首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Formin-mediated elongation of actin filaments proceeds via association of Formin Homology 2 (FH2) domain dimers with the barbed end of the filament, allowing subunit addition while remaining processively attached to the end. The flexible Formin Homology 1 (FH1) domain, located directly N-terminal to the FH2 domain, contains one or more stretches of polyproline that bind the actin-binding protein profilin. Diffusion of FH1 domains brings associated profilin-actin complexes into contact with the FH2-bound barbed end of the filament, thereby enabling direct transfer of actin. We investigated how the organization of the FH1 domain of budding yeast formin Bni1p determines the rates of profilin-actin transfer onto the end of the filament. Each FH1 domain transfers actin to the barbed end independently of the other and structural evidence suggests a preference for actin delivery from each FH1 domain to the closest long-pitch helix of the filament. The transfer reaction is diffusion-limited and influenced by the affinities of the FH1 polyproline tracks for profilin. Position-specific sequence variations optimize the efficiency of FH1-stimulated polymerization by binding profilin weakly near the FH2 domain and binding profilin more strongly farther away. FH1 domains of many other formins follow this organizational trend. This particular sequence architecture may optimize the efficiency of FH1-stimulated elongation.  相似文献   

2.
Formin FH2 domains associate processively with actin-filament barbed ends and modify their rate of growth. We modeled how the elongation rate depends on the concentrations of profilin and actin for four different formins. We assume that (1) FH2 domains are in rapid equilibrium among conformations that block or allow actin addition and that (2) profilin-actin is transferred rapidly to the barbed end from multiple profilin binding sites in formin FH1 domains. In agreement with previous experiments discussed below, we find an optimal profilin concentration with a maximal elongation rate that can exceed the rate of actin alone. High profilin concentrations suppress elongation, largely because free profilin displaces profilin-actin from FH1. The model supports a common polymerization mechanism for the four formin FH1FH2 constructs with differences attributed to varying parameter values. The mechanism does not require ATP hydrolysis by polymerized actin, but we cannot exclude that formins accelerate hydrolysis.  相似文献   

3.
Cells contain multiple formin isoforms that drive the assembly of profilin-actin for diverse processes. Given that many organisms also contain several profilin isoforms, specific formin/profilin pairs might be matched to optimally stimulate actin polymerization. We utilized a combination of bulk actin polymerization and single filament total internal reflection fluorescence microscopy assays to measure the effect of different profilin isoforms on the actin assembly properties of the cytokinesis formins from fission yeast (Cdc12p) and the nematode worm (CYK-1). We discovered that Cdc12p only effectively utilizes the single fission yeast profilin isoform SpPRF. Conversely, CYK-1 prefers the essential worm cytokinesis profilin CePFN-1 to the two non-essential worm profilin isoforms (SpPRF = CePFN-1 > CePFN-2 > CePFN-3). Chimeras containing the profilin-binding formin homology 1 (FH1) domain from one formin and the barbed-end associated FH2 domain from the other formin, revealed that both the FH1 and FH2 domains help confer profilin isoform specialization. Although the Cdc12p and CYK-1 FH1 domains cannot differentiate between profilin isoforms in the absence of actin, formin FH1 domains appear to preferentially select specific isoforms of profilin-actin. Surprisingly, analysis of profilin point mutants revealed that differences in highly conserved residues in both the poly-L-proline and actin binding regions of profilin do not explain their differential utilization by formin. Therefore, rapid formin-mediated elongation of profilin-actin depends upon favorable interactions of profilin-actin with the FH1 domain as well as the barbed-end associated FH2 domain. Specific formin FH1FH2 domains are tailored to optimally utilize actin bound to particular profilin isoforms.  相似文献   

4.
Mechanism of formin-induced nucleation of actin filaments   总被引:17,自引:0,他引:17  
A fragment of the yeast formin Bni1 containing the FH1FH2 domains increases the rate of filament nucleation from pure G-actin [Pruyne et al. (2002) Science 297, 612-615]. To determine the mechanism of nucleation, we compared the G-actin dependence of Bni1FH1FH2-induced polymerization with theoretical models. The data best fit a model suggesting that Bni1FH1FH2 stabilizes an actin dimer. We also show that nucleation increases with the square root of the Bni1FH1FH2 concentration. We demonstrate that this relationship is expected for any such nucleator, independent of nucleus size. The proline-rich FH1 domain binds profilin, and deletion of this domain decreases the contribution of profilin-actin to the nucleation. A role for profilin binding to the FH1 domain in filament nucleation was supported by the inability of Bni1FH1FH2 to utilize a mutant profilin, H133S profilin, with defective binding to polyproline. Bni1FH1FH2 partially inhibits barbed-end elongation, and we find that the rate constants for both polymerization and depolymerization are decreased by approximately 50%. Bni1FH1FH2 has no effect on pointed-end kinetics or on the critical concentration. To investigate the domains of Bni1 required for these activities, the experiments were all duplicated with the FH2 domain alone. The FH2 domain is as effective as the FH1FH2 domains together in inhibiting barbed-end kinetics; it is less effective as a nucleator but the mechanism is again best fit by dimer stabilization.  相似文献   

5.
Formin-homology (FH) 2 domains from formin proteins associate processively with the barbed ends of actin filaments through many rounds of actin subunit addition before dissociating completely. Interaction of the actin monomer-binding protein profilin with the FH1 domain speeds processive barbed end elongation by FH2 domains. In this study, we examined the energetic requirements for fast processive elongation. In contrast to previous proposals, direct microscopic observations of single molecules of the formin Bni1p from Saccharomyces cerevisiae labeled with quantum dots showed that profilin is not required for formin-mediated processive elongation of growing barbed ends. ATP-actin subunits polymerized by Bni1p and profilin release the γ-phosphate of ATP on average >2.5 min after becoming incorporated into filaments. Therefore, the release of γ-phosphate from actin does not drive processive elongation. We compared experimentally observed rates of processive elongation by a number of different FH2 domains to kinetic computer simulations and found that actin subunit addition alone likely provides the energy for fast processive elongation of filaments mediated by FH1FH2-formin and profilin. We also studied the role of FH2 structure in processive elongation. We found that the flexible linker joining the two halves of the FH2 dimer has a strong influence on dissociation of formins from barbed ends but only a weak effect on elongation rates. Because formins are most vulnerable to dissociation during translocation along the growing barbed end, we propose that the flexible linker influences the lifetime of this translocative state.Formins are multidomain proteins that assemble unbranched actin filament structures for diverse processes in eukaryotic cells (reviewed in Ref. 1). Formins stimulate nucleation of actin filaments and, in the presence of the actin monomer-binding protein profilin, speed elongation of the barbed ends of filaments (2-6). The ability of formins to influence elongation depends on the ability of single formin molecules to remain bound to a growing barbed end through multiple rounds of actin subunit addition (7, 8). To stay associated during subunit addition, a formin molecule must translocate processively on the barbed end as each actin subunit is added (1, 9-12). This processive elongation of a barbed end by a formin is terminated when the formin dissociates stochastically from the growing end during translocation (4, 10).The formin-homology (FH)2 1 and 2 domains are the best conserved domains of formin proteins (2, 13, 14). The FH2 domain is the signature domain of formins, and in many cases, is sufficient for both nucleation and processive elongation of barbed ends (2-4, 7, 15). Head-to-tail homodimers of FH2 domains (12, 16) encircle the barbed ends of actin filaments (9). In vitro, association of barbed ends with FH2 domains slows elongation by limiting addition of free actin monomers. This “gating” behavior is usually explained by a rapid equilibrium of the FH2-associated end between an open state competent for actin monomer association and a closed state that blocks monomer binding (4, 9, 17).Proline-rich FH1 domains located N-terminal to FH2 domains are required for profilin to stimulate formin-mediated elongation. Individual tracks of polyproline in FH1 domains bind 1:1 complexes of profilin-actin and transfer the actin directly to the FH2-associated barbed end to increase processive elongation rates (4-6, 8, 10, 17).Rates of elongation and dissociation from growing barbed ends differ widely for FH1FH2 fragments from different formin homologs (4). We understand few aspects of FH1FH2 domains that influence gating, elongation or dissociation. In this study, we examined the source of energy for formin-mediated processive elongation, and the influence of FH2 structure on elongation and dissociation from growing ends. In contrast to previous proposals (6, 18), we found that fast processive elongation mediated by FH1FH2-formins is not driven by energy from the release of the γ-phosphate from ATP-actin filaments. Instead, the data show that the binding of an actin subunit to the barbed end provides the energy for processive elongation. We found that in similar polymerizing conditions, different natural FH2 domains dissociate from growing barbed ends at substantially different rates. We further observed that the length of the flexible linker between the subunits of a FH2 dimer influences dissociation much more than elongation.  相似文献   

6.
Cytokinesis in most eukaryotes requires the assembly and contraction of a ring of actin filaments and myosin II. The fission yeast Schizosaccharomyces pombe requires the formin Cdc12p and profilin (Cdc3p) early in the assembly of the contractile ring. The proline-rich formin homology (FH) 1 domain binds profilin, and the FH2 domain binds actin. Expression of a construct consisting of the Cdc12 FH1 and FH2 domains complements a conditional mutant of Cdc12 at the restrictive temperature, but arrests cells at the permissive temperature. Cells overexpressing Cdc12(FH1FH2)p stop growing with excessive actin cables but no contractile rings. Like capping protein, purified Cdc12(FH1FH2)p caps the barbed end of actin filaments, preventing subunit addition and dissociation, inhibits end to end annealing of filaments, and nucleates filaments that grow exclusively from their pointed ends. The maximum yield is one filament pointed end per six formin polypeptides. Profilins that bind both actin and poly-l-proline inhibit nucleation by Cdc12(FH1FH2)p, but polymerization of monomeric actin is faster, because the filaments grow from their barbed ends at the same rate as uncapped filaments. On the other hand, Cdc12(FH1FH2)p blocks annealing even in the presence of profilin. Thus, formins are profilin-gated barbed end capping proteins with the ability to initiate actin filaments from actin monomers bound to profilin. These properties explain why contractile ring assembly requires both formin and profilin and why viability depends on the ability of profilin to bind both actin and poly-l-proline.  相似文献   

7.
Formins catalyze rapid filament growth from profilin-actin, by remaining processively bound to the elongating barbed end. The sequence of elementary reactions that describe filament assembly from profilin-actin at either free or formin-bound barbed ends is not fully understood. Specifically, the identity of the transitory complexes between profilin and actin terminal subunits is not known; and whether ATP hydrolysis is directly or indirectly coupled to profilin-actin assembly is not clear. We have analyzed the effect of profilin on actin assembly at free and FH1-FH2-bound barbed ends in the presence of ADP and non-hydrolyzable CrATP. Profilin blocked filament growth by capping the barbed ends in ADP and CrATP/ADP-Pi states, with a higher affinity when formin is bound. We confirm that, in contrast, profilin accelerates depolymerization of ADP-F-actin, more efficiently when FH1-FH2 is bound to barbed ends. To reconcile these data with effective barbed end assembly from profilin-MgATP-actin, the nature of nucleotide bound to both terminal and subterminal subunits must be considered. All data are accounted for quantitatively by a model in which a barbed end whose two terminal subunits consist of profilin-ATP-actin cannot grow until ATP has been hydrolyzed and Pi released from the penultimate subunit, thus promoting the release of profilin and allowing further elongation. Formin does not change the activity of profilin but simply uses it for its processive walk at barbed ends. Finally, if profilin release from actin is prevented by a chemical cross-link, formin processivity is abolished.  相似文献   

8.
Motile and morphogenetic cellular processes are driven by site-directed assembly of actin filaments. Formins, proteins characterized by formin homology domains FH1 and FH2, are initiators of actin assembly. How formins simply bind to filament barbed ends in rapid equilibrium or find free energy to become a processive motor of filament assembly remains enigmatic. Here we demonstrate that the FH1-FH2 domain accelerates hydrolysis of ATP coupled to profilin-actin polymerization and uses the derived free energy for processive polymerization, increasing 15-fold the rate constant for profilin-actin association to barbed ends. Profilin is required for and takes part in the processive function. Single filaments grow at least 10 microm long from formin bound beads without detaching. Transitory formin-associated processes are generated by poisoning of the processive cycle by barbed-end capping proteins. We successfully reconstitute formin-induced motility in vitro, demonstrating that this mechanism accounts for the puzzlingly rapid formin-induced actin processes observed in vivo.  相似文献   

9.
Formins have conserved roles in cell polarity and cytokinesis and directly nucleate actin filament assembly through their FH2 domain. Here, we define the active region of the yeast formin Bni1 FH2 domain and show that it dimerizes. Mutations that disrupt dimerization abolish actin assembly activity, suggesting that dimers are the active state of FH2 domains. The Bni1 FH2 domain protects growing barbed ends of actin filaments from vast excesses of capping protein, suggesting that the dimer maintains a persistent association during elongation. This is not a species-specific mechanism, as the activities of purified mammalian formin mDia1 are identical to those of Bni1. Further, mDia1 partially complements BNI1 function in vivo, and expression of a dominant active mDia1 construct in yeast causes similar phenotypes to dominant active Bni1 constructs. In addition, we purified the Bni1-interacting half of the cell polarity factor Bud6 and found that it binds specifically to actin monomers and, like profilin, promotes rapid nucleotide exchange on actin. Bud6 and profilin show additive stimulatory effects on Bni1 activity and have a synthetic lethal genetic interaction in vivo. From these results, we propose a model in which Bni1 FH2 dimers nucleate and processively cap the elongating barbed end of the actin filament, and Bud6 and profilin generate a local flux of ATP-actin monomers to promote actin assembly.  相似文献   

10.
Yi K  Guo C  Chen D  Zhao B  Yang B  Ren H 《Plant physiology》2005,138(2):1071-1082
The actin cytoskeleton is required for many cellular processes in plant cells. The nucleation process is the rate-limiting step for actin assembly. Formins belong to a new class of conserved actin nucleator, which includes at least 2 formin homology domains, FH1 and FH2, which direct the assembly of unbranched actin filaments. The function of plant formins is quite poorly understood. Here, we provide the first biochemical study of the function of conserved domains of a formin-like protein (AtFH8) from Arabidopsis (Arabidopsis thaliana). The purified recombinant AtFH8(FH1FH2) domain has the ability to nucleate actin filaments in vitro at the barbed end and caps the barbed end of actin filaments, decreasing the rate of subunit addition and dissociation. In addition, purified AtFH8(FH1FH2) binds actin filaments and severs them into short fragments. The proline-rich domain (FH1) of the AtFH8 binds directly to profilin and is necessary for nucleation when actin monomers are profilin bound. However, profilin inhibits the nucleation mediated by AtFH8(FH1FH2) to some extent, but increases the rate of actin filament elongation in the presence of AtFH8(FH1FH2). Moreover, overexpression of the full-length AtFH8 in Arabidopsis causes a prominent change in root hair cell development and its actin organization, indicating the involvement of AtFH8 in polarized cell growth through the actin cytoskeleton.  相似文献   

11.
Formin proteins are actin assembly factors that accelerate filament nucleation then remain on the elongating barbed end and modulate filament elongation. The formin homology 2 (FH2) domain is central to these activities, but recent work has suggested that additional sequences enhance FH2 domain function. Here we show that the C-terminal 76 amino acids of the formin FMNL3 have a dramatic effect on the ability of the FH2 domain to accelerate actin assembly. This C-terminal region contains a WASp homology 2 (WH2)-like sequence that binds actin monomers in a manner that is competitive with other WH2 domains and with profilin. In addition, the C terminus binds filament barbed ends. As a monomer, the FMNL3 C terminus inhibits actin polymerization and slows barbed end elongation with moderate affinity. As a dimer, the C terminus accelerates actin polymerization from monomers and displays high affinity inhibition of barbed end elongation. These properties are not common to all formin C termini, as those of mDia1 and INF2 do not behave similarly. Interestingly, mutation of two aliphatic residues, which blocks high affinity actin binding by the WH2-like sequence, has no effect on the ability of the C terminus to enhance FH2-mediated polymerization. However, mutation of three successive basic residues at the C terminus of the WH2-like sequence compromises polymerization enhancement. These results illustrate that the C termini of formins are highly diverse in their interactions with actin.  相似文献   

12.
Formin is a major protein responsible for regulating the nucleation of actin filaments, and as such, it permits the cell to control where and when to assemble actin arrays. It is encoded by a multigene family comprising 21 members in Arabidopsis thaliana. The Arabidopsis formins can be separated into two phylogenetically-distinct classes: there are 11 class I formins and 10 class II formins. Significant questions remain unanswered regarding the molecular mechanism of actin nucleation and elongation stimulated by each formin isovariant, and how the different isovariants coordinate to regulate actin dynamics in cells. Here, we characterize a class II formin, AtFH19, biochemically. We found that AtFH19 retains all general properties of the formin family, including nucleation and barbed end capping activity. It can also generate actin filaments from a pool of actin monomers bound to profilin. However, both the nucleation and barbed end capping activities of AtFH19 are less efficient compared to those of another well-characterized formin, AtFH1. Interestingly, AtFH19 FH1FH2 competes with AtFH1 FH1FH2 in binding actin filament barbed ends, and inhibits the effect of AtFH1 FH1FH2 on actin. We thus propose a mechanism in which two quantitatively different formins coordinate to regulate actin dynamics by competing for actin filament barbed ends.  相似文献   

13.
The Spire protein, together with the formin Cappuccino and profilin, plays an important role in actin-based processes that establish oocyte polarity. Spire contains a cluster of four actin-binding WH2 domains. It has been shown to nucleate actin filaments and was proposed to remain bound to their pointed ends. Here we show that the multifunctional character of the WH2 domains allows Spire to sequester four G-actin subunits binding cooperatively in a tight SA(4) complex and to nucleate, sever, and cap filaments at their barbed ends. Binding of Spire to barbed ends does not affect the thermodynamics of actin assembly at barbed ends but blocks barbed end growth from profilin-actin. The resulting Spire-induced increase in profilin-actin concentration enhances processive filament assembly by formin. The synergy between Spire and formin is reconstituted in an in vitro motility assay, which provides a functional basis for the genetic interplay between Spire, formin, and profilin in oogenesis.  相似文献   

14.
Cellular viability requires tight regulation of actin cytoskeletal dynamics. Distinct families of nucleation-promoting factors enable the rapid assembly of filament nuclei that elongate and are incorporated into diverse and specialized actin-based structures. In addition to promoting filament nucleation, the formin family of proteins directs the elongation of unbranched actin filaments. Processive association of formins with growing filament ends is achieved through continuous barbed end binding of the highly conserved, dimeric formin homology (FH) 2 domain. In cooperation with the FH1 domain and C-terminal tail region, FH2 dimers mediate actin subunit addition at speeds that can dramatically exceed the rate of spontaneous assembly. Here, I review recent biophysical, structural, and computational studies that have provided insight into the mechanisms of formin-mediated actin assembly and dynamics.  相似文献   

15.
Cells sustain high rates of actin filament elongation by maintaining a large pool of actin monomers above the critical concentration for polymerization. Profilin-actin complexes constitute the largest fraction of polymerization-competent actin monomers. Filament elongation factors such as Ena/VASP and formin catalyze the transition of profilin-actin from the cellular pool onto the barbed end of growing filaments. The molecular bases of this process are poorly understood. Here we present structural and energetic evidence for two consecutive steps of the elongation mechanism: the recruitment of profilin-actin by the last poly-Pro segment of vasodilator-stimulated phosphoprotein (VASP) and the binding of profilin-actin simultaneously to this poly-Pro and to the G-actin-binding (GAB) domain of VASP. The actin monomer bound at the GAB domain is proposed to be in position to join the barbed end of the growing filament concurrently with the release of profilin.  相似文献   

16.
Mouse Diaphanous-related formins (mDias) are members of the formin protein family that nucleate actin polymerization and subsequently promote filamentous actin (F-actin) elongation by monomer addition to fast-growing barbed ends. It has been suggested that mDias preferentially recruit actin complexed to profilin due to their proline-rich FH1 domains. During filament elongation, dimeric mDias remain attached to the barbed ends by their FH2 domains, which form an anti-parallel ring-like structure enclosing the filament barbed ends. Dimer formation of mDia-FH2 domains is dependent on their N-terminal lasso and linker subdomains (connector). Here, we investigated the effect of isolated FH2 domains on actin polymerization using mDia1-FH2 domain plus connector, as well as core mDia1, mDia2, and mDia3 missing the connector, by cosedimentation and electron microscopy after negative staining. Analytical ultracentrifugation showed that core FH2 domains of mDia1 and mDia2 exhibited a low degree of dimer formation, whereas mDia3-FH2 minus connector and mDia1-FH2 plus connector readily dimerized. Only core mDia3-FH2 was able to nucleate actin polymerization. However, all tested core FH2 domains decorated and bundled F-actin, as demonstrated by electron microscopy after negative staining. Bundling activity was highest for mDia3-FH2, decreased for mDia2-FH2, and further decreased for mDia1-FH2. The mDia1-FH2 domain plus connector induced actin polymerization also in the absence of profilin, but failed to induce F-actin deformation and bundling. We also tested whether mDia1-FH2 was able to repolymerize actin in complex with different proteins that stabilize globular actin. The data obtained demonstrated that mDia1-FH2 induced actin repolymerization only from the actin/cofilin-1 complex, but not when complexed to actin depolymerizing factor, gelsolin segment 1, vitamin D binding protein, or deoxyribonuclease I.  相似文献   

17.
Formin proteins are potent regulators of actin dynamics. Most eukaryotes have multiple formin isoforms, suggesting diverse cellular roles. Formins are modular proteins, containing a series of domains and functional motifs. The Formin homology 2 (FH2) domain binds actin filament barbed ends and moves processively as these barbed ends elongate or depolymerize. The FH1 domain influences FH2 domain function through binding to the actin monomer-binding protein, profilin. Outside of FH1 and FH2, amino acid similarity between formins decreases, suggesting diverse mechanisms for regulation and cellular localization. Some formins are regulated by auto-inhibition through interaction between the diaphanous inhibitory domain (DID) and diaphanous auto-regulatory domain (DAD), and activated by Rho GTPase binding to GTPase-binding domains (GBD). Other formins lack DAD, DID and GBD, and their regulatory mechanisms await elucidation.  相似文献   

18.
Neuronal Wiskott–Aldrich syndrome protein (N-WASP)–activated actin polymerization drives extension of invadopodia and podosomes into the basement layer. In addition to activating Arp2/3, N-WASP binds actin-filament barbed ends, and both N-WASP and barbed ends are tightly clustered in these invasive structures. We use nanofibers coated with N-WASP WWCA domains as model cell surfaces and single-actin-filament imaging to determine how clustered N-WASP affects Arp2/3-independent barbed-end assembly. Individual barbed ends captured by WWCA domains grow at or below their diffusion-limited assembly rate. At high filament densities, however, overlapping filaments form buckles between their nanofiber tethers and myosin attachment points. These buckles grew ∼3.4-fold faster than the diffusion-limited rate of unattached barbed ends. N-WASP constructs with and without the native polyproline (PP) region show similar rate enhancements in the absence of profilin, but profilin slows barbed-end acceleration from constructs containing the PP region. Increasing Mg2+ to enhance filament bundling increases the frequency of filament buckle formation, consistent with a requirement of accelerated assembly on barbed-end bundling. We propose that this novel N-WASP assembly activity provides an Arp2/3-independent force that drives nascent filament bundles into the basement layer during cell invasion.  相似文献   

19.
Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WASP homology domain 2 (WH2) repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The kinase-like non-catalytic domain (KIND) of Spire directly interacts with the C-terminal extension of the formin homology domain 2 (FH2) domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and it subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin·actin. Here, we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as in the processivity of Fmn2. We have combined microcalorimetric, fluorescence, and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a Capping Protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end.  相似文献   

20.
We have quantitated the in vitro interactions of profilin and the profilin-actin complex (PA) with the actin filament barbed end using profilin and nonmuscle beta,gamma-actin prepared from bovine spleen. Actin filament barbed end elongation was initiated from spectrin seeds in the presence of varying profilin concentrations and followed by light scattering. We find that profilin inhibits actin polymerization and that this effect is much more pronounced for beta,gamma-actin than for alpha-skeletal muscle actin. Profilin binds to beta,gamma-actin filament barbed ends with an equilibrium constant of 20 microM, decreases the filament elongation rate by blocking addition of actin monomers, and increases the dissociation rate of actin monomers from the filament end. PA containing bound MgADP supports elongation of the actin filament barbed end, indicating that ATP hydrolysis is not necessary for PA elongation of filaments. Initial analysis of the energetics for these reactions suggested an apparent greater negative free energy change for actin filament elongation from PA than elongation from monomeric actin. However, we calculate that the free energy changes for the two elongation pathways are equal if the profilin-induced weakening of nucleotide binding to actin is taken into consideration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号