首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Thiols such as cysteine and dithiothreitol are substrates for the ADP-ribosyltransferase activity of pertussis toxin. When cysteine was incubated with NAD+ and toxin at pH 7.5, a product containing ADP-ribose and cysteine (presumably ADP-ribosylcysteine) was isolated by high-performance liquid chromatography, and characterized by its composition and release of AMP with phosphodiesterase. Cysteine has a Km of 105 mM at saturating NAD+ concentration. The ability of thiols to act as a substrate is one explanation for the very high concentrations (250 mM or greater) that have been observed to enhance the apparent NAD glycohydrolase activity of the toxin.  相似文献   

2.
The interaction between the nicotinamide adenine dinucleotide binding domain of calf spleen NAD glycohydrolase and its ligands has been studied. The use of competitive inhibitors, structurally related to different portions of the NAD molecule (i.e. adenosine and nicotinamide moieties), revealed the considerable importance of the binding between the pyrophosphate linkage and probably an arginyl residue of the active site. This interaction allows the positioning of the substrate in a conformation which permits catalysis to occur. The binding between the 2'-hydroxyl of the adenosine moiety and a residue of the active site, which exists in NAD-linked dehydrogenases, is probably missing in the calf spleen NAD glycohydrolase, based on the inhibition by salicylates, 2'-deoxyadenosine 5'-monophosphate and the hydrolysis of the 2'-deoxyadenosine analogue of NAD. The NAD glycohydrolase could be completely inactivated by 2,3-butanedione, an arginyl-modifying reagent. The reaction followed pseudo-first-order kinetics and the modification was found to be reversible. Woodward's reagent K, a reagent for carboxyl residues, partially inactivated the enzyme, which resulted in a change of the NAD glycohydrolase kinetic parameters Km and V. The inactivation rate was complicated by a parallel decomposition of the reagent.  相似文献   

3.
The NAD glycohydrolase (NADase) (EC 3.2.2.5) from Bungarus fasciatus (banded krait) venom was purified (1000-fold) to electrophoretic homogeneity through a 3-step purification procedure, the last step being affinity chromatography on Cibacron blue agarose. The purified NADase is a glycoprotein containing two subunits of Mr = 62,000 each. Nicotinamide and adenosine diphosphoribose were produced in a 1:1 stoichiometry and were the only products formed when the purified NADase was incubated with NAD. These results were confirmed by high performance liquid chromatography. The enzyme exhibited a brod pH profile with optimum pH for hydrolysis at 7.5 with very little change in Km from pH 6.0 to pH 8.5. The NADase is only slightly affected by changes in ionic strength. The enzyme studied titrimetrically at pH 7.5 and 38 degrees C exhibited a Km of 14 microM and a Vmax of 1380 mumol of NAD cleaved/min/mg of protein. The activation energy for the enzyme-catalyzed hydrolysis of NAD was 15.7 kcal/mol. In addition to NAD and NADP, a number of NAD analogs were shown to function as substrates for the enzyme. Product inhibition studies demonstrated nicotinamide to be a noncompetitive inhibitor with a KI of 1.5 mM and adenosine diphosphoribose a competitive inhibitor with a KI of 0.36 mM. Procion blue HB (Cibacron blue F3GA) was shown to be a competitive inhibitor with a KI of 33 nmol. The purified NADase catalyzed the pyridine base exchange reaction between 3-acetylpyridine and the nicotinamide moiety of NAD.  相似文献   

4.
Properties of the transglycosidation reaction catalyzed by rabbit spleen pyridine nucleotide glycohydrolase were characterized using a modified cyanide addition method by which initial velocities of the transglycosidation (vT) and hydrolysis (vH) of pyridine nucleotides could be monitored simultaneously. (1) The vT was routinely determined with NMN and nicotinic acid used as substrates and was observed to be maximal at pH 6. Arrhenius plots of vT and vH indicated that the activation energies for transglycosidation and hydrolysis were 8.7 and 10.7 kcal/mol, respectively. (2) The enzyme showed a broad spectrum of substrate specificity with respect to both pyridine nucleotides and bases. Of the compounds tested, NMN and nicotinic acid were shown to be the best substrates when compared on the basis of Vmax/Km values. Kinetic constants for the enzyme-catalyzed transglycosidation reaction were as follows; Km(NMN) = 0.53 mM, Km(nicotinic acid), as acid form = 15 mM, apparent Vmax = 7.8 mumol/min/mg protein, in the presence of 0.2 M nicotinic acid. (3) The ratio of vT/vH was shown to be dependent on both pH and nicotinic acid concentration. However, transglycosidation versus hydrolysis partition at a fixed pH was constant regardless of the nicotinic acid concentration employed and approximated to be 1.2 x 10(4) at the maximal pH. (4) Nicotinamide, one of the most potent inhibitors for the enzyme-catalyzed hydrolysis, was shown to function as an antagonist for the transglycosidation reaction with NMN and nicotinic acid used as substrates. The inhibition mechanism with nicotinamide was purely noncompetitive with respect to nicotinic acid; on the other hand, the double reciprocal plot of the transglycosidation velocity against NMN concentration at a fixed concentration of nicotinamide was concave downwards. (5) The equilibrium constant of the reaction, NMN + 3-acetylpyridine----3-acetylpyridine mononucleotide + nicotinamide, was 0.61, whereas the conversion of NMN with nicotinic acid to nicotinic acid mononucleotide was essentially irreversible. These enzymatic properties of rabbit spleen pyridine nucleotide glycohydrolase suggested that the enzyme should not function as a glycohydrolase but as a transglycosidase and could serve in an important mechanism for an alternative biosynthetic pathway of nicotinic acid mononucleotide, one of the precursors for NAD synthesis, when nicotinic acid is supplied.  相似文献   

5.
1. The effects of injecting nicotinamide, 5-methylnicotinamide, ethionine, nicotinamide+5-methylnicotinamide and nicotinamide+ethionine on concentrations in rat liver of NAD, NADP and ATP were investigated up to 5hr. after injection. 2. Nicotinamide induced three- to four-fold increases in hepatic NAD concentration even in the presence of 5-methylnicotinamide or ethionine, whereas 5-methylnicotinamide or ethionine alone did not cause marked changes in hepatic NAD concentration. 3. Nicotinamide alone also induced a twofold increase in hepatic NADP concentration. However, in the presence of 5-methylnicotinamide+nicotinamide, the NADP concentration decreased by 25% after 5hr., and in the presence of nicotinamide+ethionine by 30% in the same time. In the presence of 5-methylnicotinamide or ethionine alone hepatic NADP concentrations fell by 50% after 5hr. 4. 5-Methylnicotinamide inhibited the microsomal NAD(+) glycohydrolase (EC 3.2.2.6) by 60% at a concentration of 1mm and the NADP(+) glycohydrolase by 40% at the same concentration. 5. The rat liver NAD(+) kinase (EC 2.7.1.23) was found to have V(max.) 4.83mumoles/g. wet wt./hr. and K(m) (NAD(+)) 5.8mm. This enzyme was also inhibited by 5-methylnicotinamide in a ;mixed' fashion. 6. The results are discussed with respect to the control of NAD synthesis. It is suggested that in vivo the NAD(P)(+) glycohydrolases are effectively inactive and that the increased NAD concentrations induced by nicotinamide are due to increased substrate concentration available to both the nicotinamide and nicotinic acid pathways of NAD formation.  相似文献   

6.
The NAD analog N'-methylnicotinamide adenine dinucleotide (N'AD) is formed in intact human promyelocytic leukemia HL-60 and in rat pituitary tumor GH3 cells during treatment of the cultured cells with the nicotinamide derivative N'-methylnicotinamide (N'CH3NAm). N'AD formation is associated with the induced maturation of HL-60 cells and increased hormone production by GH3 cells during treatment with the nicotinamide derivative. N'AD is detected by HPLC analysis of cytoplasmic extracts as a peak which elutes near NAD. Four facts indicate that this compound is N'AD. First, a compound which elutes with identical time retention is produced by transglycosylation during reaction of NAD with pig brain NAD glycohydrolase in the presence of excess N'CH3NAm. Second, the putative N'AD is degraded by prolonged digestion with the NAD glycohydrolase to ADP-ribose. Third, N'AD formation is prevented by addition of nicotinamide along with N'CH3NAm to compete with binding of N'CH3NAm to the NAD glycohydrolase. Fourth, radioactive precursor labeling demonstrates that it contains adenosine, but it is not labeled by radioactive nicotinamide. The biological relevance of N'AD formation was evaluated. The appearance of N'AD precedes development of HL-60 maturation, and NAD levels increase, not decrease, as observed in other cell types, during treatment with N'CH3NAm. Therefore, we propose that N'AD, not the pyridine base itself, is the active species in inducing maturation. The results provide support of a role for NAD metabolism, probably ADP-ribosylation, in the regulation of HL-60 maturation and in hormone production by pituitary cells.  相似文献   

7.
A new type of nicotinamide adenine dinucleotide glycohydrolase (NADase) has been isolated from rat liver nuclei. When partially purified chromatin is passed through a Sephadex G-200 column in the presence of 1 M NaCl, enzyme activities catalyzing the liberation of nicotinamide from NAD elute in two peaks. One, which appears in the void volume fraction, hydrolyzes the nicotinamide-ribose linkage of NAD to produce nicotinamide and ADP-ribose in stoichiometric amounts. This activity is not inhibited by 5 mM nicotinamide. The other, which elutes much later, catalyzes the formation of poly(ADP-ribose) from NAD and is completely inhibited by 5 mM nicotinamide. The former, NADase, is DNase-insensitive and thermostable, has a pH optimum of 6.5 to 7, a Km for NAD of 28 muM, and a Ki for nicotinamide of 80 mM, and hydrolyzes NADP as well as NAD. The latter, poly(ADP-ribose) synthetase, is sensitive to DNase treatment and heat labile, has a pH optimum of 8 to 8.5, a Km for NAD of 250 muM and a Ki for nicotinamide of 0.5 mM and is strictly specific for NAD. Further, the former NADase is shown to lack transglycosidase activity, which has been documented to be a general property of NADases derived from animal tissues. These results indicate that the NAD-hydrolyzing enzyme newly isolated from nuclei is a novel type of mammalian NADase which catalyzes the hydrolytic cleavage of the nicotinamide-ribose linkage of NAD.  相似文献   

8.
J T Slama  A M Simmons 《Biochemistry》1989,28(19):7688-7694
Analogues of oxidized nicotinamide adenine dinucleotide (NAD+) in which a 2,3-dihydroxycyclopentane ring replaces the beta-D-ribonucleotide ring of the nicotinamide riboside moiety of NAD+ have recently been synthesized [Slama, J. T., & Simmons, A. M. (1988) Biochemistry 27, 183]. Carbocyclic NAD+ analogues have been shown to inhibit NAD glycohydrolases and ADP-ribosyl transferases such as cholera toxin A subunit. In this study, the diastereomeric mixture of dinucleotides was separated, and the inhibitory capacity of each of the purified diastereomers was defined. The NAD+ analogue in which the D-dihydroxycyclopentane is substituted for the D-ribose is designated carba-NAD and was demonstrated to be a poor inhibitor of the Bungarus fasciatus venom NAD glycohydrolase. The diastereomeric dinucleotide pseudo-carbocyclic-NAD (psi-carba-NAD), containing L-dihydroxycyclopentane in place of the D-ribose of NAD+, was shown, however, to be a potent competitive inhibitor of the venom NAD glycohydrolase with an inhibitor dissociation constant (Ki) of 35 microM. This was surprising since psi-carba-NAD contains the carbocyclic analogue of the unnatural L-ribotide and was therefore expected to be a biologically inactive diastereomer. psi-Carba-NAD also competitively inhibited the insoluble brain NAD glycohydrolase from cow (Ki = 6.7 microM) and sheep (Ki = 31 microM) enzyme against which carba-NAD is ineffective. Sensitivity to psi-carba-NAD was found to parallel sensitivity to inhibition by isonicotinic acid hydrazide, another NADase inhibitor. psi-Carba-NAD is neither a substrate for nor an inhibitor of alcohol dehydrogenase, whereas carba-NAD is an efficient dehydrogenase substrate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
NAD+ glycohydrolase (EC 3.2.2.5) activity was detected in the plasma membrane prepared from the primary culture of rat astrocytes. The enzyme has a broad optimum pH range. From the kinetic analysis, a Michaelis constant of 91.2 microM and a maximum velocity of 0.785 mumol/min/mg protein were obtained. ADPribose exhibited a competitive inhibition with respect to NAD. The inhibition by nicotinamide was shown to be of a non-competitive type. ATP and GTP were found to be competitive inhibitors. NAD+ glycohydrolase activity was not detected in the plasma membrane prepared from the primary culture of neuronal cells of chick embryos.  相似文献   

10.
Poly(ADP-ribosylation) was demonstrated in the intestinal parasite Ascaris suum, especially in the reproductive tissues. The activity of the ADP-ribosyltransferase was found to depend on divalent cations and to be stimulated by deoxyribonuclease I about 5-fold. The reaction rate was optimal at a temperature of 30 degrees C and at pH about 8.4. The apparent Km value for NAD was estimated to be 0.2mM. The enzyme activity was effectively inhibited by nicotinamide (Ki = 65 microM) benzamide (6 microM), 3-aminobenzamide (10 microM), theophylline (35 microM) and thymidine (50 microM). The type of inhibition by these compounds was found to be competitive with respect to NAD.  相似文献   

11.
A simple rate equation for alcohol dehydrogenase was obtained by assuming independent binding sites for ethanol and NAD+ and fully competitive inhibition by the products of the reaction, acetaldehyde and NADH. A random binding order was also assumed. The rate equation is described by six parameters: four association constants (two for the substrates and two for the products of the reaction), Vf for the forward direction, and the equilibrium constant of the reaction. The six parameters were determined at pH 7.4 by numerical analysis of progress curves of reactions started with different concentrations of ethanol and NAD+. The parameters for alcohol dehydrogenase partially purified from rat liver were: Km for ethanol = 0.746 mM, Km for NAD+ = 0.0563 mM, Km for acetaldehyde = 7.07 microM, Km for NADH = 4.77 microM and Keq = 2.36 X 10(-4). The computed values allowed a very good simulation of the experimental progress curves and little variation was observed in the kinetic parameters when the reactions were started in the presence of either NADH or acetaldehyde.  相似文献   

12.
The nuclei of Plasmodium yoelii nigeriensis contain an enzyme, ADP-ribosyltransferase, that will incorporate the ADP-ribose moiety of NAD+ into acid-insoluble product. The time, pH and temperature optima of this incorporation are 30 min, 8.5 and 25 degrees C respectively. Maximum stimulation of the enzyme activity is obtained with 1.0 mM-dithiothreitol or 2.0 mM-2-mercaptoethanol. Ca2+ and Mg2+ ions at optimum concentrations of 5 mM and 10 mM respectively stimulated the activity of the enzyme by 21% and 91%. The enzyme activity is, however, inhibited by 24% in the presence of 10 mM-MnSO4. The substrate, NAD+, exhibits an apparent Km of 500 microM, and the activity of the enzyme is inhibited by four chemical classes of inhibitors: nicotinamides, methylxanthines, thymidine and aromatic amides. The inhibitors are effective in the following increasing order: nicotinamide less than 3-aminobenzamide less than thymidine less than 5-methylnicotinamide less than theophylline less than m-methoxybenzamide less than theobromine. The enzyme activity is also inhibited by some DNA-binding anti-malarial drugs.  相似文献   

13.
The S1 subunit of pertussis toxin catalyses the hydrolysis of NAD+ (NAD+ glycohydrolysis) and the NAD(+)-dependent ADP-ribosylation of guanine-nucleotide-binding proteins. Recently, the S1 subunit of pertussis toxin was shown to be photolabelled by using radiolabelled NAD+ and u.v.; the primary labelled residue was Glu-129, thereby implicating this residue in the binding of NAD+. Studies from various laboratories have shown that the N-terminal portion of the S1 subunit, which shows sequence similarity to cholera toxin and Escherichia coli heat-labile toxin, is important to the maintenance of both glycohydrolase and transferase activity. In the present study the photolabelling technique was applied to the analysis of a series of recombinant-derived S1 molecules that possessed deletions or substitutions near the N-terminus of the S1 molecule. The results revealed a positive correlation between the extent of photolabelling with NAD+ and the magnitude of specific NAD+ glycohydrolase activity exhibited by the mutants. Enzyme kinetic analyses of the N-terminal mutants also identified a mutant with substantially reduced activity, a depressed photolabelling efficiency and a markedly increased Km for NAD+. The results support a direct role for the N-terminal region of the S1 subunit in the binding of NAD+, thereby providing a rationale for the effect of mutations in this region on enzymic activity.  相似文献   

14.
A glycohydrolase that catalyzes the irreversible conversion of NMN to nicotinamide and ribose 5-phosphate has been partially purified from a sonic extract of Azotobacter vinelandii. The enzyme is highly specific for NMN. NAD, NADP, nicotinic acid-adenine dinucleotide, nicotinamide riboside and alpha-NMN are not significantly hydrolyzed by this enzyme, nor do they compete with NMN. The enzyme also exhibits an absolute dependence on guanylic acid derivatives with following order of relative effectiveness: GTP, guanosine 5'-tetraphosphate greater than dGTP, GDP, 2'-GMP, 3'-GMP greater than GMP, dGMP. A heat-resistant, nondialyzable factor which could replace the GTP requirement was found in the sonic extract. The Ka for GTP and the Km for NMN in the presence of GTP at 1mm were calculated to be 0.025 mM and 4.5 mM respectively. GMP, dGMP, and dCMP were found to be effective inhibitors of the enzyme when 1 mM GTP was also present. The kinetic data suggest that the binding site for these mononucleotides is distinct from the active site or the GTP binding site. The ability of this enzyme to cleave NMN is suggestive of a metabolic role of the enzyme in selective conversion of NMN to nicotinamide, which, in turn, would be re-utilized by the cell as a precursor of NAD via nicotinic acid.  相似文献   

15.
A high performance liquid chromatographic method has been developed for the assay of arginine-specific ADP-ribosyl transferases. The assay utilizes L-arginine methyl ester (LAME) as the acceptor substrate. ADP-ribosylated-LAME is separated from the reaction mixture using a C-8 reversed-phase column. Before injection, the assay mixture is derivatized with an orthophthaldialdehyde/2-mercaptoethanol reagent. Fluorescence detection of the orthophthaldialdehyde-derivatized product provides excellent sensitivity and a limit of detection of less than 100 fmol. The kinetic mechanism of two arginine-specific ADP-ribosyltransferases, cholera toxin A subunit and an endogenous transferase from rabbit skeletal muscle, were both determined to be random sequential. The kinetic studies utilized 3-aminobenzamide and NG-monomethylarginine as competitive inhibitors for NAD and LAME, respectively. Cholera toxin was reported to have Km values of 5.6 and 39 mM for NAD and LAME, respectively. Km values of 0.56 and 1.2 mM were determined for NAD and LAME, respectively, using the transferase from rabbit skeletal muscle.  相似文献   

16.
1. A method was devised for preparing pig heart pyruvate dehydrogenase free of thiamin pyrophosphate (TPP), permitting studies of the binding of [35S]TPP to pyruvate dehydrogenase and pyruvate dehydrogenase phosphate. The Kd of TPP for pyruvate dehydrogenase was in the range 6.2-8.2 muM, whereas that for pyruvate dehydrogenase phosphate was approximately 15 muM; both forms of the complex contained about the same total number of binding sites (500 pmol/unit of enzyme). EDTA completely inhibited binding of TPP; sodium pyrophosphate, adenylyl imidodiphosphate and GTP, which are inhibitors (competitive with TPP) of the overall pyruvate dehydrogenase reaction, did not appreciably affect TPP binding. 2. Initial-velocity patterns of the overall pyruvate dehydrogenase reaction obtained with varying TPP, CoA and NAD+ concentrations at a fixed pyruvate concentration were consistent with a sequential three-site Ping Pong mechanism; in the presence of oxaloacetate and citrate synthase to remove acetyl-CoA (an inhibitor of the overall reaction) the values of Km for NAD+ and CoA were 53+/- 5 muM and 1.9+/-0.2 muM respectively. Initial-velocity patterns observed with varying TPP concentrations at various fixed concentrations of pyruvate were indicative of either a compulsory order of addition of substrates to form a ternary complex (pyruvate-Enz-TPP) or a random-sequence mechanism in which interconversion of ternary intermediates is rate-limiting; values of Km for pyruvate and TPP were 25+/-4 muM and 50+/-10 nM respectively. The Kia-TPP (the dissociation constant for Enz-TPP complex calculated from kinetic plots) was close to the value of Kd-TPP (determined by direct binding studies). 3. Inhibition of the overall pyruvate dehydrogenase reaction by pyrophosphate was mixed non-competitive versus pyruvate and competitive versus TPP; however, pyrophosphate did not alter the calculated value for Kia-TPP, consistent with the lack of effect of pyrophosphate on the Kd for TPP. 4. Pyruvate dehydrogenase catalysed a TPP-dependent production of 14CO2 from [1-14C]pyruvate in the absence of NAD+ and CoA at approximately 0.35% of the overall reaction rate; this was substantially inhibited by phosphorylation of the enzyme both in the presence and absence of acetaldehyde (which stimulates the rate of 14CO2 production two- or three-fold). 5. Pyruvate dehydrogenase catalysed a partial back-reaction in the presence of TPP, acetyl-CoA and NADH. The Km for TPP was 4.1+/-0.5 muM. The partial back-reaction was stimulated by acetaldehyde, inhibited by pyrophosphate and abolished by phosphorylation. 6. Formation of enzyme-bound [14C]acetylhydrolipoate from [3-14C]pyruvate but not from [1-14C]acetyl-CoA was inhibited by phosphorylation. Phosphorylation also substantially inhibited the transfer of [14C]acetyl groups from enzyme-bound [14C]acetylhydrolipoate to TPP in the presence of NADH. 7...  相似文献   

17.
Some properties of ADP-ribose transferase, and its reaction product, from BHK-21/C13 cells are described. Enzyme activity was found almost exclusively in nuclei (90%), with the remaining 10% located in the cytosolic fraction. The nuclear enzyme is chromatin-bound and requires bivalent cations, preferably Mg2+, a pH of 8.0 and a temperature of 25 degrees C for optimal activity. Chromatin preparations incorporated radioactivity from [14C]NAD+ into acid-insoluble material for about 60 min. Kinetics for substrate NAD+ utilization were not of Michaelis--Menten type; biphasic kinetics were shown from a double-reciprocal plot (1/reaction velocity against 1/[NAD+]) and from a 'Hofstee' plot (reaction velocity/[NAD+] against reaction velocity). The transferase is unstable in the absence of Mg2+ ions. It is inhibited by thymidine, nicotinamide and nicotinamide analogues, but not by ATP, which stimulates it at concentrations of 5 mM and above. The enzyme requires thiol groups for activity; it is readily inhibited by N-ethylmaleimide at 0.5 mM. The product of the reaction is stable under acid conditions at temperatures up to 25 degrees C, but it is hydrolysed by HClO4 at 70 degrees C. It is resistant to NaOH, but is cleaved from its attachment to protein with alkali into trichloroacetic acid-insoluble and -soluble components. On the basis of Cs2SO4- density-gradient analysis under denaturing conditions (gradients included urea and guanidinium hydrochloride), and analysis of the reaction product directly on hydroxyapatite, we conclude that most of the radioactive ADP-ribose residues are firmly bound to protein, presumably in covalent linkage. Hydroxyapatite-chromatographic analysis of ADP-ribose residues released from protein by alkaline digestion showed a spectrum of molecular sizes including mono-, oligo- and poly-(ADP-ribose), when chromatin was incubated initially with [14C]NAD+ for 10 min and then for a further 30 min after addition of excess non-radioactive NAD+, only about 10% of the radioactive mono-(ADP-ribose) could be 'chased' into longer-chain molecules. Hydroxyapatite analysis was also used to show that, whereas all ADP-ribose residues were released from protein with NaOH, only 50% of them were susceptible to hydroxylamine. These hydroxylamine-sensitive residues included all size classes, although mono-(ADP-ribose) predominated. Finally, there was an approximately equal distribution of ADP-ribose incorporated into HCl-soluble proteins (including the histones) and HCl-insoluble proteins (including the non-histone proteins) when chromatin was incubated with NAD+ up to 0.5 mM, but at higher NAD+ concentrations more ADP-ribose was incorporated into the HCl-soluble fraction (82% at 4.0 mM-NAD+).  相似文献   

18.
The effect of different oxygen radical-generating systems on NAD(P)H was determined by incubating the reduced forms of the pyridine coenzymes with either Fe2+-H2O2 or Fe3+-ascorbate and by analyzing the reaction mixtures using a HPLC separation of adenine nucleotide derivatives. The effect of the azo-initiator 2,2'-azobis(2-methylpropionamidine)dihydrochloride was also tested. Results showed that, whilst all the three free radical-producing systems induced, with different extent, the oxidation of NAD(P)H to NAD(P)+, only Fe2+-H2O2 also caused the formation of equimolar amounts of ADP-ribose(P) and nicotinamide. Dose-dependent experiments, with increasing Fe2+ iron (concentration range 3-180 μM) or H2O2 (concentration range 50-1000 μM), were carried out at pH 6.5 in 50 mM ammonium acetate. NAD(P)+, ADP-ribose(P) and nicotinamide formation increased by increasing the amount of hydroxyl radicals produced in the medium. Under such incubation conditions NAD(P)+/ADP-ribose(P) ratio was about 4 at any Fe2+ or H2O2 concentration. By varying pH to 2.0, 3.0, 4.0, 4.5, 5.0, 5.5, 6.0, 7.0 and 7.4, NAD(P)+/ADP-ribose(P) ratio changed to 5.5, 3.2, 1.8, 1.6, 2.0, 2.5, 3.0, 5.4 and 6.5, respectively. Kinetic experiments indicated that 90-95% of all compounds were generated within 5s from the beginning of the Fenton reaction. Inhibition of ADP-ribose(P), nicotinamide and NAD(P)+ production of Fe2+-H2O2-treated NAD(P)H samples, was achieved by adding mannitol (10-50 mM) to the reaction mixture. Differently, selective and total inhibition of ADP-ribose(P) and nicotinamide formation was obtained by performing the Fenton reaction in an almost completely anhydrous medium, i.e. in HPLC-grade methanol. Experiments carried out in isolated postischemic rat hearts perfused with 50 mM mannitol, showed that, with respect to values of control hearts, this hydroxyl radical scavenger prevented reperfusion-associated pyridine coenzyme depletion and ADP-ribose formation. On the basis of these results, a possible mechanism of action of ADP-ribose(P) and nicotinamide generation through the interaction between NAD(P)H and hydroxyl radical (which does not involve the C-center where “conventional” oxidation occurs) is presented. The implication of this phenomenon in the pyridine coenzyme depletion observed in postischemic tissues is also discussed.  相似文献   

19.
8-Azidoadenine and 8-azidoadenosine, two photoactivatable derivatives of adenine and adenosine, are competitive inhibitors of diphtheria toxin of similar potency with respect to their parent compounds. On irradiation, the two tritium-labeled photoactivatable azidoadenines bind covalently and specifically to an enzymic fragment of diphtheria toxin that is known to bind to NAD. This photolabeling is protected by the enzyme substrate NAD. The radiolabeled protein was fragmented, and the radioactive fragments were sequenced. Tyr-65 is labeled specifically by both photoreagents, and its labeling was reduced strongly when NAD was present during irradiation. Labeling is also reduced strongly by adenine, adenosine, and nicotinamide. These results suggest that Tyr-65 is at the NAD binding site of diphtheria toxin and that the competitive inhibitors adenine, adenosine, and nicotinamide bind to the same portion of the catalytic center of the toxin.  相似文献   

20.
The equilibrium dissociation constant of NAD+ and pertussis toxin was determined by equilibrium dialysis and by the quenching of the protein's intrinsic fluorescence on titration with NAD+. A binding constant, Kd, of 24 +/- 2 microM at 30 degrees C was obtained from equilibrium dialysis, consistent with the previously determined value for the Michaelis constant, Km, of 30 +/- 5 microM for NAD+ (when the toxin is catalysing the ADP-ribosylation of water and of dithiothreitol). The intrinsic fluorescence of pertussis toxin was quenched by up to 60% on titration with NAD+, and after correction for dilution and inner filter effects, a Kd value of 27 microM at 30 degrees C was obtained, agreeing well with that found by equilibrium dialysis. The binding constants were measured at a number of temperatures using both techniques, and from this the enthalpy of binding of NAD+ to toxin was determined to be 30 kJ.mol-1, a typical value for a protein-ligand interaction. There is one binding site for NAD+ per toxin molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号