首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Cytokines from the interleukin-6 (IL-6) family have been reported to play an important synergistic role with angiotensin II in the development of pathological cardiac hypertrophy. Whether their expression pattern changes in vivo, in an angiotensin II-dependent hypertrophied myocardium has not been reported. In this study, we addressed that issue using two animal models of angiotensin II-dependent cardiac hypertrophy. Heterozygous transgenic TGR(mRen2)27 (TGR) with an overactive cardiac renin angiotensin system and the closely related spontaneously hypertensive rats (SHR) were compared to their respective control rats. The mRNA levels of IL-6, leukemia inhibitory factor (LIF), ciliary neurotrophic factor (CNTF) and cardiotrophin-1 (CT-1) as well as their receptor subunits, glycoprotein 130 (gp130), IL-6 receptor (IL-6R), LIFR, and CNTFR, were measured by semi-quantitative RT-PCR. The protein levels of IL-6, LIF and CT-1 were investigated by western blot. TGR and SHR both displayed significant over expression of mRNA and protein levels for IL-6 and LIF. In TGR, the increased level of LIF was accompanied by a decrease in mRNA levels for LIFR and CNTFR. In SHR, a higher level of mRNA IL-6R was observed. By contrast, the mRNA and protein levels for CT-1 and the mRNA level for gp130 did not vary in these two models. These findings suggest that IL-6 and LIF, but not CT-1, contribute to angiotensin II-dependent left ventricular hypertrophy in the two hypertensive rat models, TGR(mRen2)27 and SHR. (Mol Cell Biochem 269: 95–101, 2005)  相似文献   

2.
We studied an alteration of calcineurin expression in the heart and its modification by cyclosporin A and an ACE inhibitor, temocapril, using Dahl salt-sensitive (DS) rats with hypertensive left ventricular hypertrophy (LVH) and congestive heart failure (CHF). Calcineurin protein expression in the LV myocardium was increased in the LVH stage, but then decreased during CHF transition. Chronic cyclosporin A treatment (10 mg/kg/day), which inhibits calcineurin activity, could not block the increases of LV weight and dimensions and did not improve the LV systolic function during the CHF transition. In contrast, chronic temocapril treatment (20 mg/kg/day) restored the downregulation of calcineurin expression, but progression of the hypertrophic process was inhibited. Therefore, cardiac calcineurin is increased in the hypertensive LVH and may be involved in the development of the adaptive hypertrophic process. However, calcineurin expression is downregulated during CHF transition and may no longer play a major role in the pathogenesis of myocardial hypertrophy in the failing hearts.  相似文献   

3.
4.
Corticosteroids have been shown to play a role in cardiac remodeling, with the possibility of a direct effect of overexpression of 11beta-hydroxysteroid dehydrogenase (11HSD) isoform 2 at the level of the cardiomyocytes. The aim of this study was to examine cardiac steroid metabolism in hypertensive rats with hearts that are hypertrophied and fibrotic and have structural alterations in the coronary circulation. To assess possible alterations of cardiac steroid metabolism the expression and activity of both isoforms of 11beta-hydroxysteroid dehydrogenase (11HSD) were studied in spontaneously hypertensive rats (SHR), their normotensive controls Wistar-Kyoto (WKY), and in Dahl salt-sensitive (DS) and salt-resistant rats (DR) kept on a low- or high-salt diet. Using real-time quantitative RT-PCR and enzyme activity assay we found strain-dependent differences in cardiac metabolism of glucocorticoids. In Dahl rats expression of 11HSD1 and 11HSD2 mRNA was lower in DS than in DR rats and was not influenced by dietary salt intake; 11HSD1 mRNA was expressed at higher level than 11HSD2 mRNA. NADP(+)-dependent cardiac 11HSD activity showed similar distribution as 11HSD1 mRNA-lower activity in DS than in DR rats and no effect of salt intake. In SHR and WKY strains 11HSD2 mRNA expression was significantly higher in WKY than in SHR but no differences were observed in 11HSD1 mRNA abundance and NADP(+)-dependent 11HSD activity. These results show that the heart is able to metabolize glucocorticoids and that this metabolism is strain-dependent but do not support the notion of association between cardiac hypertrophy and changes of 11HSD1 and 11HSD2 expression.  相似文献   

5.
Hyperaldosteronim is associated with left ventricular (LV) hypertrophy (LVH) and fibrosis. Cardiotrophin (CT)-1 is a cytokine that induces myocardial remodeling. We investigated whether CT-1 mediates aldosterone (Aldo)-induced myocardial remodeling in two experimental models. Wistar rats were treated with Aldo-salt (1 mg·kg(-1)·day(-1)) with or without spironolactone (200 mg·kg(-1)·day(-1)) for 3 wk. Wild-type (WT) and CT-1-null mice were infused with Aldo (1 mg·kg(-1)·day(-1)) for 3 wk. Hemodynamic parameters were analyzed. LVH, fibrosis, inflammation, and CT-1 expression were evaluated in both experimental models by histopathological analysis, RT-PCR, Western blot analysis, and ELISA. Hypertensive Aldo-treated rats exhibited increased LV end-diastolic pressure and -dP/dt compared with controls. The cardiac index, LV cross-sectional area and wall thickness, cardiomyocyte size, collagen deposition, and inflammation were increased in Aldo-salt-treated rats. Myocardial expression of molecular markers assessing LVH and fibrosis as well as CT-l levels were also augmented by Aldo-salt. Spironolactone treatment reversed all the above effects. CT-1 correlated positively with hemodynamic, histological, and molecular parameters showing myocardial remodeling. In WT and CT-1-null mice, Aldo infusion did not modify blood pressure. Whereas Aldo treatment induced LVH, fibrosis, and inflammation in WT mice, the mineralocorticoid did not provoke cardiac remodeling in CT-1-null mice. In conclusion, in experimental hyperaldosteronism, the increase in CT-1 expression was associated with parameters showing LVH and fibrosis. CT-1-null mice were resistant to Aldo-induced LVH and fibrosis. These data suggest a key role for CT-1 in cardiac remodeling induced by Aldo independent of changes in blood pressure levels.  相似文献   

6.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

7.
Epithelial sodium channel (ENaC) plays a crucial role in controlling sodium reabsorption in the kidney keeping the normal blood pressure. We previously reported that the expression of ENaC mRNA in the kidney of Dahl salt-sensitive (DS) rats was abnormally regulated by aldosterone, however it is unknown if dietary sodium affects the expression of ENaC and serum and glucocorticoid-regulated kinase 1 (SGK1), which plays an important role in ENaC activation, in DS rats. In the present study, we investigated whether dietary sodium abnormally affects the expression of ENaC and SGK1 mRNA in DS rats. DS and Dahl salt-resistant (DR) rats (8 weeks old) were divided into three different groups, respectively: (1) low sodium diet (0.005% NaCl), (2) normal sodium diet (0.3% NaCl), and (3) high sodium diet (8% NaCl). The high sodium diet for 4 weeks in DS rats elevated the systolic blood pressure, but did not in any other groups. The expression of alpha-ENaC mRNA in DS rats was abnormally increased by high sodium diet in contrast to DR rats, while it was normally increased by low sodium diet in DS rats similar to DR rats. The expression of beta- and gamma-ENaC mRNA in DS rats was also abnormally increased by high sodium diet unlike DR rats. The expression of SGK1 mRNA was elevated by high sodium diet in DS rats, but it was decreased in DR rats. These observations indicate that the expression of ENaC and SGK1 mRNA is abnormally regulated by dietary sodium in salt-sensitively hypertensive rats, and that this abnormal expression would be one of the factors causing salt-sensitive hypertension.  相似文献   

8.
Aldosterone plays a crucial role in controlling mineral balance in our body. The mechanism of aldosterone has been reported to elevate renal Na+ reabsorption by stimulating expression of epithelial Na+ channel (ENaC) and also activate an ENaC-regulating protein kinase, serum and glucocorticoid-regulated kinase 1 (SGK1). However, it is unknown whether aldosterone shows its stimulatory action on ENaC and SGK1 under an abnormal, salt-sensitive hypertensive condition. To clarify this point, we studied how aldosterone regulates expression of ENaC and SGK1 in Dahl salt-sensitive (DS) rat that shows hypertension with high salt diet. RNA and protein were extracted from the kidney 6 h after application of aldosterone (1.5 mg/kg body weight) subcutaneously injected into adrenalectomized DS and Dahl salt-resistant (DR) rats. Aldosterone decreased mRNA expression of beta- and gamma-ENaC in DS rat unlike DR rat, while aldosterone increased alpha-ENaC mRNA expression in DS rat similar to DR rat. Further, we found that aldosterone elevated SGK1 expression in DR rat, but not in DS rat. These observations indicate that ENaC and SGK1 are abnormally regulated by aldosterone in salt-sensitive hypertensive rats, suggesting that disturbance of the aldosterone regulation would be one of factors causing salt-sensitive hypertension.  相似文献   

9.
The present study investigates the influence of a chronic high Na+ diet (8% Na+) on the expression of the angiotensin type 1A (AT1A) receptor gene in the lamina terminalis and paraventricular nucleus of the hypothalamus (PVH) in normotensive Wistar (W) rats, as well as in Dahl salt-resistant (DR) and Dahl salt-sensitive (DS) rats. Three weeks of 8% Na+ diet led to a higher blood pressure in DS rats compared to DR and W rats. Moreover, the high Na+ diet was correlated with a decreased expression of AT1A receptor mRNA in the median preoptic nucleus (MnPO) and in the PVH of DS rats, compared to DR and W rats. Contrastingly, the AT1A receptor mRNA expression was not altered by the high Na+ diet in the forebrain circumventricular organs of all the rat strains. Interestingly, a furosemide-induced Na+ depletion was correlated with an increased expression of AT1A receptor mRNA in the PVH, MnPO and SFO of both the DS and DR rats. It is concluded that chronic high Na+ diet did differently regulate the expression of AT1A receptor mRNA in two hypothalamic integrative centers for hydromineral and cardiovascular balance (the PVH and MnPO) in DS rats, compared to DR and W rats. However, the AT1A receptor mRNA expression was similarly regulated in DS and DR rats in response to an acute Na+ depletion, suggesting a distinct high Na+ -induced regulation of the AT1A receptor gene in the PVH and MnPO of DS rats.  相似文献   

10.
Dahl salt-sensitive (DS) and salt-resistant (DR) inbred rat strains represent a well established animal model for cardiovascular research. Upon prolonged administration of high-salt-containing diet, DS rats develop systemic hypertension, and as a consequence they develop left ventricular hypertrophy, followed by heart failure. The aim of this work was to explore whether this animal model is suitable to identify biomarkers that characterize defined stages of cardiac pathophysiological conditions. The work had to be performed in two stages: in the first part proteomic differences that are attributable to the two separate rat lines (DS and DR) had to be established, and in the second part the process of development of heart failure due to feeding the rats with high-salt-containing diet has to be monitored. This work describes the results of the first stage, with the outcome of protein expression profiles of left ventricular tissues of DS and DR rats kept under low salt diet. Substantial extent of quantitative and qualitative expression differences between both strains of Dahl rats in heart tissue was detected. Using Principal Component Analysis, Linear Discriminant Analysis and other statistical means we have established sets of differentially expressed proteins, candidates for further molecular analysis of the heart failure mechanisms.  相似文献   

11.
12.
The hypothesis that endothelin (ET) receptor mechanisms are altered during development and progression of left ventricular hypertrophy (LVH) in vivo was tested using spontaneously hypertensive rats (SHRs). Ventricular cardiomyocytes were isolated from SHRs before onset (8 and 12 wk) and during progression (16, 20, and 24 wk) of LVH and compared with age-matched normotensive Wistar-Kyoto (WKY) rats. PreproET-1 mRNA expression was elevated in SHR (P < 0.05) relative to WKY cardiomyocytes at 20-24 wk. ET binding-site density was twofold greater in SHR than WKY cells at 12 wk (P < 0.05) but normalized at 20 wk. ET(B) receptors were detected on SHR cardiomyocytes as early as 8 wk and their affinity increased progressively with age (P < 0.05), whereas ET(B) receptors were not detected on WKY cells until 20 wk. ET-1 stimulated protein synthesis with similar maximum responses between strains (21-30%), in contrast with sarafotoxin 6c, which stimulated protein synthesis in SHR (13-20%) but not WKY cells at 12-20 wk. In SHR but not WKY cells, the ET(B) receptor-selective ligand A-192621 increased protein synthesis progressively with the development of LVH (15% maximum effect). In conclusion, the presence of ET(B) receptors (8-12 wk) coupled with functional responsiveness of SHR cells but not WKY cells to sarafotoxin 6c at 12 wk supports the involvement of ET(B) receptors before the onset of cardiomyocyte hypertrophy, whereas altered ET(B) receptor characteristics during active hypertrophy (16-24 wk) indicate that ET(B) receptor mechanisms may also contribute to disease progression.  相似文献   

13.
14.
15.
We have investigated the antioxidant effect of adrenomedullin (AM) on endothelial function in the Dahl salt-sensitive (DS) rat hypertension model. Dahl salt-resistant (DR) and DS rats were fed an 8% NaCl diet. In addition, the DS rats were subcutaneously infused with either saline or recombinant human AM for 4 weeks. Although systolic blood pressures measured weekly in AM- and saline-infused rats did not significantly differ, aortic O2*- levels were significantly (P<0.01) higher in the latter. Likewise, both endothelial nitric oxide synthase (eNOS) mRNA and protein were significantly higher in saline-infused DS rats. Infusion of AM reduced both O2*- and eNOS expression to levels comparable to those seen in DR rats. AM infusion also upregulated the gene expression of guanosine-5'-triphosphate cyclohydrolase I and downregulated the expression of p22(phox), suggesting that AM increased the NOS coupling and bioavailability of NO. AM possesses significant antioxidant properties that improve endothelial function.  相似文献   

16.
We recently reported that angiotensin II (AngII) biphasically activates the JAK/STAT pathway and induces delayed phosphorylation of STAT3 in the late stage (120 min) in cardiomyocytes. This study was designed to determine the mechanism of delayed phosphorylation of STAT3. Conditioned medium prepared from AngII-stimulated cardiomyocytes could reproduce the tyrosine phosphorylation of STAT3 at 5 min. This delayed phosphorylation was almost completely inhibited by anti-gp130 blocking antibody RX435, but not by TAK044 (ET-A/B-R antagonist), prazosin, or propranolol. AngII induced phosphorylation of gp130 in the late stage, which was temporally in parallel with the delayed phosphorylation of STAT3. AngII augmented IL-6, CT-1, and LIF mRNA expression at 30-60 min, but not CNTF expression. AngII increased IL-6 protein levels by 3-fold in the conditioned media at 2 h compared with the control. These findings indicated that AngII-induced delayed activation of STAT3 is caused by autocrine/paracrine secreted IL-6 family cytokines.  相似文献   

17.
18.
Cardiotrophin-1 (CT-1) is a recently discovered cytokine that was isolated based on its ability to induce cardiac myocyte hypertrophy in vitro. In this study, the effects of chronic administration of CT-1 to mice (0.5 or 2 μg by intraperitoneal injection, twice a day for 14 days) were determined. A dose-dependent increase in both the heart weight and ventricular weight to body ratios was observed in the treated groups. The body weights of the animals were unaffected. These results indicate that CT-1 can induce cardiac hypertrophy in vivo. CT-1 was not specific for the heart, however. It stimulated the growth of the liver, kidney, and spleen, and caused atrophy of the thymus. CT-1 administration also increased the platelet counts by 70%, with no change in mean platelet volume. Red blood cell counts were increased in the treated animals, and there was a concomitant increase in haemoglobin concentration. Thus, CT-1 has a broad spectrum of biological activities in vivo. This observation is consistent with previous in-vitro findings showing that the mRNA for CT-1 is expressed in several tissues, and that CT-1 can function through binding to the leukaemia inhibitory factor (LIF) receptor and signalling through the gp130 pathway.  相似文献   

19.
Oncostatin M (OSM) is a member of the IL-6/LIF (or gp130) cytokine family, and its potential role in inflammation is supported by a number of activities identified in vitro. In this study, we investigate the action of murine OSM on expression of the CC chemokine eotaxin by fibroblasts in vitro and on mouse lung tissue in vivo. Recombinant murine OSM stimulated eotaxin protein production and mRNA levels in the NIH 3T3 fibroblast cell line. IL-6 could regulate a small induction of eotaxin in NIH 3T3 cells, but other IL-6/LIF cytokines (LIF, cardiotrophin-1 (CT-1)) had no effect. Cell signaling studies showed that murine OSM, LIF, IL-6, and CT-1 stimulated the tyrosine phosphorylation of STAT-3, suggesting STAT-3 activation is not sufficient for eotaxin induction in NIH 3T3 cells. OSM induced ERK-1,2 and p38 mitogen-activated protein kinase phosphorylation in NIH 3T3 cells, and inhibitors of ERK (PD98059) or p38 (SB203580) could partially reduce OSM-induced eotaxin production, suggesting partial dependence on mitogen-activated protein kinase signaling. OSM (but not LIF, IL-6, or CT-1) also induced eotaxin release by mouse lung fibroblast cultures derived from C57BL/6 mice. Overexpression of murine OSM in lungs of C57BL/6 mice using an adenovirus vector encoding murine OSM resulted in a vigorous inflammatory response by day 7 after intranasal administration, including marked extracellular matrix accumulation and eosinophil infiltration. Elevated levels of eotaxin mRNA in whole lung were detected at days 4 and 5. These data strongly support a role of OSM in lung inflammatory responses that involve eosinophil infiltration.  相似文献   

20.
Secretion of IL-6, IL-11 and LIF by human cardiomyocytes in primary culture   总被引:9,自引:0,他引:9  
Interleukin (IL)-6-type cytokines are multifunctional proteins involved in cardiac hypertrophy and myocardial protection. Recent studies, performed on animal models, report the production of these cytokines by heart. The aim of this study was to analyse the capacity of myocytes and fibroblasts isolated from human atrium to secrete IL-6, leukaemia inhibitory factor (LIF), cardiotrophin-1 (CT-1), IL-11, oncostatin M (OSM), ciliary neurotrophic factor (CNTF) and the soluble receptor subunits sIL-6R and sgp130 during primary culture. We detected LIF, IL-11, sgp130 and a large amount of IL-6, but not OSM, CT-1, CNTF nor IL-6R in these culture supernatants. Both cardiomyocytes and fibroblasts are able to spontaneously produce IL-6. The increase of IL-6 production all along the culture period appears to be the consequence of fibroblast proliferation and gp130 stimulation. This is the first demonstration that human cardiac cells are able to secrete IL-6, but also LIF and IL-11 in vitro. These cytokines could be involved in an autocrine and/or a paracrine networks regulating myocardial cyto-protection, hypertrophy and fibrosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号