首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The release of [3H]GABA from superfused slices of rat cerebral cortex was investigated in the presence and absence of the GABA-transaminase inhibitor aminooxyacetic acid (AOAA). In the latter case, an ion-exchange column chromatographic technique was used to separate [3H]GABA from tritiated metabolites released with it into the superfusate. In the absence of AOAA, omission of Ca2+ from the superfusion medium reduced the release of [3H]GABA evoked by a 30 mM K+ pulse by 81.6%, whereas in comparable experiments carried out in the presence of AOAA omission of Ca2+ reduced the K+-evoked release by only 23.5%. Similar results were obtained when a 50 mM K+ pulse was used, where-upon omission of Ca2+ reduced [3H]GABA release by 78.7% in the absence of AOAA as compared with a reduction of only 47.9% when AOAA was present. It is concluded that the presence of AOAA decreases the Ca2+-dependence of K+-evoked [3H]GABA release in this system.  相似文献   

2.
Microdialysis in neostriatum of anaesthetized rats was performed to study effects on amino acid efflux of the glutamate uptake-inhibitor dihydrokainate (DHK). Both basal and K+-evoked (100 mM) efflux of glutamate increased in the presence of DHK. The increase in the basal glutamate efflux occurred at lower DHK concentrations than during K+-depolarization (when the extracellular glutamate concentration was several-fold higher), confirming that DHK is a competitive inhibitor. The increase in basal efflux caused by DHK did not exhibit Ca2+-dependency, whereas ∼50% of the increase in glutamate efflux during K+-depolarization was Ca2+-dependent. The Ca2+-dependent efflux is related to transmitter release, whereas the Ca2+-independent efflux is probably due to metabolic events and/or transport of DHK into cells in exchange for glutamate. Taurine efflux in response to DHK increased both during basal conditions and K+-depolarization, probably secondary to the increase in glutamate concentration, whereas aspartate, GABA, glutamine and alanine effluxes did not change.  相似文献   

3.
To study the effect of agents interfering with the biosynthesis and/or the K+-evoked Ca2+-dependent release of neurotransmitter glutamate, rat cerebral slices were preincubated with Krebs-Ringer-HEPES-glucose-glutamine buffer (KRH buffer), loaded withd-[3H]aspartate and superfused with the preincubation medium in the presence or in the absence of Ca2+. The difference in radioactivity release divided by the basal release per min under the two conditions represented the K+-evoked Ca2+-dependent release. The agents used were: 1) Aminooxyacetic acid (AOAA), the inhibitor of transaminases, 2) Leucine (Leu), the inhibitor of phosphate activated glutaminase (PAG), 3) NH4 +, the inhibitor of PAG, 4) Phenylsuccinic acid (Phs), the inhibitor of the mitochondrial ketodicarboxylate carrier, 5) ketone bodies, the inhibitors of glycolysis, 6) the absence of glutamine, the substrate of PAG. The results show that Leu, NH4 +, Phs and the absence of Gln significantly increase the K+-evoked Ca2+-dependent release of radioactivity by 64%, 200%, 95% and 147% respectively, indicating that these agents are inhibitors of the K+-evoked Ca2+-dependent release of glutamate. Ketone bodies and AOAA had no effect. These results indicate that the major if not the exclusive biosynthetic pathway of neurotransmitter glutamate in rat cerebral cortex is through the PAG reaction and support a model for the pathway followed by neurotransmitter glutamate i.e. glutamate formed outside the inner mitochondrial membrane has to enter the mitochondrial matrix or is formed within it from where it can be extruded to supply the transmitter pool in exchange of GABA.  相似文献   

4.
In order to study the role of glutamine from glial cells for the synthesis of transmitter amino acids, the effect of the gliotoxic substance fluorocitrate on amino acid release from slices was investigated. In vivo treatment with 1 nmol fluorocitrate reduced the Ca2+ dependent K+ evoked release of endogenous glutamate and GABA from the slices, whereas the glutamine efflux decreased and alanine efflux increased. The K+ evoked release of [3H]d-aspartate increased during fluorocitrate treatment. The latter is consistent with an inhibited uptake ofd-aspartate into glial cells. Incubation of striatal slices with fluorocitrate (0.1 mM) decreased the glutamine efflux and increased the alanine efflux. Similar to the in vivo condition, fluorocitrate increased the K+ evoked [3H]d-asparate release, but the K+ evoked release of endogenous glutamate and GABA increased rather than decreased. The ratio between the K+ evoked release of exogenousd-aspartate to endogenous glutamate increased in both cases. The results suggest an important role of glial cells in the synthesis and inactivation of transmitter amino acids.Special Issue dedicated to Prof. Holger Hydén.  相似文献   

5.
In most other studies the release of amino acid neurotransmitters and modulators in vitro has been studied mostly using labeled preloaded compounds. For several reasons the estimated release may not reliably reflect the release of endogenous compounds. The magnitudes of the release cannot thus be quite correctly estimated using radioactive labels. The basal and K+-evoked release of the neuroactive endogenous amino acids γ-aminobutyrate (GABA), glycine, taurine, glutamate and aspartate was now studied in slices from the striatum from 7-day-old to 3-month-old mice under control (normoxic) and ischemic conditions. The release of alanine, threonine and serine was assessed as control. GABA and glutamate release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite. Ischemia markedly enhanced the release of all these three amino acids. The release of aspartate and glycine was markedly enhanced as well whereas no effects were discernible in the release of glutamine, alanine, serine and threonine. K+ stimulation (50 mM) enhanced the release of GABA, glutamate, taurine, aspartate and glycine in most cases, except with taurine in 3-month-old mice under the ischemic conditions and with aspartate in 7-day-old mice under the control conditions. K+ stimulation did not affect the release of glutamine, alanine, serine or threonine. The results on endogenous amino acids are qualitatively similar to those obtained in our earlier experiments with labeled preloaded amino acids. In conclusion, in developing mice only inhibitory taurine is released in such amounts that may counteract the harmful effects of excitatory amino acids in ischemia.  相似文献   

6.
The properties of l-[3H]glutamate release with an emphasis on the modulation by inhibitory amino acids of the potassium-induced release were studied with cerebellar granule cells from 7-day-old rats cultured for 7 or 14 days. Spontaneous glutamate release from cells grown for 7 days was fast, being slightly enchanced in Na+-free medium. l-Glutamate, kainate and quisqualate stimulated the release whereas N-methyl-d-aspartate and taurine were without any effect. The potassium-evoked glutamate release was Ca2+-dependent and potentiated by l-glutamate and quisqualate. Stimulated release was strongly depressed by glutamatediethylester. This inhibition was antagonized by GABA but not by taurine. GABA and its structural analogues taurine, hypotaurine, β-alanine and glycine were all equally effective in depressing stimulated glutamate release. The inhibition by GABA could be blocked by GABA antagonist. Both K+-evoked release and the kainate-induced release of glutamate were significantly greater in 14-day-old than in 7-day-old cultures, but the other properties of release were similar. The demonstration of calcium-dependent and potassium-stimulated glutamate release from cerebellar granule cells is consonant with the proposed neurotransmitter role of glutamate in these cells. The release could be modulated by both glutamatergic substances and inhibitory amino acids, the effect of GABA probably being mediated by GABAergic receptors.  相似文献   

7.
In previous studies we have shown that the depolarization-induced release of preaccumulated acidic amino acids and newly synthesized glutamate from cerebellar synaptosomal preparations is potentiated by γ-aminobutyric acid (GABA) agonists through a GABAergic presynaptic mechanism. Here we report a systematic analysis of the ionic requirements of the potentiating effect of muscimol on the high K+-evoked release of d-[3H]aspartate. Our studies show that: Ca2+, Na+, and Mg2+ are not required for muscimol to exert its effect; a depolarizing concentration of K+ is a necessary, but not sufficient, condition to observe the presynaptic effect in question; and a minimal Cl- concentration (50–70 mM) is also required. A possible model based on these findings is proposed.  相似文献   

8.
The releases of endogenous glutamate, aspartate, GABA and taurine from hippocampal slices from 7-day-, 3-, 12-, and 18-month-old mice were investigated under cell-damaging conditions using a superfusion system. The slices were superfused under hypoxic conditions in the presence and absence of glucose and exposed to hydrogen peroxide. In the adult hippocampus under normal conditions the basal release of taurine was highest, with a response only about 2-fold to potassium stimulation (50 mM). The low basal releases of glutamate, aspartate, and GABA were markedly potentiated by K+ ions. In general, the release of the four amino acids was enhanced under all above cell-damaging conditions. In hypoxia and ischemia (i.e., hypoxia in the absence of glucose) the release of glutamate, aspartate and GABA increased relatively more than that of taurine, and membrane depolarization by K+ markedly potentiated the release processes. Taurine release was doubled in hypoxia and tripled in ischemia but K+ stimulation was abolished. In both the mature and immature hippocampus the release of glutamate and aspartate was greatly enhanced in the presence of H2O2, that of aspartate particularly in developing mice. In the immature hippocampus the increase in taurine release was 10-fold in hypoxia and 30-fold in ischemia, and potassium stimulation was partly preserved. The release processes of the four amino acids in ischemia were all partially Ca2+-dependent. High concentrations of excitatory amino acids released under cell-damaging conditions are neurotoxic and contribute to neuronal death during ischemia. The substantial amounts of the inhibitory amino acids GABA and taurine released simultaneously may constitute an important protective mechanism against excitatory amino acids in excess, counteracting their harmful effects. In the immature hippocampus in particular, the massive release of taurine under cell-damaging conditions may have a significant function in protecting neural cells and aiding in preserving their viability.  相似文献   

9.
We sought to determine in rat striatum whether the release of neurotransmitter amino acids aspartate (Asp), glutamate (Glu) and gamma-aminobutyric acid (GABA) were affected by local neurons. To do so, unilateral microinjections of ibotenic acid, an excitotoxin that destroys local neurons without affecting fibers of passage, were made into the striatum. Release of endogenous amino acids from lesioned and intact striatal slices were measured by HPLC one week later. The effectiveness and specificity of the lesion were confirmed by measuring the enzyme activity associated with extrinsic dopamine neurons (tyrosine hydroxylase; 111±14%), intrinsic GABA neurons (glutamic acid decarboxylase; 19±7%) and intrinsic acetylcholine neurons (choline acetyltransferase; 37±10%). Destruction of local striatal neurons markedly attenuated the release of GABA (41±12% of control) elicited by depolarization with K+ (35 mM), but did not significantly reduce the K+-evoked release of Asp (80±17%) and Glu (92±8%). However, spontaneous release of Asp and Glu was significantly greater than that observed in unlesioned tissue (159±18% and 209±27%, respectively), while the spontaneous release of GABA was not significantly reduced (75±43%). Although release of the neurotransmitter amino acids Asp, Glu and GABA were affected by the lesion, the release of the non-neurotransmitter amino acid tyrosine was unaffected. These data are consistent with the hypotheses that: 1) the predominant source of releasable stores of endogenous Asp and Glu in the striatum arises from extinsic neurons, and 2) that the spontaneous release of Asp and Glu from axon terminals in the striatum may be regulated, at least in part, by local inhibitory neurons.  相似文献   

10.
The release of neurotransmitters and modulators has been studied mostly using labeled preloaded compounds. For several reasons, however, the estimated release may not reliably reflect the release of endogenous compounds. The basal and K+-evoked release of the neuroactive endogenous amino acids GABA, glycine, taurine, l-glutamate and l-aspartate was now studied in slices from the hippocampus and brain stem from 7-day-old and 3-month-old mice under control and ischemic conditions. The release of synaptically not active l-glutamine, l-alanine, l-threonine and l-serine was assessed for comparison. The estimates for the hippocampus and brainstem were markedly different and also different in developing and adult mice. GABA release was much greater in 3-month-old than in 7-day-old mice, whereas with taurine the situation was the opposite, in the hippocampus in particular. K+ stimulation enhanced glycine release more in the mature than immature brain stem while in the hippocampus the converse was observed. Ischemia enhanced the release of all neuroactive amino acids in both brain regions, the effects being relatively most pronounced in the case of GABA, aspartate and glutamate in the hippocampus in 3-month-old mice, and taurine in 7-day-old and glycine in 3-month-old mice in the brain stem. These results are qualitatively similar to those obtained on earlier experiments with labeled preloaded amino acids. However, the magnitudes of the release cannot be quite correctly estimated using radioactive labels. In developing mice only taurine release may counteract the harmful effects of excitatory amino acids in ischemia in both hippocampus and brain stem.  相似文献   

11.
The effect of aminooxyacetic acid (AOAA), NH4 +, phenylsuccinate (Phs), ketone bodies (KB) and glutamine (Gln), that might interfere with the biosynthesis of neurotransmitter glutamate on the K+-evoked Ca2+-dependent release ofd-[3H]aspartate from rat cerebellar slices was studied. Therefore slices were preincubated in a Krebs-Ringer-bicarbonate-glucose (KR) buffer, loaded withd-[3H]aspartate and superfused in the presence of Ca2+ or when Ca2+ was replaced by Mg2+ or in some cases by EGTA. AOAA, NH 4 + and Phs increase the K+-evoked Ca2+-dependent release of radioactivity by 30%, 68% and 188% compared to the control respectively indicating that these agents are inhibitors of the K+-evoked Ca2+-dependent release of glutamate. KB and Gln had no effect on the Ca2+-dependent release of radioactivity. AOAA., NH 4 + , Phs and KB but not Gln increase the total release of radioactivity by 43%, 69%, 139%, and 37% respectively. AOAA, NH 4 + and KB but not Phs or Gln increase the Ca2+-independent release (Mg2+ replacing Ca2+) of radioactivity by 71%, 71% and 108% respectively. The present results indicate that in the cerebellum: 1) Neurotransmitter glutamate is mostly synthesized through the phosphate activated glutaminase (PAG) reaction 2) It is further supported that glutamate released in a Ca2+-dependent manner before entering its pool in the cytosol has to move into the mitochondrial matrix.  相似文献   

12.
The effect of perfusion rate on the apparent release of [3H]glutamate from prelabelled and superfused rat cortical synaptosomes was examined. The proportion of tissue [3H]glutamate released in response to a 4 ml depolarizing pulse of 15 mM K+ increased almost linearly with perfusion rates from 1 ml min−1 to 10 ml min−1. Release did not increase markedly between 10 ml min−1 and 20 ml min−1. The basal efflux of [3H]glutamate also increased with perfusion rate. The increase in both basal efflux and K+-induced release is interpreted as being due to a greater amount of released transmitter avoiding recapture by uptake processes as perfusion rate increases. This is supported by the observation that increasing the potential number of uptake sites in the tissue decreases both the basal and K+-evoked release of the transmitter. The significance of this with respect to optimal perfusion rates for studies on the regulation of glutamate release is discussed.  相似文献   

13.
Evoked release of glutamate and aspartate from cultured cerebellar granule cells was studied after preincubation of the cells in tissue culture medium with glucose (6.5 mM), glutamine (1.0 mM),d[3H] aspartate and in some cases aminooxyacetate (5.0 mM) or phenylsuccinate (5.0 mM). The release of endogenous amino acids and ofd-[3H] aspartate was measured under physiological and depolarizing (56 mM KCl) conditions both in the presence and absence of calcium (1.0 mM), glutamine (1.0 mM), aminooxyacetate (5.0 mM) and phenylsuccinate (5.0 mM). The cellular content of glutamate and aspartate was also determined. Of the endogenous amino acids only glutamate was released in a transmitter fashion and newly synthesized glutamate was released preferentially to exogenously suppliedd-[3H] aspartate, a marker for exogenous glutamate. Evoked release of endogenous glutamate was reduced or completely abolished by respectively, aminooxyacetate and phenylsuccinate. In contrast, the release ofd-[3H] aspartate was increased reflecting an unaffected release of exogenous glutamate and an increased psuedospecific radioactivity of the glutamate transmitter pool. Since aminooxyacetate and phenylsuccinate inhibit respectively aspartate aminotransferase and mitochondrial keto-dicarboxylic acid transport it is concluded that replenishment of the glutamate transmitter pool from glutamine, formed in the mitochondrial compartment by the action of glutaminase requires the simultaneous operation of mitochondrial keto-dicarboxylic acid transport and aspartate aminotransferase which is localized both intra- and extra-mitochondrially. The purpose of the latter enzyme apparently is to catalyze both intra- and extra-mitochondrial transamination of -ketoglutarate which is formed intramitochondrially from the glutamate carbon skeleton and transferred across the mitochondrial membrane to the cytosol where transmitter glutamate is formed. This cytoplasmic origin of transmitter glutamate is in aggreement with the finding thatd-[3H] aspartate readily labels the transmitter pool even when synthesis of endogenous transmitter is impaired in the presence of AOAA or phenylsuccinate.Special issue dedicated to Dr Elling Kvamme  相似文献   

14.
The release of endogenous dopamine (DA) and 3,4-dihydroxyphenylacetic acid (DOPAC) was measured in superfused striatal slices of the rat and the results compared with data obtained for the release of endogenous (a) DA and DOPAC in the cerebral cortex, nucleus accumbens and thalamus; (b) 5-hydroxytryptamine (5-HT), 5-hydroxyindoleacetic acid (5-HIAA), GABA, and glutamate in the striatum; and (c) GABA, glutamate and 5-HT in the cerebral cortex. In superfused slices of all four CNS regions, there appeared to be a Ca2+-dependent, K+-stimulated release of endogenous DA. In addition, in slices of the striatum and nucleus accumbens there also appeared to be a Ca2+-dependent, 60 mM K+ stimulated release of endogenous DOPAC. In the striatum, 16 mM Mg2+ was as effective as 2.5 mM Ca2+ in promoting the 60 mM K+-stimulated release of DOPAC. In addition, 16 mM Mg2+ appeared to function as a weak Ca2+ agonist since it also promoted the release of DA to approximately 40% of the level attained with Ca2+ in the presence of 60 mM K+. On the other hand, in the striatum, 16 mM Mg2+ inhibited the Ca2+-dependent, 60 mM K+-stimulated release of GABA and glutamate. Similar Mg2+-inhibition was observed in the cerebral cortex not only for GABA and glutamate but also for DA and 5-HT. With the use of -methyl -tyrosine (tyrosine hydroxylase inhibitor), cocaine (uptake inhibitor) and pargyline (monoamine oxidase inhibitor), it was determined that (a) most of the released DA and DOPAC was synthesized in the slices during the superfusion; (b) DOPAC was not formed from DA which had been released and taken up; and (c) DA and DOPAC were released from DA nerve terminals. In addition, the data indicate a difference in the release process between the amino acids and the monoamines from striatal slices since Mg2+ inhibited the Ca2+-dependent, K+-stimulated release of GABA and glutamate and appeared to promote the release of DA and 5-HT.  相似文献   

15.
High K+ was used to depolarize glia and neurons in order to study the effects on amino acid release from and concentrations within the dorsal cochlear nucleus (DCN) of brain slices. The release of glutamate, -aminobutyrate (GABA) and glycine increased significantly during exposure to 50 mM K+, while glutamine and serine release decreased significantly during and/or after exposure, respectively. After 10 min of exposure to 50 mM K+, glutamine concentrations increased in all three layers of DCN slices, to more than 5 times the values in unexposed slices. In the presence of a glutamate uptake blocker, L-trans-pyrrolidine-2,4-dicarboxylic acid (PDC), glutamine concentrations in all layers did not increase as much during 50 mM K+. Similar but smaller changes occurred for serine. Mean ATP concentrations were lower in 50 mM K+-exposed slices compared to control. The results suggest that depolarization, such as during increased neural activity, can greatly affect amino acid metabolism in the cochlear nucleus.  相似文献   

16.
Mouse cerebral cortical mini-slices were used in a superfusion system to monitor depolarization-induced (55 mM K+) release of preloaded [2,3-3H]GABA and to investigate the biosynthesis of glutamate, GABA and aspartate during physiological and depolarizing (55 mM K+) conditions from either [1,6-13C]glucose or [U-13C]glutamine. Depolarization-induced GABA release could be reduced (50%) by the GABA transport inhibitor tiagabine (25 μM) or by replacing Ca2+ with Co2+. In the presence of both tiagabine and Co2+ (1 mM), release was abolished completely. The release observed in the presence of 25 μM tiagabine thus represents vesicular release. Superfusion in the presence of [1,6-13C]glucose led to considerable labeling in the three amino acids, the labeling in glutamate and aspartate being increased after depolarization. This condition had no effect on GABA labeling. For all three amino acids, the distribution of label in the different carbon atoms revealed on increased tricarboxylic acid (TCA) activity during depolarization. When [U-13C]glutamine was used as substrate, labeling in glutamate was higher than that in GABA and aspartate and the fraction of glutamate and aspartate being synthesized by participation of the TCA cycle was increased by depolarization, an effect not seen for GABA. However, GABA synthesis reflected TCA cycle involvement to a much higher extent than for glutamate and aspartate. The results show that this preparation of brain tissue with intact cellular networks is well suited to study metabolism and release of neurotransmitter amino acids under conditions mimicking neural activity. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

17.
The in vitro release of endogenous norepinephrine (NE), dopamine (DA), serotonin (5-HT), GABA, glutamate (GLU), aspartate (ASP), glycine (GLY), taurine (TAU) and alanine (ALA) from superfused slices of cerebral cortex (CTX), striatum (STR), hippocampus (HIP), hypothalamus (HYPO), midbrain (MB), thalamus (THAL), nucleus accumbens (ACC), pons-medulla (PM) and spinal cord (SC) was studied. Under resting conditions or with 60 mM K+ in the absence of Ca2+, there was little or no release of NE, DA, 5-HT, GABA, GLU or ASP from any region. In most regions, there was a measurable resting release of ALA, GLY and TAU; of these three amino acids, only GLY in the PM and SC showed an increased release in the 60 mM K+ plus 2.5 mM Ca2+ medium. In 8 of the regions studied, the release of both GABA and GLU were stimulated by 60 mM K+ in the presence of 2.5 mM Ca2+. For the amino acids, no reliable data were obtained for release from the ACC because of its small size. The highest amount of K+-stimulated, Ca2+-dependent release of GABA was found with slices from the HYPO, THAL and MB while the highest amount of GLU was released from slices of STR, HIP and CTX. In those regions where reliable levels of K+-stimulated, Ca2+-dependent release of ASP were observed (STR, CTX, THAL), the amount of ASP was at least 5-fold lower than the values for GLU. A K+-stimulated, Ca2+-dependent release of NE, DA and 5-HT was observed for all 9 CNS regions studied. The highest release of (a) DA occurred from slices of CTX, STR and ACC; (b) NE was found in the HYPO and ACC; and (c) 5-HT occurred in the HYPO. The data (a) do not support a transmitter role for ALA and TAU in the CNS; (b) support a major transmitter function for GLY only in the PM and SC; and (c) support a transmitter role for GABA, GLU, NE, DA and 5-HT in the CNS regions examined (with the exception of GABA and GLU in the ACC where no data were obtained).  相似文献   

18.
Release of [3H]noradrenaline from rat hippocampal synaptosomes was triggered by pulses of 25 mM K+, 5 μM veratridine or superfusion with the Ca2+ ionophore A23187. GABA with bicuculline or chlordiazepoxide depressed the release of [3H]noradrenaline evoked by depolarisation but not by the Ca2+ ionophore. 8 Br-cAMP with [Ca2+]0 0.3 mM had no effect on spontaneous or K+-evoked release of [3H]noradrenaline and completely blocked the effect of chlordiazepoxide and GABA with bicuculline. With [Ca2+]0 1 mM 8 Br-cAMP enhanced spontaneous and K+-evoked release of [3H]noradrenaline, and reversed the depression caused by GABA with bicuculline. GABA alone evoked Ca2+-dependent release of [3H]noradrenaline which was sensitive to [Cl?]0. The results suggest that the GABAA-receptor mediated release of [3H]noradrenaline is due to depolarisation resulting from increased Cl? conductance whereas the depression of depolarisation-dependent release of [3H]noradrenaline by GABAB or benzodiazepine receptors is mediated by a cAMP-dependent decrease in the voltage-dependent Ca2+ conductance.  相似文献   

19.
The effects of metabotropic glutamate receptor agonists on the basal and potassium (50 mM K+)-stimulated release of [3H]GABA from mouse hippocampal slices were investigated using a superfusion system. The group I agonist (1±)-1-aminocyclopentane-trans-1,3-dicarboxylate enhanced the basal GABA release and reduced the K+-evoked release by a mechanism antagonized by (RS)-1-aminoindan-1,5-dicarboxylate in both cases. The group II agonist (2S,2R,3R)-2-(2,3-dicarboxycyclopropyl)glycine failed to have any effect on the basal release, but inhibited the stimulated release. This inhibition was not affected by the antagonist (2S)-2-ethylglutamate. The group III agonists L(+)-amino-4-phosphonobutyrate and O-phospho-L-serine inhibited the basal GABA release, which effects were blocked by the antagonist (RS)-2-cyclopropyl-4-phosphonophenylglycine. Moreover, the suppression of the K+-evoked release by L(+)2-amino-4-phosphonobutyrate was apparently receptor-mediated, being blocked by (RS)-2-cyclopropyl-4-phosphonophenylglycine. The results show that activation of metabotropic glutamate receptors of group I is able to potentiate the basal release of GABA, whereas activation of groups I and III receptors reduce K+-stimulated release in mouse hippocampal slices.  相似文献   

20.
Exposure of a crude synaptosomal fraction to K+ concentrations ranging from 25 to 100 mM evokes the release of [3H]taurine and [3H]GABA. These high concentrations of K+ induce, besides depolarization, a marked synaptosomal swelling, which is prevented by replacing chloride in the solutions with the largely impermeant anion gluconate. The depolarizing effect of K+ is unaffected by omission of chloride. The K+-evoked release of taurine seems related to K+-induced changes in synaptosomal volume rather than to a depolarizing effect, since it is totally calcium-independent but is abolished by reducing chloride and by making solutions hypertonic with mannitol. The release of [3H]GABA, in contrast is unaffected in chloride-free or hypertonic solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号