首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
* Craterostigma plantagineum can lose up to 96% of its water content but fully recover within hours after rehydration. The callus tissue of the plant becomes desiccation tolerant upon pre-incubation with abscisic acid (ABA). In callus and vegetative organs, ABA addition and water depletion induce a set of dehydration-responsive genes. * Previously, activation tagging led to the isolation of Craterostigma desiccation tolerant (CDT-1), a dehydration-related ABA-inducible gene which renders callus desiccation tolerant without ABA pre-treatment. This gene belongs to a family of retroelements, members of which are inducible by dehydration. * Craterostigma plantagineum transformation with mutated versions of CDT-1 indicated that protein is not required for the induction of callus desiccation tolerance. Northern analysis and protoplast transfection indicated that CDT-1 directs the synthesis of a double-stranded 21-bp short interfering RNA (siRNA), which opens the metabolic pathway for desiccation tolerance. * Via transposition, these retroelements have progressively increased the capacity of the species to synthesize siRNA and thus recover after dehydration. This may be a case of evolution towards the acquisition of a new trait, stimulated by the environment acting directly on intra-genomic DNA replication.  相似文献   

2.
3.
4.
The resurrection plant (Craterostigma plantagineum) is desiccation tolerant. However, callus derived from this plant, when propagated in vitro, requires exogenously applied abscisic acid (ABA) in order to survive desiccation. Treatment of callus tissue with ABA induces most of the genes that are induced by dehydration in the whole plant. This property has been exploited for the isolation of mutants that show dominant phenotypes resulting from the ectopic expression of endogenous genes induced by the insertion of a foreign promoter. Here we describe new T-DNA tagged Craterostigma desiccation-tolerant (cdt) mutants with different molecular and physiological characteristics, suggesting that different pathways of desiccation tolerance are affected. One of the mutants, cdt-2, constitutively expresses known osmoprotective Lea genes in callus and leaf tissue. Further analysis of this mutant revealed that the tagged locus is similar to a previously characterised gene, CDT-1, which codes for a signalling molecule that confers desiccation tolerance. The nature of the T-DNA insertion provides insight into the mechanism by which the CDT-1/2 gene family functions in ABA signal transduction.  相似文献   

5.
Optical isomers and racemic mixtures of abscisic acid (ABA) and the ABA metabolites abscisyl alcohol (ABA alc), abscisyl aldehyde (ABA ald), phaseic acid (PA), and 7[prime]hydroxyABA (7[prime]OHABA) were studied to determine their effects on freezing tolerance and gene expression in bromegrass (Bromus inermis Leyss) cell-suspension cultures. A dihydroABA analog (DHABA) series that cannot be converted to PA was also investigated. Racemic ABA, (+)-ABA, ([plus or minus])-DHABA, and (+)-DHABA were the most active in inducing freezing tolerance, (-)-ABA, ([plus or minus])-7[prime]OHBA, (-)-DHABA, ([plus or minus])-ABA ald, and ([plus or minus])-ABA alc had a moderate effect, and PA was inactive. If the relative cellular water content decreased below 82%, dehydrin gene expression increased. Except for (-)-ABA, increased expression of dehydrin genes and increased accumulation of responsive to ABA (RAB) proteins were linked to increased levels of frost tolerance. PA had no effect on the induction of RAB proteins; however, ([plus or minus])- and (+)-DHABA were both active, which suggests that PA is not involved in freezing tolerance. Both (+)-ABA and (-)-ABA induced dehydrin genes and the accumulation of RAB proteins to similar levels, but (-)-ABA was less effective than (+)-ABA at increasing freezing tolerance. The (-)-DHABA analog was inactive, implying that the ring double bond is necessary in the (-) isomers for activating an ABA response.  相似文献   

6.
7.
8.
9.
10.
11.
12.
Zygotic embryos from ten spring wheat (Triticum aestivum L.) genotypes were tested for embryogenic callus induction in the presence or absence of externally supplied (±)-abscisic acid (ABA) and two of its analogs, methyl abscisate and methyl epoxy-beta-ionylideneacetate. (±)-ABA and its analogs suppressed precocious germination of cultured late-stage embryos and promoted embryogenic callus induction. A significantly greater number of plants was regenerated from calli induced in the presence of ABA and ABA analogs. Early-stage embryos when cultured in the presence of (±)-ABA showed a negative response. Possible roles of ABA with respect to the expression of somatic embryogenesis are discussed.Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

13.
We report here the synthesis and biological activity of a new persistent abscisic acid (ABA) analog, 8[prime]-methylene ABA. This ABA analog has one additional carbon atom attached through a double bond to the 8[prime]-carbon of the ABA molecule. (+)-8[prime]-Methylene ABA is more active than the natural hormone (+)-ABA in inhibiting germination of cress seed and excised wheat embryos, in reducing growth of suspension-cultured corn cells, and in reducing transpiration in wheat seedlings. The (+)-8[prime]-methylene analog is slightly weaker than (+)-ABA in increasing expression of ABA-inducible genes in transgenic tobacco, but is equally active in stimulating a transient elevation of the pH of the medium of corn cell cultures. In corn cells, both (+)-ABA and (+)-8[prime]-methylene ABA are oxidized at the 8[prime] position. ABA is oxidized to phaseic acid and (+)-8[prime]-methylene ABA is converted more slowly to two isomeric epoxides. The alteration in the ABA structure causes the analog to be metabolized more slowly than ABA, resulting in longer-lasting and more effective biological activity relative to ABA.  相似文献   

14.
15.
16.
17.
Using antibodies raised against two sunflower small heat shock proteins (sHSPs), we have detected immunologically related proteins in unstressed vegetative tissues from the resurrection plant Craterostigma plantagineum. In whole plants, further accumulation of these polypeptides was induced by heat-shock or water-stress. In desiccation-intolerant Craterostigma callus tissue, we failed to detect sHSP-related polypeptides, but their expression, and the concurrent acquisition of desiccation tolerance was induced by exogenous abscisic acid (ABA) treatment. In untressed plants, the cross-reacting polypeptides were abundant in the roots and lower part of the shoots, where they showed homogeneous tissue-distributions. This constitutive expression is novel for vegetative tissues of higher plants, and resembles the expression patterns of sHSPs in desiccation-tolerant zygotic embryos and germinating seeds.J.A. and C.A. contributed equally to this work and are both considered to be first author  相似文献   

18.
19.
Abscisic acid (ABA), a plant stress hormone, has a chiral center (C1') in its molecule, yielding the enantiomers (1'S)-(+)-ABA and (1'R)-(-)-ABA during chemical synthesis. ABA 8'-hydroxylase (CYP707A), which is the major and key P450 enzyme in ABA catabolism in plants, catalyzes naturally occurring (1'S)-(+)-enantiomer, whereas it does not recognize naturally not occurring (1'R)-(-)-enantiomer as either a substrate or an inhibitor. Here we report a structural ABA analogue (AHI1), whose both enantiomers bind to recombinant Arabidopsis CYP707A3, in spite of stereo-structural similarity to ABA. The difference of AHI1 from ABA is the absence of the side-chain methyl group (C6) and lack of the alpha,beta-unsaturated carbonyl (C2'C3'-C4'O) in the six-membered ring. To explore which moiety is responsible for asymmetrical binding by CYP707A3, we synthesized and tested ABA analogues that lacked each moiety. Competitive inhibition was observed for the (1'R) enantiomers of these analogues in the potency order of (1'R,2'R)-(-)-2',3'-dihydro-4'-deoxo-ABA (K(I)=0.45 microM)>(1'R)-(-)-4'-oxo-ABA (K(I)=27 microM)>(1'R)-(-)-6-nor-ABA and (1'R,2'R)-(-)-2',3'-dihydro-ABA (no inhibition). In contrast to the (1'R)-enantiomers, the inhibition potency of the (1'S)-analogues declined with the saturation of the C2',C3'-double bond or with the elimination of the C4'-oxo moiety. These findings suggest that the C4'-oxo moiety coupled with the C2',C3'-double bond is the significant key functional group by which ABA 8'-hydroxylase distinguishes (1'S)-(+)-ABA from (1'R)-(-)-ABA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号