首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used perforated patch, whole-cell current recordings and video-based fluorescence ratio imaging to monitor the relation of plasma membrane ionic conductances to intracellular free Ca2+ within individual colonic epithelial cells (HT-29). The Ca2(+)-mediated agonist, neurotensin, activated K+ and Cl- conductances that showed different sensitivities to [Ca2+]i. The Cl- conductance was sensitive to increases or decreases in [Ca2+]i around the resting value of 76 +/- 32 (mean +/- SD) nM (n = 46), whereas activation of the K+ conductance required at least a 10-fold rise in [Ca2+]i. Neurotensin increased [Ca2+]i by stimulating a transient intracellular Ca2+ release, which was followed by a sustained rise in [Ca2+]i due to Ca2+ influx from the bath. The onset of the initial [Ca2+]i transient, monitored at a measurement window over the cell interior, lagged behind the rise in Cl- current during agonist stimulation. This lag was not present when the [Ca2+]i rise was due to Ca2+ entry from the bath, induced either by the agonist or by the Ca2+ ionophore ionomycin. The temporal differences in [Ca2+]i and Cl- current during the agonist-induced [Ca2+]i transient can be explained by a localized Ca2+ release from intracellular stores in the vicinity of the plasma membrane Cl- channel. Chloride currents recover toward basal values more rapidly than [Ca2+]i after the agonist-induced [Ca2+]i transient, and, during a sustained neurotensin-induced [Ca2+]i rise, Cl- currents inactivate. These findings suggest that an inhibitory pathway limits the increase in Cl- conductance that can be evoked by agonist. Because this Cl- current inhibition is not observed during a sustained [Ca2+]i rise induced by ionomycin, the inhibitory pathway may be mediated by another agonist-induced messenger, such as diacylglycerol.  相似文献   

2.
We have investigated the sub-second kinetics of changes in cytosolic free calcium, [Ca2+]i, in fura-2-loaded human platelets by stopped-flow fluorimetry. Thrombin, vasopressin, platelet-activating factor, and the thromboxane A2 analogue U46619 all evoked a rise in [Ca2+]i which was delayed in onset by 200-400 ms in the presence of 1 mM external Ca2+. The responses to these agonists in media containing 1 mM EGTA or 1 mM Ni2+, to prevent Ca2+ influx, were delayed by an additional 60-100 ms. These results indicate that agonist-evoked Ca2+ influx precedes the release of Ca2+ from internal stores. The delays in onset of both responses are sufficient for one or more biochemical steps to lie between ligand-receptor binding and Ca2+ flux generation. ADP responses in media containing EGTA or Ni2+ were similar to those evoked by other agonists, but the response in the presence of external Ca2+ was markedly shorter, occurring without measurable delay at optimal ligand concentration. Analysis of this response showed some delay in ADP-evoked influx at lower concentrations, but this delay was markedly less than that observed with thrombin at doses giving the same elevation in [Ca2+]i. These results suggest that ADP evokes influx using a different transduction system, more closely coupled to the Ca2+ entry system than that used by other agonists. Differences between thrombin- and ADP-evoked influx were further demonstrated by the inhibitory actions of cAMP, which reduced and substantially increased the delay in onset of thrombin-evoked influx but did not measurably delay the influx evoked by an optimal concentration of ADP.  相似文献   

3.
In fura-2-loaded A10 vascular smooth-muscle cells, 1 nM-vasopressin and 200 nM-endothelin evoked a rapid transient rise in intracellular free Ca2+ concentration [( Ca2+]i), which was then followed by a maintained elevation of [Ca2+]i. The maintained elevation of [Ca2+]i was only partially inhibited by 5 microM-nifedipine, but completely abolished in the presence of 1 mM-EGTA. When extracellular Ca2+ was replaced with 1 mM-Mn2+ (Mn2+ quenches fura-2 fluorescence), both endothelin and vasopressin evoked an Mn2+ quench of the fluorescence from the intracellularly trapped fura-2, even in the presence of 5 microM-nifedipine. These data suggest that both vasopressin and endothelin promote a bivalent-cation influx and provide further evidence for receptor-mediated Ca2+ entry in vascular smooth muscle.  相似文献   

4.
S O Sage  T J Rink 《FEBS letters》1985,188(1):135-140
The adenylate cyclase stimulator forskolin was used to study the inhibitory effects of elevated cAMP on the activation of washed human platelets loaded with the fluorescent Ca2+ indicator quin2. In the presence of 10 microM isobutylmethylxanthine forskolin inhibited rises in [Ca2+]i evoked by thrombin and platelet-activating factor (PAF) due to both Ca2+ influx and release from internal stores with similar potency. Aggregation evoked by thrombin and PAF was suppressed whilst partial shape-change persisted, even in the absence of a measurable rise in [Ca2+]i. Forskolin did not affect the rise in [Ca2+]i evoked by Ca2+ ionophore; aggregation was suppressed but shape-change persisted.  相似文献   

5.
Stimulation of human neutrophils with f-met-leu-phe, platelet-activating factor, or leukotriene B4 resulted in an increase in [Ca2+]i. The [Ca2+]i rise was greater in the presence than absence of external Ca2+; the component that was dependent on external Ca2+ was blocked by Ni2+, or could be reconstituted by addition of external Ca2+ following discharge of the internal Ca2+ store. These measurements of [Ca2+]i responses provide only indirect evidence for agonist-stimulated Ca2+ entry, and here we have used an alternative approach to demonstrate directly agonist-stimulated divalent cation entry. In the presence of extracellular Mn2+, f-met-leu-phe, leukotriene B4, and platelet-activating factor stimulate a quench in fluorescence of fura-2-loaded human neutrophils. This quench was due to stimulated Mn2+ influx and was blocked by Ni2+. When Mn2+ was added in the continued presence of agonist, after discharge of the internal store of Ca2+, a stimulated quench was seen; this result shows that an elevated [Ca2+]i is not needed for the stimulation of Mn2+ entry. Depolarization by high [K+] or addition of the L-type Ca2+ channel agonist, BAY-R-5417, had little or no effect on either [Ca2+]i or Mn2+ entry. These results show that agonists stimulate divalent cation entry (Ca2+ or Mn2+) by a mechanism independent of changes in [Ca2+]i and unrelated to voltage-dependent Ca2+ channels.  相似文献   

6.
Ca2+ transients and Mn2+ entry in human neutrophils induced by thapsigargin   总被引:7,自引:0,他引:7  
Human neutrophils, preloaded with the fluorescent probe, Fura-2, were exposed to Ca2+-releasing agents. The monitored traces of fluorescence were transformed by computer to cytosolic Ca2+ concentration ([ Ca2+]i). Due to quenching of Fura-2, the addition of Mn2+ enabled us to compute the cytosolic concentration of total manganese ([Mn]i). The agents used were the novel Ca2+-mobilizing agent, thapsigargin (Tg), the chemotactic peptide, formyl-methionyl-leucyl-phenylalanine (FMLP), and the divalent cation ionophore, A23187. The agents caused transient rises of [Ca2+]i and monotonous rises of [Mn]i, suggesting influx but no efflux of Mn2+. The rise time of [Ca2+]i and the time constants and magnitude of the apparent Mn2+ influx were strongly dependent on the sequence of addition of the agonist and Ca2+. Contrary to FMLP, Tg needed several minutes to exert its full effect on the rise of [Ca2+]i and on the influx of Mn2+, the latter being dependent on two phases, activation and partial inactivation. Pretreatment with phorbol 12-myristate 13-acetate (PMA) inhibited the responses of Tg, FMLP and A23187. For comparison, human red blood cells were tested. Contrary to A23187, Tg did not induce Ca2+ uptake in ATP-depleted red cells but increased the Ca2+ pump flux in intact red cells by 10%. The experimental data and computer simulations of the granulocyte data suggest that time-dependent changes of both passive Ca2+ flux into the cytosol and Ca2+ flux of the plasma membrane pump are involved in the transient [Ca2+]i response.  相似文献   

7.
Stopped-flow fluorimetric studies at 37 degrees C have shown that ADP, at optimal concentrations, can evoke Ca2+ or Mn2+ influx in fura-2-loaded human platelets without measurable delay. In contrast, the release of Ca2+ from intracellular stores is delayed in onset by about 200 ms. By working at a lower temperature, 17 degrees C, we have now shown that the rise in cytosolic calcium concentration ([Ca2+]i) evoked by ADP in the presence of external Ca2+ is biphasic. The use of Mn2+ as a tracer for bivalent-cation entry indicates that both phases of the ADP-evoked response are associated with influx. The fast phase of the ADP-evoked rise in [Ca2+]i, which occurs without measurable delay at both 17 degrees C and 37 degrees C, is consistent with Ca2+ entry mediated by receptor-operated channels in the plasma membrane. The delayed phase, indicated by Mn2+ quench, is coincident with the discharge of the intracellular Ca2+ stores. Forskolin did not inhibit the fast phases of ADP-evoked rise in [Ca2+]i or Mn2+ quench, but completely abolished ADP-evoked discharge of the intracellular stores, the delayed phase of the rise in [Ca2+]i observed in the presence of external Ca2+ and the second phase of Mn2+ quench. The timing of the delayed event appears to be modulated by [Ca2+]i: the delayed phase of Mn2+ quench coincides with discharge of the intracellular stores in the absence of added Ca2+, but with the second phase of the ADP-evoked rise in [Ca2+]i in the presence of extracellular Ca2+. Similarly, blockade of the early phase of Ca2+ entry by SK&F 96365 further delays the second phase. It is suggested that a pathway for Ca2+ entry which is regulated by the intracellular Ca2+ store exists in platelets. This pathway operates alongside, and appears to be modulated by the activity of other routes for Ca2+ entry into the cytosol.  相似文献   

8.
The effects of caffeine on receptor-controlled Ca2+ mobilization and turnover of inositol phosphates in human neuroblastoma SK-N-SH cells were studied. Caffeine inhibited both the rise in cytosolic Ca2+ concentration ([Ca2+]i) evoked by muscarinic receptor agonists and the total production of inositol phosphates in a dose-dependent manner, but to different extents. At 10 mM, caffeine inhibited agonist-evoked generation of inositol phosphates almost completely, whereas the agonist-evoked [Ca2+]i rise remained observable after caffeine treatment, in the absence or presence of extracellular Ca2+. Raising the cytosolic cAMP concentration increased the carbachol-induced [Ca2+]i rise, and this effect was abolished in the presence of caffeine. Our data suggested that caffeine may exert two effects on receptor-controlled Ca2+ mobilization: 1) inhibition of inositol phosphate production, 2) augmentation of the size of the releasable Ca2+ pool by elevating cytosolic cAMP concentration.  相似文献   

9.
We have addressed the important question as to if and how the cytosolic free Ca2+ concentration, [Ca2+]i, is involved in fMet-Leu-Phe induced actin polymerization in human neutrophils. Stimulation of human neutrophils with the chemotactic peptide (10(-7) M), known to result in a prompt rise of the [Ca2+]i to above 500 nM, also induced a rapid decrease of monomeric actin, G-actin, content (to 35% of basal) and increase of filamentous actin, F-actin, content (to 320% of basal). A reduction of the fMet-Leu-Phe induced [Ca2+]i transient to about 250 nM, resulted in a less pronounced decrease of G-actin content (to 80% of basal) and increase of F-actin content (to 235% of basal). A total abolishment of the chemotactic peptide induced [Ca2+]i rise, still led to a decrease of the G-actin content (to 85% of basal) and increase of F-actin (to 200% of basal). These results indicate that the [Ca2+]i rise is not an absolute requirement, but has a modulating role for the fMet-Leu-Phe induced actin polymerization. Another possible intracellular candidate for fMet-Leu-Phe induced actin polymerization is protein kinase C. However, direct activation of protein kinase C by phorbol 12-myristate 13-acetate (PMA) only resulted in a minor increase of F-actin content. The recent hypothesis that a metabolite of the polyphosphoinositide cycle, independently of [Ca2+]i and protein kinase C, is responsible for actin polymerization agrees well with these results and by the fact that preexposure to pertussis toxin totally abolished a subsequent increase of F-actin content induced by fMet-Leu-Phe.  相似文献   

10.
In the presence of 1 mM EGTA, the addition of the calcium ionophore ionomycin to human platelets loaded with 30 microM fura-2 could elevate [Ca2+]i from less than 100 nM to a maximum of greater than 3 microM, presumably by discharge of Ca2+ from internal stores. Under the same conditions thrombin could maximally increase [Ca2+]i to a peak of greater than 1 microM which then declined to near resting levels within 3-4 minutes; by contrast in platelets loaded with 1 mM quin2 thrombin could raise [Ca2+]i to only about 200 nM. In the presence of 1 mM Ca2+ the peak response to thrombin in fura-2-loaded platelets was higher (1.4 microM) than that observed in the presence of EGTA (1.1 microM) and the elevation in [Ca2+] was prolonged, presumably by Ca2+ influx. These results with fura-2-loaded platelets indicate that mobilisation of internal Ca2+ can contribute a substantial proportion of the early peak [Ca2+]i evoked by thrombin directly confirming the deductions from previous work with different loadings of quin2. Under natural conditions the major role of Ca2+ influx may be to prolong the [Ca2+]i rise rather than to make it larger.  相似文献   

11.
Agonist induced increases in intracellular free calcium, [Ca2+]i, were measured in single Fura-2 loaded bovine aortic endothelial (BAE) cells by dual wavelength microspectrofluorimetry. Low doses of ATP (less than 10 microM) induced complex changes in [Ca2+]i. These changes usually consisted of a large initial transient peak with subsequent fluctuations superimposed upon a maintained rise in [Ca2+]i. Higher doses of ATP (greater than 50 microM) produced much simpler biphasic increases in [Ca2+]i in individual cells. Acetylcholine and bradykinin also elicited increases in [Ca2+]i in single cells in confluent monolayers of endothelial cells. However, only acetylcholine produced complex fluctuations. High doses of acetylcholine evoked simple rises in [Ca2+]i similar to those seen with high doses of ATP. In contrast, bradykinin evoked relatively simple rises in [Ca2+]i at all doses used. These results indicate that the mechanisms responsible for generating agonist induced increases in [Ca2+]i in BAE cells are not homogeneous. ATP and acetylcholine produced more complex Ca2+ changes or 'signatures' in single confluent bovine aortic endothelial cells than bradykinin. All three agonists appeared to release Ca2+ from intracellular stores as well as stimulating Ca2+ influx. The possible mechanisms underlying these phenomena are discussed.  相似文献   

12.
Inositol trisphosphate (InsP3) production and cytosolic free Ca2+ ([Ca2+]i) elevations induced by leukotriene B4 (LTB4)-receptor activation were studied in the human promyelocytic-leukaemia cell line HL60, induced to differentiate by retinoic acid. The myeloid-differentiated HL60 cells respond to LTB4 by raising their [Ca2+]i with a dose-response relationship similar to that shown by normal human neutrophils. The observations of the LTB4 transduction mechanism were compared with those of the transduction mechanism of the chemotactic peptide fMet-Leu-Phe in HL60 cells differentiated with dimethyl sulphoxide. Both LTB4 and fMet-Leu-Phe triggered a rapid (less than 5 s) elevation of [Ca2+]i, which occurred in parallel with the InsP3 production from myo-[3H]inositol-labelled cells. The threshold concentrations of the agonists, for InsP3 production, were found at 10(-9) M, a slightly higher concentration than that required to detect [Ca2+]i elevations. No significant changes were noted in the phosphoinositide levels upon stimulation with LTB4. Exposure to Bordetella pertussis toxin before LTB4 stimulation abolished both the increased formation of InsP3 and the rise of [Ca2+]i. LTB4 and fMet-Leu-Phe elicited elevations of inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] with no detectable lag time, followed by slower and more sustained inositol 1,3,4-trisphosphate elevations. Stimulation with various leukotriene analogues revealed a good correlation between both total InsP3 as well as Ins(1,4,5)P3 formation and elevations of [Ca2+]1. Thus LTB4 receptor activation results in an increased production of Ins(1,4,5)P3 via a transduction mechanism also involving a nucleotide regulatory protein, as previously described for the fMet-Leu-Phe transduction mechanism.  相似文献   

13.
Changes in cytosolic free Ca2+ concentration [( Ca2+]i) due to Ca2+ entry or Ca2+ release from internal stores were spatially resolved by digital imaging with the Ca2+ indicator fura-2 in frog sympathetic neurons. Electrical stimulation evoked a rise in [Ca2+]i spreading radially from the periphery to the center of the soma. Elevated [K+]o also increased [Ca2+]i, but only in the presence of external Ca2+, indicating that Ca2+ influx through Ca2+ channels is the primary event in the depolarization response. Ca2+ release or uptake from caffeine-sensitive internal stores was able to amplify or attenuate the effects of Ca2+ influx, to generate continued oscillations in [Ca2+]i, and to persistently elevate [Ca2+]i above basal levels after the stores had been Ca2(+)-loaded.  相似文献   

14.
In order to analyze the complex activities of histamine H2 receptor activation on neutrophils, human HL-60 promyelocytic leukemia cells were differentiated into neutrophils by incubation with dimethyl sufoxide, loaded with the Ca2+-sensitive indicator dyes, indo-1 or fura-2, and the levels of intracellular Ca2+ ([Ca2+]i) measured in a fluorescent-activated cell sorter and fluorimeter, respectively. Histamine increased [Ca2+]i in a dose-dependent manner with a half-maximal concentration (EC50) of approximately 10(-6) to 10(-5) M, which exhibited H2 receptor specificity. Prostaglandin E2 and isoproterenol also induced [Ca2+]i mobilization in HL-60 cells, whereas the cell permeable form of cAMP and forskolin failed to increase [Ca2+]i. Since H2-receptor mediated [Ca2+]i mobilization was not inhibited by reducing the concentration of extracellular Ca2+ nor by the addition of Ca2+ channel antagonists, LaCl3 and nifedipine, [Ca2+]i mobilization is due to the release of Ca2+ from intracellular stores. Furthermore, both 10(-4) M histamine and 10(-6) M fMet-Leu-Phe increased the levels of 1,4,5-inositol trisphosphate. However, histamine-induced mobilization of [Ca2+]i was inhibited by cholera toxin but not by pertussis toxin, whereas the action of fMet-Leu-Phe was inhibited by pertussis toxin but not by cholera toxin. These data suggest that H2 receptors on HL-60 cells are coupled to two different cholera toxin-sensitive G-proteins and activate adenylate cyclase and phospholipase C simultaneously.  相似文献   

15.
The relationship between fMet-Leu-Phe-induced changes in the cytosolic free Ca2+ concentration [( Ca2+]i), plasma membrane potential depolarization, and metabolic responses was studied in human neutrophils. Receptor-activated depolarization occurred both at high and resting [Ca2+]i, but was inhibited at very low [Ca2+]i. Phorbol 12-myristate 13-acetate-induced plasma membrane depolarization, on the contrary, was independent of [Ca2+]i. The threshold fMet-Leu-Phe concentration for plasma membrane depolarization (10(-8) M) was at least 1 log unit higher than that for [Ca2+]i increases (5 X 10(-10) M) and coincident with that for NADPH oxidase activation. Nearly maximal [Ca2+]i increases were elicited by 3 X 10(-9) fMet-Leu-Phe in the absence of any significant plasma membrane potential change. This observation allowed us to investigate the effects of artificially induced plasma membrane depolarization and hyperpolarization at low fMet-Leu-Phe concentrations (10(-9) to 3 X 10(-9) M) which did not perturb plasma membrane potential. Depolarizing (gramicidin D at 10(-7) to 10(-6) M or KCl at 50 mM) and hyperpolarizing (valinomycin at 4 microM) treatments had little influence on unstimulated [Ca2+]i levels, whereas fMet-Leu-Phe-induced transients were significantly altered. Gramicidin D and KCl decreased the fMet-Leu-Phe-induced [Ca2+]i increases in Ca2+-containing or in Ca2+-free media. Valinomycin, on the contrary, increased receptor-stimulated [Ca2+]i increases, and the effect was larger in the presence of extracellular Ca2+. Valinomycin also strongly potentiated secretion. It is suggested that plasma membrane depolarization in human neutrophils is a physiological feedback mechanism inhibiting receptor-dependent [Ca2+]i changes.  相似文献   

16.
The effect of ketoconazole on cytosolic free Ca2+ concentrations ([Ca2+]i) and proliferation has not been explored in corneal cells. This study examined whether ketoconazole alters Ca2+ levels and causes cell death in SIRC rabbit corneal epithelial cells. [Ca2+]i and cell viability were measured by using the fluorescent dyes fura-2 and WST-1, respectively. Ketoconazole at concentrations of 5 microM and above increased [Ca2+]i in a concentration-dependent manner. The Ca2+ signal was reduced partly by removing extracellular Ca2+. The ketoconazole-induced Ca2+ influx was insensitive to L-type Ca2+ channel blockers and protein kinase C modulators. In Ca2+-free medium, after pretreatment with 50 microM ketoconazole, thapsigargin-(1 microM)-induced [Ca2+]i rises were abolished; conversely, thapsigargin pretreatment nearly abolished ketoconazole-induced [Ca2+]i rises. Inhibition of phospholipase C with 2 microM U73122 did not change ketoconazole-induced [Ca2+]i rises. At concentrations between 5 and 100 microM, ketoconazole killed cells in a concentration-dependent manner. The cytotoxic effect of 50 microM ketoconazole was not reversed by prechelating cytosolic Ca2+ with BAPTA. In summary, in corneal cells, ketoconazole-induced [Ca2+]i rises by causing Ca2+ release from the endoplasmic reticulum and Ca2+ influx from unknown pathways. Furthermore, the cytotoxicity induced by ketoconazole was not caused via a preceding [Ca2+]i rise.  相似文献   

17.
In human neuroblastoma IMR32 cells, the effect of the anti-depressant maprotiline on baseline intracellular Ca2+ concentrations ([Ca2+]i) was explored by using the Ca2+-sensitive probe fura-2. Maprotiline at concentrations greater than 100 microM caused a rapid rise in [Ca2+]i in a concentration-dependent manner (EC50 = 200 microM). Maprotiline-induced [Ca2+]i rise was reduced by 50% by removal of extracellular Ca2+. Maprotiline-induced [Ca2+]i rises were inhibited by half by nifedipine, but was unaffected by verapamil or diiltiazem. In Ca2+-free medium, thapsigargin, an inhibitor of the endoplasmic reticulum Ca2+-ATPase, caused a monophasic [Ca2+]i rise, after which the increasing effect of maprotiline on [Ca2+]i was abolished. U73122, an inhibitor of phospholipase C, did not affect maprotiline-induced [Ca2+]i rises. These findings suggest that in human neuroblastoma cells, maprotiline increases [Ca2+]i by stimulating extracellular Ca2+ influx and also by causing intracellular Ca2+ release from the endoplasmic reticulum via a phospholiase C-independent manner.  相似文献   

18.
Stimulation of fura-2-loaded human neutrophils with formylmethionyl-leucyl-phenylalanine (FMLP) or ionomycin elevated the cytosolic free Ca2+ concentration, [Ca2+], to a maintained elevated level. Activation of protein kinase C (C-kinase) with phorbol 12-myristate 13-acetate, 4 beta-phorbol 12,13-didecanoate or dioctanoylglycerol caused decreases in [Ca2+]i from this level. 4 alpha-Phorbol didecanoate, which does not activate C-kinase, had no effect. These results confirm previous reports that C-kinase activation decreases neutrophil [Ca2+]i by stimulating removal of Ca2+ from the cytosol. Further experiments showed that activation of C-kinase attenuated the component of the FMLP-stimulated [Ca2+]i rise that was dependent on external Ca2+. C-kinase activation also inhibited FMLP-stimulated entry of the quenching cation, Mn2+, used as an indicator of bivalent-cation entry. In contrast, C-kinase activation caused only a partial inhibition of FMLP-stimulated release of Ca2+ from intracellular stores. 4 alpha-Phorbol didecanoate was ineffective in inhibiting Ca2+ entry, Mn2+ entry and intracellular Ca2+ release. Addition of FMLP also stimulated a decrease in the ionomycin-elevated [Ca2+]i, and this effect was blocked by staurosporine, a protein kinase inhibitor. These results show that, in addition to stimulating Ca2+ efflux, C-kinase activation in neutrophils inhibits FMLP-stimulated entry of bivalent cations, and partially inhibits intracellular release of Ca2+. Further, FMLP itself can modulate [Ca2+]i by activation of C-kinase.  相似文献   

19.
We have previously reported that a component of ADP-evoked Ca2+ entry in human platelets appears to be promoted following the release of Ca2+ from intracellular stores. Other agonists may employ a similar mechanism. Here we have further investigated the relationship between the state of filling of the Ca2+ stores and plasma membrane Ca2+ permeability in Fura-2-loaded human platelets. Ca2+ influx was promoted following store depletion by inhibitors of the endoplasmic reticulum Ca(2+)-ATPase, thapsigargin (TG) and 2,5-di-(t-butyl)-1,4-benzohydroquinone (tBuBHQ). Divalent cation entry was confirmed by quenching of Fura-2 fluorescence with externally added Mn2+. It has been suggested that cytochrome P-450 may couple Ca2+ store depletion to an increased plasma membrane Ca2+ permeability. In apparent agreement with this, Mn2+ influx promoted by TG and tBuBHQ, or by preincubation of cells in Ca(2+)-free medium, was inhibited by the imidazole antimycotics, econazole and miconazole, which inhibit cytochrome P-450 activity. Agonist-evoked Mn2+ influx was only partially inhibited by these compounds at the same concentration (3 microM). Econazole (3 microM) reduced the Mn2+ quench evoked by ADP by 38% of the control value and that evoked by vasopressin, platelet activating factor (PAF) and thrombin no more than 15% of control, 20 s after agonist addition. Stopped-flow fluorimetry indicated that econazole had no detectable effect on the early time course of agonist-evoked Mn2+ entry or rises in [Ca2+]i. These data confirm the existence of a Ca2+ entry pathway in human platelets which is activated by depletion of the intracellular Ca2+ stores. Further, the results support the suggestion that cytochrome P-450 may participate in such a pathway. However, any physiological role for the cytochrome or its products in agonist-evoked events appears to be in the long-term maintenance or restoration of store Ca2+ content, rather than in promoting Ca2+ influx in the initial stages of platelet Ca2+ signal generation.  相似文献   

20.
The generation of the two inositol trisphosphate (IP3) isomers, 1,4,5-IP3 and 1,3,4-IP3, and its relation to changes in the cytosolic free calcium concentration, [Ca2+]i, in response to the chemotactic peptide fMet-Leu-Phe was studied in the human promyelocytic cell line HL-60, induced to differentiate with dimethyl sulfoxide. Stimulation by fMet-Leu-Phe within seconds transiently elevates 1,4,5-IP3 to peak values averaging 8-fold basal levels, and leads to a concomitant rise in [Ca2+]i and to degranulation. These responses are followed by a slower and more sustained rise in 1,3,4-IP3. Alterations in [Ca2+]i modulate differentially the generation of the two IP3 isomers. At [Ca2+]i lower than 30 nM, no IP3 is generated upon fMet-Leu-Phe stimulation. Working at normal resting [Ca2+]i, but preventing the fMet-Leu-Phe induced transient rise in [Ca2+]i (by prior depletion of intracellular Ca2+ stores and working in calcium-free medium) the fMet-Leu-Phe stimulation of 1,3,4-IP3 levels is attenuated, whereas the response of 1,4,5-IP3 is not significantly altered. Maintained elevation of [Ca2+]i to micromolar levels with the Ca2+ ionophore ionomycin generates enhanced 1,3,4-IP3 levels in the absence of fMet-Leu-Phe, whereas the fMet-Leu-Phe stimulation of 1,4,5-IP3 generation is markedly inhibited. Pertussis toxin selectively abolishes the fMet-Leu-Phe-induced IP3 production, whereas ionomycin stimulation of 1,3,4-IP3 generation is unaffected. These findings indicate that in intact cells: receptor-triggered phosphatidylinositol bisphosphate phosphodiesterase activation has a minimal Ca2+ requirement, but does not depend on a previous or concomitant rise in [Ca2+]i; Ca2+ elevations above micromolar levels decrease the fMet-Leu-Phe-induced generation of 1,4,5-IP3; and 1,3,4-IP3 generation is not directly linked to receptor activation and appears to result both from increased [Ca2+]i and 1,4,5-IP3 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号