play important rolesin the processing of gustatory information. Chem. Senses 22:133–140, 1997.  相似文献   

8.
Short-day photoperiods can increase the partitioning of assimilatesto filling seeds of soybean (Glycine max L. Merr.), resultingin higher seed growth rates. The plant growth substance ABAhas been implicated in the regulation of assimilate transferwithin filling soybean seeds. Thus, we hypothesized that anincreased concentration of endogenous ABA in seeds may enhancesucrose accumulation and seed growth rate of soybeans exposedto short-day photoperiods. Plants of cv. Hood 75 were grownin a greenhouse under an 8-h short-day photoperiod (SD) until11 d after anthesis (DAA) of the first flower, when half ofthe plants were transferred to a night-interruption (NI) treatment(3 h of low-intensity light inserted into the middle of thedark period). Plants remaining in SD throughout seed developmenthad seed growth rates 43% higher than that of plants shiftedto NI (7·6 mg seed–1 d–1 vs. 5·3 mgseed–1 d–1). On a tissue-water basis, the concentrationof ABA in SD seeds increased rapidly from 7.6 µmol l–1at 11 DAA to 65·2 µmol l–1 at 18 DAA, butthen declined to 6·6 µmol l–1 by 39 DAA.In contrast, the concentration of ABA increased more slowlyin NI seeds, reaching only 47·4 µmol l–1by 18 DAA, peaking at 57·0 µmol l–1 on 25DAA, and declining to 10·2 µmol l–1 by 39DAA. The concentration of sucrose in SD embryos peaked at 73·5mmol l–1 on 25 DAA and remained relatively constant forthe remainder of the seed-filling period. In NI, the concentrationof sucrose reached only 38·3 mmol 1–1 by 25 DAA,and peaked at 61·5 µmol l–1 on 32 DAA. Thusin both SD and NI, sucrose accumulated in embryos only afterthe peak in ABA concentration, suggesting that ABA may havestimulated sucrose movement to the seeds. The earlier accumulationof ABA and sucrose in SD suggests that ABA may have increasedassimilate availability during the critical cell-division period,thus regulating cotyledon cell number and subsequent seed growthrate for the remainder of the seed-filling period. Glycine max L. Merr. cv. Hood 75, soybean, assimilate partitioning, abscisic acid, photoperiod, source-sink  相似文献   

9.
Mushroom bodies are central brain structures and essentially involved in insect olfactory learning. Within the mushroom bodies γ-aminobutyric acid (GABA)-immunoreactive feedback neurons are the most prominent neuron group. The plasticity of inhibitory neural activity within the mushroom body was investigated by analyzing modulations of odor responses of feedback neurons during olfactory learning in vivo. In the honeybee, Apis mellifera, feedback neurons were intracellularly recorded at their neurites. They produced complex patterns of action potentials without experimental stimulation. Summating postsynaptic potentials indicate that their synaptic input region lies within the lobes. Odor and antennal sucrose stimuli evoked excitatory phasic-tonic responses. Individual neurons responded to various odors; responses of different neurons to the same odor were highly variable. Response modulations were determined by comparing odor responses of feedback neurons before and after one-trial olfactory conditioning or sensitisation. Shortly after pairing an odor stimulus with a sucrose reward, odor-induced spike activity of feedback neurons decreased. Repeated odor stimulations alone, equally spaced as in the conditioning experiment, did not affect the odor-induced excitation. A single sensitisation trial also did not alter odor responses. These findings indicate that the level of odor-induced inhibition within the mushroom bodies is specifically modulated by experience. Accepted: 9 September 1999  相似文献   

10.
The vapour pressures of aqueous solutions of polyethylene glycol6000 have been measured (by equilibration with sucrose solutions)up to the saturation point at 25 °C (1.45 g g–1 water).The reduced-osmotic-pressure (/c), when plotted versus concentration(c), rapidly and linearly increased up to a concentration ofabout 0.8 g g–1 (crossing the similar plot for sucrose).Above this concentration, the reduced-osmotic-pressure rosemore slowly, but still more rapidly than sucrose. The maximumosmotic pressure achieved at saturation was nearly 18 MPa. Usingthe virial equation: /c= RT/M + RTA2c, the calculated secondvirial coefficient (A2) for the linear part is 4.5 x 10–3mol g–1, a value slightly greater than most literaturevalues at 25 °C. Data are cited showing that A2 varies linearlyfrom 5–6 x 10x3 at 0 °C, to zero at 80–90 °C  相似文献   

11.
Removal of the midbrain tonic inhibitory mechanism on nonshivering thermogenesis (NST) results in increased temperatures of the interscapular brown adipose tissue (IBAT) and rectum (T(IBAT) and T(rec), respectively) via an enhanced central sympathetic output. Because it is unlikely that neurons (primary) of the midbrain inhibitory mechanism tonically inhibit the IBAT monosynaptically, there must be secondary or tertiary neurons posterior to the midbrain. Such neurons, therefore, may increase their activity during enhanced NST after removal of the midbrain tonic inhibition. The aim of the present experiments was to localize these secondary or tertiary neurons and establish descending neuronal pathway(s) that may project to the major NST effector IBAT. T(IBAT) and T(rec) increases induced by removal of the tonic inhibition by midbrain procaine microinjections were accompanied with appearance of c-Fos-positive neurons in the inferior olive (IO) and the intermediolateral (IML) cell column of the thoracic spinal cord. Electrical stimulation of and L-glutamate microinjections into the IO increased T(IBAT) and T(rec). Midbrain procaine-induced T(IBAT) and T(rec) increases were blocked by electrolytic IO lesions. These results suggest that central thermal signals produced from the lower midbrain are transmitted to IBAT through the IO and IML and that the IO has a role in the central sympathetic functions.  相似文献   

12.
Spontaneous and evoked unit activity in response to repeated application of clicks at a frequency of 0.3–2.0 Hz in the caudate nucleus was studied by an extracellular recording technique in chronic experiments on cats. Four types of spontaneous unit activity in the caudate nucleus were distinguished. Altogether 44% of neurons tested responded by changes in spontaneous activity to clicks. Five types of responses of caudate neurons to clicks were discovered: phasic excitation, phasic inhibition, tonic activation, tonic inhibition, and mixed tonic responses; the commonest type was tonic activation. During prolonged stimulation by clicks extinction of the phasic responses was not observed. Complete or partial extinction of tonic responses in the course of frequent repetition of stimulation was observed in 33% of responding neurons. The question of possible convergence of specific and nonspecific influences on caudate neurons is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 12, No. 1, pp. 28–35, January–February, 1980.  相似文献   

13.
The major rate limiting steps in bullfrog peripheral nerve gustatoryresponse latencies were studied by measuring glossopharyngealnerve multi-unit activity, detecting response onset times, andcalculating rates of stimulus diffusion to receptor cells andsignal propagation along first order neurons. The stimulus deliverytechnique minimized physicochemical and mechanical artifacts,as well as neural responses to mechanical stimulation of thetongue. Neural activity was processed in 10 ms bins. Responseonsets were determined by a criterion that compared the statisticalprobability of the neural events during stimulus liquid presentationswith those during both Ringer's solution presentations afteradaptation to Ringer's and no-stimulus control conditions. Thiscriterion yielded response latencies of 70–110 ms for10 mM CaCl2, 2 mM quinine hydrochloride, and 10–5 M and10–6 M cantharidin or Ringer's, and H2O. No responsesoccurred during presentations of 10–7 M cantharidin orRinger's after adaptation to Ringer's, or during the no-stimuluscontrol condition. From the measured latencies and calculatedrates of stimulus diffusion to receptor cells, and signal propagationalong first order neurons, we conclude that taste receptor cellevents and not perireceptor or signal propagatiog events arethe major rate limiting steps in gustatory response latencies.  相似文献   

14.
Brain stem respiratory neuron activity in the cat was studied in relation to efferent outflow (phrenic discharge) under the influence of several forcing inputs: 1) CO2 tension: hypocapnia produces disappearance of firing in some neurons, and conversion of respiratory-modulated to continuous (tonic) firing in others. 2) Lung inflation: during the Bruer-Hering reflex, some neurons have "classical" responses and others have "paradoxical" responses (i.e., opposite in direction to peripheral discharge). 3) Electrical stimulation: stimulus trains to the pneumotaxic center region (rostral lateral pons) produce phase-switching, whose threshold is: a) sharp (indicating action of positive-feedback mechanisms), and b) dependent on timing of stimulus delivery (indicating continuous excitability changes during each respiratory phase). Auto- and crosscorrelation analysis revealed the existence of short-term interactions between: a) medullary inspiratory (I) neurons and phrenic motoneurons; b) pairs of medullary I neurons; c) medullary I neurons and expiratory (E) neurons. A model of the respiratory oscillator is presented, in which the processes of conversion of tonic to phasic activity and switching of the respiratory phases are explained by recurrent excitatory and inhibitory loops.  相似文献   

15.
Forty-eight college students were assigned randomly to four groups in a 2 X 2 factorial arrangement of phasic conditional stimuli (same vs. different) and tonic conditional stimuli (same vs. different) to receive 2 days of classical conditioning with a transswitching procedure. Tonic stimuli were a 5-minute projected white triangle or circle; phasic stimuli were a 5-second red or green square superimposed over the tonic stimuli. There were six tonic stimulus segments each day, separated by 20-second periods of no stimulus, three containing six trials of the phasic stimulus paired with shock and three containing six trials of the phasic stimulus alone, in the counterbalanced order. Tonic responding at the onset of the tonic stimuli or during brief periods following its onset were recorded, along with phasic responses to the phasic stimuli. Responses included magnitude of skin conductance responses, frequency of unelicited skin conductance responses, and tonic heart rate. Both skin conductance measures of responding to the tonic stimuli differentiated significantly between positive and negative tonic segments during Day 2, but only in the group with two different tonic stimuli and one phasic stimulus ("standard" transswitching). This supported the hypothesis that tonic stimulus differentiation would be absent when two different phasic stimuli were present. The heart rate data did not support this hypothesis, showing tonic differentiation in both groups with two tonic stimuli. Phasic differentiation controlled by the different phasic stimuli was observed on Day 1; on Day 2, phasic differentiation was present only in the group with two tonic and one phasic stimuli and the group with one tonic and two phasic stimuli.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The aim of this study was to determine whether the olfactorysystem is responsible for the discriminability of the stereoisomersof nicotine. The EOG was recorded after stimulation with differentconcentrations of undistilled S(–)-, distilled S(–)-and distilled R(–)-nicotine separately in three groupsof frogs (Xenopus laevis). The responses to all types of nicotineused in the experiments increased with increasing stimulus concentration.The responses to undistilled S(–)-nicotine were significantlylower compared to responses to distilled S(–)- and R(+)-nicotine,whereas no significant differences could be found when the purifiedstereoisomers of nicotine [distilled S(–)-nicotine, distilledR(+)-nicotine] were compared. Control measurements of time courseand peak concentration employing a UV-detection method demonstratedthat the differences between distilled and undistilled S(–)-nicotinecould not be explained by different nicotine concentrations. The fact that no differences between the pure nicotine stereoisomerscould be found for all concentrations used in our experimentsand that experiments in humans revealed similar detection thresholdsfor both stereoisomers points to a similar receptor affinityof R(+)- and S (–)-nicotine within the olfactory system.At this point, it cannot be determined whether the observeddifferences in the perception of nicotine enantiomers in humansare due to differences in quality coding by stereospecific receptorson the olfactory sensory cells or by specific receptors on thetrigeminal nerve endings. Chem. Senses 20: 337–344, 1995.  相似文献   

17.
Results from previous studies suggest that sucrose and NaClsolutions have an equal perceived taste intensity when the molarconcentration of sucrose is 1.5–1.75 times the molar concentrationof NaCl. However, according to other studies, sucrose and NaClsolutions taste equally strong when their molar concentrationsare about equal. This issue was further pursued using the methodof constant stimuli, where subjects matched the perceived tasteintensity of NaCl solutions to five sucrose references and viceversa. The results concur with previous findings that sucroseand NaCl solutions have equal perceived taste intensities whenthe molar concentration of sucrose is 1.5–1.75 times themolar concentration of NaCl.  相似文献   

18.
Nakamura  T.; Ogawa  H. 《Chemical senses》1997,22(5):517-528
In the rat cortical taste area (CTA), we recorded 31 pairs oftaste neurons and seven pairs of taste and non-taste neurons,with single or double electrodes. By using a cross-correlogram(CCG) in a stationary state, we examined the functional interactionbetween neurons of the pairs while activating them by tastestimulation. Though only 14.3% of the taste and non-taste neuronpairs were correlated, 54.8% of the taste neuron pairs showedcorrelated activities, 41.9% of them showing common inputs,including one with an additional excitatory connection. Theremainder (12.9%) showed excitatory connections with a timelag of 1–3 ms. When pairs were recorded using single ordouble electrodes with an intertip distance of <50µmin a dorsoventral direction, a larger fraction had correlatedactivities than when the intertip distance was >50 µm.Whereas pairs of neurons showed correlated activities in areaDI whatever the vertical intertip distance was, most of thepairs having correlated activities in area GI were found within50 µm of the vertical intertip distance. The taste profilesof common inputs to the pair were estimated on the basis ofpeak at time 0 in CCGs for various taste stimuli. The efficacycontribution of the source to target neurons tended to be largerwhen both had the same best stimulus. This tendency held truefor pairs showing excitatory connections. Interlayer excitatoryconnections were also evident. It is concluded that a functionalcolumn with a diameter of 50 µm may present in the CTAin rats, and that information flow is larger between pairs ofneurons with the same best stimulus. Chem. Senses 22: 517–528,1997.  相似文献   

19.
 Responses of mechanosensory lateral line units to constant-amplitude hydrodynamic stimuli and to sinusoidally amplitude-modulated water movements were recorded from the goldfish (Carassius auratus) torus semicircularis. Responses were classified by the number of spikes evoked in the unit's dynamic range and by the degree of phase locking to the carrier- and amplitude-modulation frequency of the stimulus. Most midbrain units showed phasic responses to constant-amplitude hydrodynamic stimuli. For different units peri-stimulus time histograms varied widely. Based on iso-displacement curves, midbrain units prefered either low frequencies (≤33 Hz), mid frequencies (50–100 Hz), or high frequencies (≥200 Hz). The distribution of the coefficient of synchronization to constant-amplitude stimuli showed that most units were only weakly phase locked. Midbrain units of the goldfish responded to amplitude-modulated water motions in a phasic/tonic or tonic fashion. Units highly phase locked to the amplitude modulation frequency, provided that modulation depth was at least 36%. Units tuned to one particular amplitude modulation frequency were not found. Accepted: 10 July 1999  相似文献   

20.
Electrophysiological properties of neurons in the substantia gelatinosa (SG, or lamina II) were studied in vitro in spinal cord slices from 3-to 5-week-old rats. Based on the type of action potentials (APs) firing in response to long depolarization (0.5 to 0.8 sec), neurons were categorized into three types: tonic (APs were generated over the whole duration of the stimulus, n = 26, or 41.2%), adapting (a few APs occurred only at the beginning of stimulation, n = 8, 12.7%), and delayed-firing neurons, DFNs (APs occurred at the end of stimulation, n = 22, 35.1%); 11% of the cells had intermediate properties. Neurons of each type expressed distinct ion currents that were subthreshold for AP generation (< −40 mV). Tonic and adapting neurons either had no subthreshold currents (n = 21, or 61.3%) or expressed T-type calcium currents (n = 13, or 38.7%). All DFNs had outward A-type potassium currents. Statistical analysis confirmed this classification scheme: neurons of each type were differentially distributed in a 3-D parametric space of the main cellular properties. Distributions of tonic and adapting neurons partially overlapped, while that of DFNs differed significantly from both the above groups. It is suggested that DFNs perform a special function in the processing of sensory information; the functions of tonic and adapting neurons might be rather similar to each other. Neirofiziologiya/Neurophysiology, Vol. 40, No. 3, pp. 191–198, May–June, 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号