首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.

The red-striped soft scale insect Pulvinaria tenuivalvata (Newstead) (Hemiptera: Coccidae) started to infest sugarcane plants (Saccharum officinarum L.) in different districts in Egypt during the last decade. The percentage of infestation was recorded in El-Wakf area, Qena Governorate (Naghhamadi mill zone) Upper Egypt in some fields. There are three levels of infestation, low, intermediate and high. From these fields, samples were selected for physical and chemical studies. The results obtained show that the stalks of infested plants decreased in weight, the sugar content (glucose and sucrose) drastically reduced and as the percentage of infestation increased the percentage of glucose and sucrose content significantly decreased. The primary and secondary humidity and the cellulose content also increased in the healthy plants compared to the infested ones. All the physical character of the infested plants was significantly affected in comparison with the healthy ones.  相似文献   

2.
D.McC. Newbery 《Oecologia》1980,45(3):325-330
Summary The level of infestation by the coccid Icerya seychellarum on the mangrove tree Avicennia marina was measured on a stand of ca. 670 trees on Aldabra Atoll in 1978. Trees varied in basal trunk diameter (btd) between 3 and 30 cm. Leaf infestation increased significantly with increasing btd-class and young trees (btd 3.0–4.5 cm) had a mean infestation of 0.3 mg coccids g-1 leaf whilst the heaviest infested trees (btd 13.0–14.5 cm) supported 7.6 mg g-1. Leaf and shoot growth were not correlated with coccid infestation but shoot vigour (leaf to green shoot ratio) declined significantly with increasing btd-class (or age). Leaves of older, heavily infested trees did not differ from those of young uninfested trees in the concentration of soluble or total nitrogen of in four other leaf elements, indicating that nutrient status was not an important factor in infestation. Field observations showed that many of the older trees were subjected to poor drainage which may have increased their susceptibility to attack and also that on the leaves of young trees salt secretion presented an effective barrier to the establishment of coccids. re19800212  相似文献   

3.
Kumari  Archana  Goyal  Meenakshi  Kumar  Ravinder  Sohu  R. S. 《Protoplasma》2021,258(1):87-102

Shoot fly [Atherigona soccata (Rondani)] is a destructive pest of sorghum at the seedling stage and causes huge losses to grain yield and green fodder. The host-plant resistance mechanism is the best approach to reduce the attack of insects in plants. The damage parameters, morphophysiological traits, and biochemical metabolites had been investigated in the leaves and stem of contrasting sorghum genotypes, viz., resistant (IS18551, ICSV705, ICSV700), moderately resistant (PSC-4), and susceptible (SWARNA and SL-44) at 15 and 21 days after emergence (DAE) against shoot fly infestation. The resistant genotypes recorded lowest shoot fly oviposition and incidence (0.3–0.7 eggs plant−1 and 10–15%) than the susceptible genotypes (2.4–3.0 eggs plant−1 and 70–80%), respectively. The susceptible genotype SWARNA recorded 50% and 80% higher deadheart formation than the resistant genotype IS18551 at 15 and 21 DAE, respectively. Resistant genotypes exhibited higher trichome density at adaxial and abaxial part of leaf (118–145 and 106–131) with pink colored leaf sheath (scale 1.50–3.25), glossy leaves (scale1.00–1.25), and lower leaf surface wetness (scale1.25–2.00) compared with susceptible genotype with 49.3–73.3 and 25.3–64.0, scale 2.50–4.00, scale 2.75–3.50, and scale 3.25–4.25 for the respective parameters. Another defense response of sorghum toward the insect attack was modulation of plant metabolism. The infested genotypes responded to insect attack by upregulation of total soluble sugar, total phenol, prussic acid, and chlorophyll content by 1.2–2.1-fold, 1.5–2.0-fold, 1.2–1.3-fold, and 1.2–3.9-fold with more induction in susceptible genotypes at 21 DAE. On the whole, the present study indicates that morphophysiological and biochemical attributes contribute toward the resistance mechanism in sorghum against shoot fly infestation.

  相似文献   

4.
The effects of Beauveria bassiana strains on coffee berry borers (CBB), which emerge from infested berries left on soil, and its impact on the infestation of coffee berries on tree branches were evaluated at two Experimental Stations (Naranjal-Caldas and Paraguaicito-Quindio) in the Colombian coffee zone. Using a completely randomized design with 10 repetitions, 50 coffee berries artificially infested with CBB were placed on the base of a coffee tree. Four treatments including B. bassiana strain Bb9205, a mixture of Cenicafé strains (Bb9001, Bb9024 and Bb9119), a commercial formulation of B. bassiana and a control (water) were sprayed with 1×109 conidia per tree. After 30 days, all fungal strains lowered the infestation levels of the coffee berries on the trees at both locations. The mixture of Cenicafé strains decreased the tree infestation between 50 and 30% at both locations. In the berries dissected from each treated tree, insect mortality was about 40% at both locations compared to 15% in the control. B. bassiana strains also decreased the insect population inside the newly infested berries on the trees by 55–75%. The mixture of Cenicafé strains was the most effective for decreasing insect populations. B. bassiana significantly decreased CBB populations that emerged from fallen, infested, coffee berries and reduced future insect generations.  相似文献   

5.
Inducible promoters are important in regulating the expression of resistance genes when plants are attacked by insects or pathogens. Evaluation of the Shpx6b peroxidase promoter from the tropical forage legume Stylosanthes humilis[ Curtis MD, Rae AL, Rusu AG, Harrison SJ & Manners JM (1997) A peroxidase gene promoter induced by phytopathogens and methyl jasmonates in transgenic plants. Molecular Plant Microbial Interactions 10: 326–338] in transgenic tobacco plants Nicotiana tabacum L. (Solanaceae) demonstrated that this promoter could drive expression of both the β‐glucuronidase (GUS uidA gene of E. coli) and green fluorescent protein (GFP) reporter genes in leaf tissues during attack by chewing insects – larvae of potato tuber moth (PTM) Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae) and sucking insects – green peach aphids Myzus persicae Sulzer (Homoptera: Aphididae). Strong GUS expression was present in tissues next to cells damaged by PTM larvae 24 h after infestation. With aphid infestation, GUS expression was limited to sites of feeding, and was observed 48 h after infestation. The expression of GFP mirrored that of GUS expression for both treatments, but was normally detected 48 h after infestation. Similarly, the exogenous application of methyl jasmonate (MeJa) induced GUS uniformly across leaf tissue, and mechanical wounding activated GUS expression at wound sites, similar to PTM larvae. GFP expression was observed 48 h after treatment, and for mechanical wounding GFP was localised in a manner similar to PTM damage. For MeJa treatment, GFP expression was more pronounced in cells around the midrib, and it was not uniformly induced across the leaf tissue. GUS reporter gene levels were also assayed to quantify expression, and the results were consistent with the observed histological patterns of expression. The results presented here show that the Shpx6b promoter switches on the expression of linked genes after damage by insect herbivores, and could be useful in regulating the expression of heterologous genes for insect and/or pathogen resistance in transgenic plants.  相似文献   

6.
昆虫寄生对栓皮栎坚果特征和萌发行为的影响   总被引:2,自引:1,他引:1  
有多种昆虫常寄生于栎属植物的坚果中, 进而影响种子的质量、 萌发、 幼苗建成等植物的更新过程。为探讨昆虫寄生与上述过程之间的关系, 本研究于2007年和2008年在太行山济源地区调查了昆虫对栓皮栎Quercus variabilis坚果的寄生情况, 同时探讨了昆虫寄生对坚果单宁水平、 萌发和幼苗生长的影响; 并于2007年9月, 分别将完好的和昆虫寄生的栓皮栎坚果种植于土壤4 cm深处, 对坚果萌发情况、 幼苗出土时间、 叶片数量和生物量等进行了对比分析。结果表明: 1)2007年栓皮栎坚果的虫寄生率为30.04%, 显著低于2008年(47.68%), 表现出年际变化; 2)虫寄生坚果中单宁酸含量(11.54%±1.36%)显著高于完好坚果(7.36%±1.31%)(P=0.004); 3)虫寄生坚果的鲜重、 直径、 长度均小于完好坚果; 4)虫寄生坚果的霉烂率(28%)和不完全萌发率(28%)均高于完好坚果(霉烂率0%, 不完全萌发率2%); 但虫寄生坚果幼苗建成率(56%)低于完好坚果(92%); 虫寄生坚果幼苗出土持续时间(埋藏后35周)短于完好坚果(埋藏后37周); 5)在坚果埋藏和幼苗萌出当年的冬季, 由虫寄生坚果和完好坚果建成的幼苗的高度、 叶片数间均无显著差异, 但在翌年的生长季节, 两项指标均出现显著性差异; 6)经过一个完整的生长周期(1年)之后, 由虫寄生坚果所建成幼苗的根长、 根重量和生物量3项指标显著低于完好坚果, 而叶片数、 茎长、 叶重和茎重指标在二者间无显著性差异。研究结果提示, 昆虫寄生会对栎类坚果的种子质量和萌发行为产生一定的影响, 这可能是栎类植物群落更新的适应性选择。  相似文献   

7.
为了探明朱砂叶螨刺吸胁迫对玉米体内化学防御的系统诱导效应,以玉米抗螨性自交系‘H1014168’和感螨性自交系‘H1014591’幼苗为材料,在叶螨刺吸第1叶7 d后,测定了未被刺吸部位(第2叶和根系内)的丁布、总酚、胰蛋白酶抑制剂(TI)和胰凝乳蛋白酶抑制剂(CI)含量.结果表明: H1014168 第2叶和根内的丁布、总酚、TI和CI含量均显著高于健康植株; H1014591 第2叶内4种化学防御物质含量显著高于健康植株,根内TI含量显著高于健康植株,丁布和CI含量与健康植株差异不显著,总酚含量显著低于健康植株.朱砂叶螨刺吸胁迫对玉米体内的丁布、总酚、胰蛋白酶抑制剂和胰凝乳蛋白酶抑制剂的诱导具有系统性,对玉米抗螨性自交系的系统诱导效应强于感螨性自交系.  相似文献   

8.
Genetic variation at bx1 controls DIMBOA content in maize   总被引:1,自引:0,他引:1  
The main hydroxamic acid in maize (Zea mays L.) is 2-4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA). DIMBOA confers resistance to leaf-feeding by several corn borers. Most genes involved in the DIMBOA metabolic pathway are located on the short arm of chromosome 4, and quantitative trait loci (QTLs) involved in maize resistance to leaf-feeding by corn borers have been localized to that region. However, the low resolution of QTL linkage mapping does not allow convincing proof that genetic variation at bx loci was responsible for the variability for resistance. This study addressed the following objectives: to determine the QTLs involved in DIMBOA synthesis across genetically divergent maize inbreds using eight RIL families from the nested association mapping population, to check the stability of QTLs for DIMBOA content across years by evaluating two of those RIL families in 2 years, and to test the involvement of bx1 by performing association mapping with a panel of 281 diverse inbred lines. QTLs were stable across different environments. A genetic model including eight markers explained approximately 34% of phenotypic variability across eight RIL families and the position of the largest QTL co-localizes with the majority of structural genes of the DIMBOA pathway. Candidate association analysis determined that sequence polymorphisms at bx1 greatly affects variation of DIMBOA content in a diverse panel of maize inbreds, but the specific causal polymorphism or polymorphisms responsible for the QTL detected in the region 4.01 were not identified. This result may be because the causal polymorphism(s) were not sequenced, identity is masked by linkage disequilibrium, adjustments for population structure reduce significance of causal polymorphisms or multiple causal polymorphisms affecting bx1 segregate among inbred lines.  相似文献   

9.
The cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae), is one of the most important pests in European winter oilseed rape production. Adult beetles feed on young leaves whereas larvae mine within the petioles and stems. Larval infestation can cause significant crop damage. In this study, the host quality for CSFB of four oilseed rape (Brassica napus L.) cultivars and seven other brassicaceous species with different glucosinolate (GSL) profiles was assessed under controlled conditions. Larval instar weights and mortality were measured after 14 and 21 days of feeding in the petioles of test plants. To study the impact of GSL on the performance of larvae, the GSL contents in petioles from non-infested and infested plants were analysed before, and 21 days after, the start of larval infestation. Larval performance was not significantly different between the four cultivars of oilseed rape, but differed considerably among the other brassicaceous species tested. In comparison to the weight of larvae in the standard B. napus cv. Robust, the larval weight was higher in turnip rape (Brassica rapa L. var. silvestris) and significantly reduced in white mustard (Sinapis alba L.), oil radish (Raphanus sativa L. var. oleiformis), and cabbage (Brassica oleracea L. convar. capitata var. alba). The duration of larval development increased in white mustard and oilseed radish. The GSL profiles of the petioles showed little difference between non-infested and infested plants of oilseed rape whereas the content of aliphatic GSL increased in the infested turnip rape plants. In contrast, the aliphatic and benzenic GSL decreased in infested Indian rape (B. rapa subsp. dichotoma Roxb.). Larval weight was not correlated with the total GSL content of plants, neither before infestation nor 21 days after. Larval weight was positively correlated with progoitrin and 4-hydroxyglucobrassicin. White mustard, which provides inferior host quality for larval development, has the potential to introduce insect resistance into high-yielding oilseed rape cultivars in breeding programmes.  相似文献   

10.
Aphids are major insect pests of cereal crops, acting as virus vectors as well as causing direct damage. The responses of wheat to infestation by cereal aphid (Sitobion avenae) were investigated in a proteomic analysis. Approximately, 500 protein spots were reproducibly detected in the extracts from leaves of wheat seedlings after extraction and 2‐DE. Sixty‐seven spots differed significantly between control and infested plants following 24 h of aphid feeding, with 27 and 11 up‐regulated, and 8 and 21 down‐regulated, in local or systemic tissues, respectively. After 8 days, 80 protein spots differed significantly between control and aphid treatments with 13 and 18 up‐regulated and 27 and 22 down‐regulated in local or systemic tissues, respectively. As positive controls, plants were treated with salicylic acid or methyl jasmonate; 81 and 37 differentially expressed protein spots, respectively, were identified for these treatments. Approximately, 50% of differentially expressed protein spots were identified by PMF, revealing that the majority of proteins altered by aphid infestation were involved in metabolic processes and photosynthesis. Other proteins identified were involved in signal transduction, stress and defence, antioxidant activity, regulatory processes, and hormone responses. Responses to aphid attack at the proteome level were broadly similar to basal non‐specific defence and stress responses in wheat, with evidence of down‐regulation of insect‐specific defence mechanisms, in agreement with the observed lack of aphid resistance in commercial wheat lines.  相似文献   

11.
The present study describes micro-morphological and histological changes to rosette leaves of the native Eurasian plant species Dipsacus laciniatus (Dipsacaceae) provoked by infestation of the eriophyid mite Leipothrix dipsacivagus Petanovic et Rector. Conspicuous injuries to the leaf tissue were induced by mites feeding on leaves of D. laciniatus rosettes that were propagated from seed under laboratory conditions. Anatomical injuries extended into epidermal cells on the upper and lower leaf surface as well as to the mesophyll layer of infested D. laciniatus leaves. Statistical analysis (by ANOVA and MANOVA) showed significant differences between control and infested plants, particularly in total leaf thickness. The most striking change observed was the decrease in thickness of infested leaves, beginning from the 8th week, associated with the progressive replacement of epidermal cells with an acellular layer. Measures of mite density on test leaves indicated that mites vacated leaves as russeting symptoms intensified. They also appeared to vacate all leaves, whether symptomatic or not, after populations peaked 10–12 weeks after infestation. Comparisons were made between these studies and those on naturally infested, field-collected D. laciniatus plants, as well as with similar studies of other mite-plant interactions.  相似文献   

12.
The leaf miner Cameraria ohridella causes premature defoliation of Aesculus hippocastanum trees. In order to assess the whole-plant loss of productivity caused by the parasite, we monitored seasonal changes of leaf gas exchange and leaf area losses in horse chestnut trees freely infested or chemically treated to prevent moth infestation (controls). Data were integrated in a model and the annual loss of net primary productivity (NPP) was calculated for infested trees with respect to controls. Measurements showed marked vertical stratification of C. ohridella attacks, with lower crown strata being more infested than higher ones. Leaf gas exchange was maximum between May and early June, but it strongly decreased starting from mid-June even in controls. Model calculations showed that NPP loss of infested trees was about 30% on an annual basis (when the first moth attack is recorded at the end of April). Model simulations showed that postponing the start day of attack would have important positive effects on plants NPP. For example, if the start day of attack was postponed to 20 May, the annual loss of NPP would be about 15%. Our study suggests that A. hippocastanum trees attacked by C. ohridella are not facing serious risks of decline, especially if methods are adopted to postpone the start day of attack (e.g. removal of fallen leaves in autumn). Our data do not support the view that plants need to be totally protected from the parasite by application of insecticides.  相似文献   

13.
B. Schaffer  L. J. Mason 《Oecologia》1990,84(4):468-473
Summary The scale insect, Toumeyella sp., feeds exclusively on the subtropical hammock tree lignum vitae (Guaiacum sanctum L.). The combined effects of scale herbivory and shading on leaf gas exchange characteristics and growth of lignum vitae trees were studied using a factorial design. Trees grown in full sun or in 75% shade were manually infested with scale or left noninfested. Beginning 4 weeks after infestation, net CO2 assimilation, stomatal conductance, transpiration, internal partial pressure of CO2, and water-use efficiency were determined on single-leaves at 4-week intervals for trees in each treatment. At the end of the experiment, net CO2 assimilation was determined for whole plants. Total leaf area, leaf, stem, and root dry weights, and leaf chlorophyll and nitrogen concentrations were also determined. Scale infested trees generally had lower net CO2 assimilation, stomatal conductance, and transpiration rates as well as less leaf area, and root, stem, and leaf dry weights than noninfested trees. Twenty four weeks after the shade treatment was imposed, sun-grown trees had approximately twice the leaf area of shade-grown trees. Shade-grown trees compensated for the reduced leaf area by increasing their photosynthetic efficiency. This resulted in no difference in light saturated net CO2 assimilation on a whole plant basis between sun-grown and shade-grown trees. Chlorophyll and nitrogen concentrations per unit leaf area were greater in leaves of shade-grown trees than in leaves of sun-grown trees. Shading and herbivory by Toumeyella sp. each resulted in decreased growth of Guaiacum sanctum. Scale insect herbivory did not result in greater detrimental effects on leaf gas exchange characteristics for shade-grown than for sun-grown trees. Herbivory by Toumeyella resulted in a greater decrease in tree growth for sun-grown than for shade-grown trees.  相似文献   

14.
Plants respond to herbivorous attack through a defence system that includes structural barriers, release of toxic chemicals, and attraction of natural enemies of the target pests, etc. In this study, plants of Bougainvillea glabra Choisy (Nyctaginaceae) were artificially infested with the obligate phloem-feeding insect pest Phenacoccus peruvianus Granara de Willink (Hemiptera: Pseudococcidae) and compared with control uninfested plants. Leaf samples were collected at 2, 6, 12, 24, 48, 96 and 144 h after infestation to monitor the plant response. Proline (Pro), malondialdehyde (MDA), chlorophyll (Chla, Chlb, and Chla+b), and total carotenoid (Car) contents, as well as the activities of catalase (CAT) and phenylalanine ammonia-lyase (PAL) antioxidant enzymes, were measured at each sampling time to better understand the mechanism of plant defences. Proline content was the highest at 2 h after infestation and remained high throughout the experiment, while MDA content differed significantly only at 12 h after infestation. The value of chlorophyll was higher in the control plants, indicating that insect attack seriously compromised the photosynthetic activity of infected plants. Enzymatic activities showed significant increases, CAT of about 50% after 24 h and PAL of about 43% after 6 h. This study will be useful for understanding Bougainvillea plant defence against mealybugs and for showing that this ornamental species is able to activate enzymatic and molecular mechanisms in response to insect attack.  相似文献   

15.
Studies of a healthy dogwood tree ( Cornus florida ) and one suffering from a chronic infestation of Thamnosphecia scitula revealed some physiological responses of dogwood to insect damage. In high light the stomatal resistances, measured with a diffusion porometer, of leaves from the infested tree were more than double those of leaves from the healthy tree, indicating that the stomata were not open as wide in the infested tree. The greater stomatal resistance and the curling of leaves from the infested tree implied a deficiency of water, but measurements with a pressure chamber revealed only slight differences in dehydration between the two trees. Furthermore, the leaf curling was not relieved by allowing infested leaves to absorb water and attain full turgor. Leaves from the infested tree contained 35 % more reducing sugars and 63 % more sucrose, but only about half the nitrogen and ash of the healthy counterparts. Photosynthesis was significantly depressed, but dark respiration was not modified in leaves of infested compared with healthy trees. Leaves from the infested tree were 85 % as large and exhibited a 35 % greater specific leaf weight than those from the healthy tree. The conductance of water by stems from the infested tree was only 61–78 % of that by the healthy tree. It is suggested that the inferred disruption of the vascular system by insect activity alters the distribution of minerals and metabolites, hastens senescence and stomatal closure, and modifies growth by diminishing stem conductance, slowing photosynthesis, reducing leaf area, and changing leaf morphology.  相似文献   

16.
Maize (Zea mays L.) is a valuable commodity throughout the world, but corn rootworms (Chrysomelidae: Diabrotica spp.) often cause economic damage and increase production costs. Current rootworm management strategies have limitations, and in order to create viable management alternatives, researchers have been developing novel maize lines using Eastern gamagrass (Tripsacum dactyloides L.) germplasm, a wild relative of maize that is resistant to rootworms. Ten maize Tripsacum‐introgressed inbred lines derived from recurrent selection of crosses with gamagrass and teosinte (Zea diploperennis Iltis) recombinants and two public inbred lines were assessed for susceptibility to western corn rootworm (Diabrotica virgifera virgifera LeConte) and yield in a two‐year field study. Two experimental maize inbred lines, SDG11 and SDG20, had mean root damage ratings that were significantly lower than the susceptible public line B73. Two other experimental maize inbred lines, SDG12 and SDG6, appeared tolerant to rootworm damage because they exhibited yield increases after rootworm infestation in both years. In the majority of cases, mean yield per plant of experimental maize lines used in yield analyses was equal to or exceeded that of the public inbred lines B73 and W64A. Our study indicates that there is potential to use Tripsacum‐introgressed maize germplasm in breeding programs to enhance plant resistance and/or tolerance to corn rootworms, although further research on insect resistance and agronomic potential of this germplasm needs to be conducted in F1 hybrids.  相似文献   

17.
Abstract

The incidence of insect pests in cotton crop, such as Bemisia tabaci, Amrasca devastans and Pectinophora gossypiella (PBW) is dependent on climatic factors, such as maximum and minimum temperature, relative humidity and rainfall. Besides, cotton leaf curl disease (CLCuD) is also a major yield-limiting factor in the cotton crop. The results indicated that non-transgenic genotypes were heavily infested by whitefly, whereas jassid infested all genotypes with little difference. The population of whitefly and jassid acquired peak level in the month of July and August on all the genotypes. The correlation studies indicated the negative correlation of jassid, pink bollworm and CLCuD on yield component, whereas whitefly infestation was found positively correlated with CLCuD. Moreover, multivariate regression analysis (MRA) indicated the maximum and minimum temperature impacted the infestation of whitefly and jassid more than other factors, whereas maximum temperature greatly impacted the infestation of PBW in transgenic genotypes.  相似文献   

18.
To fully explore the resistance potential of transgenic rice produced by Agrobacterium-mediated transformation, an elite line KMD1 was assessed for its resistance to eight lepidopteran rice pest species. KMD1 contained a synthetic cry1Ab gene from Bacillus thuringiensis under the control of a maize ubiquitin promoter. It was derived from a commercial japonica Chinese rice variety Xiushui 11, and bred true for both agronomic traits and a cry1Ab gene when the bioassays were done in 1998 in the R5 generation. The eight lepidopteran pest species were: four Pyralidae species: Chilo suppressalis (striped stem borer, SSB), Scirpophaga incertulas (yellow stem borer, YSB), Cnaphalocrocis medinalis (leaf folder), Herpitogramma licarisalis; two Noctuidae: Sesamia inferens (pink stem borer, PSB) and Naranga anescens; one Stayridae: Mycalesis gotama; and one Hesperiidae, Parnara guttata. In laboratory bioassays, 100% mortality was observed in all insect species when their newly hatched or third-instar larvae were fed KMD1 leaf tissues, whereas only 9.65% of the neonates and none of the third-instar larvae died when fed the leaf tissues of non-transgenic control. Moreover, the leaf area of control tissues consumed in four days by stem borers was 20 to 40 times higher than that of KMD1 tissues, and the area of control tissues eaten by leaf-feeding species was 120 to 180 times greater than that of the transgenic tissues. Under natural infestation, no KMD1 plant was visibly damaged by the SSB, YSB and leaf folder in field evaluation. On the other hand, 80, 9.3 and 88.7% of control plants were injured by SSB, YSB, and leaf folder, respectively. These data disclosed that the transgenic line was highly resistant to a broad spectrum of lepidopteran insect species and could be useful in insect resistance breeding programs.  相似文献   

19.
Levels of resistance to spotted stem borer, Chilo partellus, in the germplasm are low to moderate and therefore we evaluated 25 sorghum genotypes for resistance to stem borer to identify lines with diverse mechanisms of resistance to this insect. Leaf glossiness was significantly and negatively associated with low deadheart formation. Dwarf genotypes with fewer nodes showed more deadheart formation. Antixenosis and/or antibiosis for leaf feeding, and reduced deadheart formation, tunnelling, and number of exit holes resulted in lower losses owing to C. partellus damage. Axillary tillers compensated for loss in grain yield owing to borer infestation as a result of deadheart formation, but their synchrony for maturity with the main plant is quite important. Path coefficient analysis revealed that direct effects of stem tunnelling on loss in grain yield were greater than leaf feeding and deadhearts. However, leaf feeding via stem tunnelling showed maximum indirect effects on loss in grain yield. Estimates for broad‐sense heritability and genetic advance suggested that it is possible to improve for grain yield under stem borer infestation. Heritability estimates for grain yield were usually higher than for stem borer damage parameters. Multi‐trait cluster analysis placed the test genotypes into four and five clusters in rainy and post‐rainy seasons, respectively. The genotypes placed in different groups, and showing resistance to leaf feeding, deadheart formation, stem tunnelling, and/or compensation in grain yield can be used for sorghum improvement.  相似文献   

20.
Plants in nature have inducible defences that sometimes lead to targeted resistance against particular herbivores, but susceptibility to others. The metabolic diversity and genetic resources available for maize (Zea mays) make this a suitable system for a mechanistic study of within‐species variation in such plant‐mediated interactions between herbivores. Beet armyworms (Spodoptera exigua) and corn leaf aphids (Rhopalosiphum maidis) are two naturally occurring maize herbivores with different feeding habits. Whereas chewing herbivore‐induced methylation of 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one glucoside (DIMBOA‐Glc) to form 2‐hydroxy‐4,7‐dimethoxy‐1,4‐benzoxazin‐3‐one glucoside (HDMBOA‐Glc) promotes caterpillar resistance, lower DIMBOA‐Glc levels favour aphid reproduction. Thus, caterpillar‐induced DIMBOA‐Glc methyltransferase activity in maize is predicted to promote aphid growth. To test this hypothesis, the impact of S. exigua feeding on R. maidis progeny production was assessed using seventeen genetically diverse maize inbred lines. Whereas aphid progeny production was increased by prior caterpillar feeding on lines B73, Ki11, Ki3 and Tx303, it decreased on lines Ky21, CML103, Mo18W and W22. Genetic mapping of this trait in a population of B73 × Ky21 recombinant inbred lines identified significant quantitative trait loci on maize chromosomes 1, 7 and 10. There is a transgressive segregation for aphid resistance, with the Ky21 alleles on chromosomes 1 and 7 and the B73 allele on chromosome 10 increasing aphid progeny production. The chromosome 1 QTL coincides with a cluster of three maize genes encoding benzoxazinoid O‐methyltransferases that convert DIMBOA‐Glc to HDMBOA‐Glc. Gene expression studies and benzoxazinoid measurements indicate that S. exigua ‐induced responses in this pathway differentially affect R. maidis resistance in B73 and Ky21.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号