首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Hydrogenases catalyze the reversible oxidation of molecular hydrogen (H2) and play a key role in the energy metabolism of microorganisms in anaerobic environments. The hyperthermophilic archaeon Thermococcus kodakarensis KOD1, which assimilates organic carbon coupled with the reduction of elemental sulfur (S0) or H2 generation, harbors three gene operons encoding [NiFe]-hydrogenase orthologs, namely, Hyh, Mbh, and Mbx. In order to elucidate their functions in vivo, a gene disruption mutant for each [NiFe]-hydrogenase ortholog was constructed. The Hyh-deficient mutant (PHY1) grew well under both H2S- and H2-evolving conditions. H2S generation in PHY1 was equivalent to that of the host strain, and H2 generation was higher in PHY1, suggesting that Hyh functions in the direction of H2 uptake in T. kodakarensis under these conditions. Analyses of culture metabolites suggested that significant amounts of NADPH produced by Hyh are used for alanine production through glutamate dehydrogenase and alanine aminotransferase. On the other hand, the Mbh-deficient mutant (MHD1) showed no growth under H2-evolving conditions. This fact, as well as the impaired H2 generation activity in MHD1, indicated that Mbh is mainly responsible for H2 evolution. The copresence of Hyh and Mbh raised the possibility of intraspecies H2 transfer (i.e., H2 evolved by Mbh is reoxidized by Hyh) in this archaeon. In contrast, the Mbx-deficient mutant (MXD1) showed a decreased growth rate only under H2S-evolving conditions and exhibited a lower H2S generation activity, indicating the involvement of Mbx in the S0 reduction process. This study provides important genetic evidence for understanding the physiological roles of hydrogenase orthologs in the Thermococcales.  相似文献   

2.
The maturation process of [NiFe] hydrogenases includes a proteolytic cleavage of the large subunit. We constructed a mutant of Nostoc strain PCC 7120 in which hupW, encoding a putative hydrogenase-specific protease, is inactivated. Our results indicate that the protein product of hupW selectively cleaves the uptake hydrogenase in this cyanobacterium.  相似文献   

3.
The maturation of [NiFe]-hydrogenases is a catalysed process in which the activities of at least seven proteins are involved. The last step consists of the endoproteolytic cleavage of the precursor of the large subunit after the [NiFe]-metal centre has been assembled. The amino acid sequence requirements for the endopeptidase HycI involved in the C-terminal processing of HycE, the large subunit of the hydrogenase 3 from Escherichia coli, were investigated. Mutational alteration of the amino acid residues neighbouring the cleavage site showed that proteolysis still occurred when chemically similar amino acids were exchanged. Processing was blocked, however, in a variant in which the methionine at the C-terminal side was replaced by a glutamate residue. Truncation of the precursor from the C-terminal end rendered variants amenable to maturation even when two-thirds of the extension were removed but abolished proteolysis upon further deletion of a cluster of six basic amino acids. A construct in which the C-terminal extension from the large subunit of the hydrogenase 2 was fused to the mature part of the large subunit of hydrogenase 3 was neither processed by HycI nor by HybD, the endopeptidase specific for the large subunit of hydrogenase 2. The maturation endopeptidase, therefore, exhibits a relaxed sequence constraint in recognition of its cleavage site and does not require the entire C-terminal extension. The results point to an interaction of the C-terminus with some domain of the large subunit, rendering a conformation amenable to recognition by the endopeptidase.  相似文献   

4.
The maturation of [NiFe]-hydrogenases is a catalyzed process involving the activities of at least seven proteins. The last step consists of the endoproteolytic cleavage of the precursor of the large subunit, after the [NiFe]-metal center has been assembled. The HycI endopeptidase is involved in the C-terminal processing of HycE, the large subunit of hydrogenase 3 from Escherichia coli. Although HycI has been well characterized biochemically, the crystallization of the protein has been quite challenging. Here, we present the crystal structure of HycI at 1.70 Å resolution. The crystal structure resembles the recently reported solution structure (NMR) of the same protein and the holo-HyPD structure of the same family, but a significant conformational change is observed at the L5 loop, as compared with the solution structures of HycI and HyPD. In our crystal structure, three specific metal binding sites (Ca1-3) were identified and these metal ions are possibly involved in the C-terminal cleavage of HycE.  相似文献   

5.
A subset of bacterial [NiFe]-hydrogenases have been shown to be capable of activating dihydrogen-catalysis under aerobic conditions; however, it remains relatively unclear how the assembly and activation of these enzymes is carried out in the presence of air. Acquiring this knowledge is important if a generic method for achieving production of O2-resistant [NiFe]-hydrogenases within heterologous hosts is to be developed. Salmonella enterica serovar Typhimurium synthesizes the [NiFe]-hydrogenase-5 (Hyd-5) enzyme under aerobic conditions. As well as structural genes, the Hyd-5 operon also contains several accessory genes that are predicted to be involved in different stages of biosynthesis of the enzyme. In this work, deletions in the hydF, hydG, and hydH genes have been constructed. The hydF gene encodes a protein related to Ralstonia eutropha HoxO, which is known to interact with the small subunit of a [NiFe]-hydrogenase. HydG is predicted to be a fusion of the R. eutropha HoxQ and HoxR proteins, both of which have been implicated in the biosynthesis of an O2-tolerant hydrogenase, and HydH is a homologue of R. eutropha HoxV, which is a scaffold for [NiFe] cofactor assembly. It is shown here that HydG and HydH play essential roles in Hyd-5 biosynthesis. Hyd-5 can be isolated and characterized from a ΔhydF strain, indicating that HydF may not play the same vital role as the orthologous HoxO. This study, therefore, emphasises differences that can be observed when comparing the function of hydrogenase maturases in different biological systems.  相似文献   

6.
Hydrogen (H2) production by Thermococcus kodakarensis compares very favourably with the levels reported for the most productive algal, fungal and bacterial systems. T. kodakarensis can also consume H2 and is predicted to use several alternative pathways to recycle reduced cofactors, some of which may compete with H2 production for reductant disposal. To explore the reductant flux and possible competition for H2 production in vivo, T. kodakarensis TS517 was mutated to precisely delete each of the alternative pathways of reductant disposal, H2 production and consumption. The results obtained establish that H2 is generated predominantly by the membrane‐bound hydrogenase complex (Mbh), confirm the essential role of the SurR (TK1086p) regulator in vivo, delineate the roles of sulfur (S°) regulon proteins and demonstrate that preventing H2 consumption results in a substantial net increase in H2 production. Constitutive expression of TK1086 (surR) from a replicative plasmid restored the ability of T. kodakarensis TS1101 (ΔTK1086) to grow in the absence of S° and stimulated H2 production, revealing a second mechanism to increase H2 production. Transformation of T. kodakarensis TS1101 with plasmids that express SurR variants constructed to direct the constitutive synthesis of the Mbh complex and prevent expression of the S° regulon was only possible in the absence of S° and, under these conditions, the transformants exhibited wild‐type growth and H2 production. With S° present, they grew slower but synthesized more H2 per unit biomass than T. kodakarensis TS517.  相似文献   

7.
In silico analysis of group 4 [NiFe]-hydrogenases from a hyperthermophilic archaeon, Thermococcus onnurineus NA1, revealed a novel tripartite gene cluster consisting of dehydrogenase-hydrogenase-cation/proton antiporter subunits, which may be classified as the new subgroup 4b of [NiFe]-hydrogenases-based on sequence motifs.Hydrogenases are the key enzymes involved in the metabolism of H2, catalyzing the following chemical reaction: 2H+ + 2e ↔ H2. Hydrogenases can be classified into [NiFe]-hydrogenases, [FeFe]-hydrogenases, and [Fe]-hydrogenases, based on their distinctive functional core containing the catalytic metal center (11, 17).The genomic analysis of Thermococcus onnurineus NA1, a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area, revealed the presence of several distinct gene clusters encoding seven [NiFe]-hydrogenases and one homolog similar to Mbx (membrane-bound oxidoreductase) from Pyrococcus furiosus (1, 6, 8, 12). According to the classification system of hydrogenases by Vignais et al. (17), three hydrogenases (one F420-reducing and two NADP-reducing hydrogenases) belong to group 3 [NiFe]-hydrogenases, and four hydrogenases belong to group 4 [NiFe]-hydrogenases. The group 4 hydrogenases are widely distributed among bacteria and archaea (17), with Hyc and Hyf (hydrogenase 3 and 4, respectively) from Escherichia coli (19), Coo (CO-induced hydrogenase) from Rhodospirillum rubrum (4), Ech (energy-converting hydrogenase) from Methanosarcina barkeri (7), and Mbh (membrane-bound hydrogenase) from P. furiosus (6, 10, 12) being relatively well-characterized hydrogenases in this group. One of the four group 4 hydrogenases from T. onnurineus NA1 was found to be similar in sequence to that of P. furiosus Mbh (10).  相似文献   

8.
[NiFe] hydrogenases are metalloenzymes involved in many biological processes concerning the metabolism of hydrogen. The maturation of the large subunit of these hydrogenases requires the cleavage of a peptide at the C terminus by an endopeptidase before the final formation of the [NiFe] metallocenter. HycI is an endopeptidase of the M52 family and responsible for the C-terminal cleavage of the large subunit of hydrogenase 3 in Escherichia coli. Although extensive studies were performed, the molecular mechanism of recognition and cleavage of hydrogenase 3 remains elusive. Herein, we report the solution structure of E. coli HycI determined by high resolution nuclear magnetic resonance spectroscopy. This is the first solution structure of the apo form of endopeptidase of the M52 family reported thus far. The overall structure is similar to the crystal structure of holo-HybD in the same family. However, significant diversity was observed between the two structures. Especially, HycI shows an open conformation at the putative nickel-binding site, whereas HybD adopts a closed conformation. In addition, we performed backbone dynamic studies to probe the motional properties of the apo form of HycI. Furthermore, the metal ion titration experiments provide insightful information on the substrate recognition and cleavage processes. Taken together, our current structural, biochemical, and dynamic studies extend the knowledge of the M52 family proteins and provide novel insights into the biological function of HycI.  相似文献   

9.
A [NiFe] hydrogenase maturation protease HybD from Thermococcus kodakarensis KOD1 (TkHybD) is involved in the cleavage of the C‐terminal residues of [NiFe] hydrogenase large subunits by Ni recognition. Here, we report the crystal structure of TkHybD at 1.82 Å resolution to better understand this process. TkHybD exhibits an α/β/α sandwich fold with conserved residues responsible for the Ni recognition. Comparisons of TkHybD with homologous proteins also reveal that they share a common overall architecture, suggesting that they have similar catalytic functions. Our results including metal binding site prediction provide insight into the substrate recognition and catalysis mechanism of TkHybD. Proteins 2016; 84:1321–1327. © 2016 Wiley Periodicals, Inc.  相似文献   

10.

Background  

Hydrogenases catalyze reversible reaction between hydrogen (H2) and proton. Inactivation of hydrogenase by exposure to oxygen is a critical limitation in biohydrogen production since strict anaerobic conditions are required. While [FeFe]-hydrogenases are irreversibly inactivated by oxygen, it was known that [NiFe]-hydrogenases are generally more tolerant to oxygen. The physiological function of [NiFe]-hydrogenase 1 is still ambiguous. We herein investigated the H2 production potential of [NiFe]-hydrogenase 1 of Escherichia coli in vivo and in vitro. The hya A and hya B genes corresponding to the small and large subunits of [NiFe]-hydrogenase 1 core enzyme, respectively, were expressed in BL21, an E. coli strain without H2 producing ability.  相似文献   

11.
The interaction of the hydrogenase maturation endopeptidase HycI with its substrate, the precursor of the large subunit, was studied. Replacement of conserved amino-acid residues in HycI, which have been shown to bind a cadmium ion from the crystallization buffer in crystals of HybD (endopeptidase for hydrogenase 2), abolished or strongly reduced processing activity. Atomic absorption spectroscopy of purified HycI and HybD proteins showed the absence of nickel. In vitro processing assays showed that the reaction requires nickel to be bound to the precursor and the protease does not have a function in nickel delivery to the substrate. Radioactive labelling of cells with 63Ni, devoid of endopeptidase, resolved several forms of the precursor which are possibly intermediates in the maturation pathway. It is concluded that the endopeptidase uses the metal in the large subunit of [NiFe]-hydrogenases as a recognition motif.  相似文献   

12.
The purified membrane-bound [NiFe]-hydrogenase from Methanosarcina barkeri was studied with electron paramagnetic resonance (EPR) focusing on the properties of the iron-sulphur clusters. The EPR spectra showed signals from three different [4Fe-4S] clusters. Two of the clusters could be reduced under 101 kPa of H2, whereas the third cluster was only partially reduced. Magnetic interaction of one of the clusters with an unpaired electron localized on the Ni-Fe site indicated that this was the proximal cluster as found in all [NiFe]-hydrogenases. Hence, this cluster was assigned to be located in the EchC subunit. The other two clusters could therefore be assigned to be bound to the EchF subunit, which has two conserved four-Cys motifs for the binding of a [4Fe-4S] cluster. Redox titrations at different pH values demonstrated that the proximal cluster and one of the clusters in the EchF subunit had a pH-dependent midpoint potential. The possible relevance of these properties for the function of this proton-pumping [NiFe]-hydrogenase is discussed.  相似文献   

13.

Background  

The last step in the maturation process of the large subunit of [NiFe]-hydrogenases is a proteolytic cleavage of the C-terminal by a hydrogenase specific protease. Contrary to other accessory proteins these hydrogenase proteases are believed to be specific whereby one type of hydrogenases specific protease only cleaves one type of hydrogenase. In cyanobacteria this is achieved by the gene product of either hupW or hoxW, specific for the uptake or the bidirectional hydrogenase respectively. The filamentous cyanobacteria Nostoc punctiforme ATCC 29133 and Nostoc sp strain PCC 7120 may contain a single uptake hydrogenase or both an uptake and a bidirectional hydrogenase respectively.  相似文献   

14.
The bacterial [NiFe]-hydrogenases have been classified as either 'standard' or 'O2-tolerant' based on their ability to function in the presence of O2. Typically, these enzymes contain four redox-active metal centers: a Ni-Fe-CO-2CN- active site and three electron-transferring Fe-S clusters. Recent research suggests that, rather than differences at the catalytic active site, it is a novel Fe-S cluster electron transfer (ET) relay that controls how [NiFe]-hydrogenases recover from O2 attack. In light of recent structural data and mutagenic studies this article reviews the molecular mechanism of O2-tolerance in [NiFe]-hydrogenases and discusses the biosynthesis of the unique Fe-S relay.  相似文献   

15.
Escherichia coli can both oxidize hydrogen and reduce protons. These activities involve three distinct [NiFe]-hydrogenases, termed Hyd-1, Hyd-2, and Hyd-3, each minimally comprising heterodimers of a large subunit, containing the [NiFe] active site, and a small subunit, bearing iron-sulfur clusters. Dihydrogen-oxidizing activity can be determined using redox dyes like benzyl viologen (BV); however, it is unclear whether electron transfer to BV occurs directly at the active site, or via an iron-sulfur center in the small subunit. Plasmids encoding Strep-tagged derivatives of the large subunits of the three E. coli [NiFe]-hydrogenases restored activity of the respective hydrogenase to strain FTD147, which carries in-frame deletions in the hyaB, hybC, and hycE genes encoding the large subunits of Hyd-1, Hyd-2, and Hyd-3, respectively. Purified Strep-HyaB was associated with the Hyd-1 small subunit (HyaA), and purified Strep-HybC was associated with the Hyd-2 small subunit (HybO), and a second iron-sulfur protein, HybA. However, Strep-HybC isolated from a hybO mutant had no other associated subunits and lacked BV-dependent hydrogenase activity. Mutants deleted separately for hyaA, hybO, or hycG (Hyd-3 small subunit) lacked BV-linked hydrogenase activity, despite the Hyd-1 and Hyd-2 large subunits being processed. These findings demonstrate that hydrogenase-dependent reduction of BV requires the small subunit.  相似文献   

16.
Paschos A  Glass RS  Böck A 《FEBS letters》2001,488(1-2):9-12
The iron of the binuclear active center of [NiFe]-hydrogenases carries two CN and one CO ligands which are thought to confer to the metal a low oxidation and/or spin state essential for activity. Based on the observation that one of the seven auxiliary proteins required for the synthesis and insertion of the [NiFe] cluster contains a sequence motif characteristic of O-carbamoyl-transferases it was discovered that carbamoyl phosphate is essential for formation of active [NiFe]-hydrogenases in vivo and is specifically required for metal center synthesis suggesting that it is the source of the CO and CN ligands. A chemical path for conversion of a carbamoyl group into cyano and carbonyl moieties is postulated  相似文献   

17.
The contribution made by each of the three active [NiFe]-hydrogenases (Hyd) of Escherichia coli during fermentation of glucose or glycerol in peptone-based medium at different pHs was analysed. The activities of the hydrogen-oxidizing Hyd-1 and Hyd-2 enzymes showed a reciprocal dependence on the pH of the medium while Hyd-3, a key component of the hydrogen-evolving formate hydrogenlyase complex, was mainly active at pH 6.5. Our findings identify the conditions during fermentation of glucose or glycerol under which each [NiFe]-hydrogenase is optimally active and demonstrate a previously unrecognized dependence on Hyd-1 activity at low pH.  相似文献   

18.
根据活性中心金属原子的不同,氢酶主要分为镍铁、铁铁、铁氢酶三大类。铁氢酶是发现较晚、存在物种单一且结构较为特殊的一类氢酶。目前,铁氢酶仅发现于氢营养型产甲烷古菌中。该酶直接催化氢气异裂,还原产甲烷代谢途径中一碳载体四氢蝶呤的次甲基转化为亚甲基。与其他两类氢酶相比,铁氢酶不含传递电子的铁硫簇和双金属活性中心,在结构组成上有较大的差异。此外,铁氢酶活性中心的吡啶环被高度取代,活性中心铁原子直接与酰基碳成键,这些奇特的活性分子结构预示着氢酶全新的催化机制,以及古菌细胞在合成特殊结构大分子方面的特殊功能。本文总结了从1990年发现这类新型氢酶以来的相关研究,分别从氢酶的生理功能、结构特征、催化机制、成熟过程及应用研究等方面阐述铁氢酶的研究进展。  相似文献   

19.
Periplasmic membrane-bound [NiFe]-hydrogenases undergo a complex maturation pathway, including cofactor incorporation, subunit assembly, and finally twin-arginine-dependent membrane translocation (Tat). In this study, the role of the two accessory proteins HoxO and HoxQ in the maturation of the membrane-bound [NiFe]-hydrogenase (MBH) of Ralstonia eutropha H16 was investigated. MBH activity was absent in soluble as well as membrane fractions of cells with deletions in the respective genes. The absence of HoxO and HoxQ led to degradation of the small subunit precursor (preHoxK) of the MBH. The two accessory proteins directly interacted with preHoxK prior to assembly of active MBH dimer in the cytoplasm. MBH mutants with modified Tat signal peptides were disrupted in preHoxK/HoxO/HoxQ complex formation. Isolated HoxO and HoxQ proteins formed a complex in vitro with the chemically synthesized HoxK Tat signal peptide. Two functions of the two chaperones are discussed: (i) protection of the Fe-S cluster containing HoxK subunit under oxygenic conditions, and (ii) avoidance of HoxK export prior to dimerization with the large MBH subunit HoxG.  相似文献   

20.
Hydrogenases are metalloenzymes that catalyze 2H+ + 2e ↔ H2. A multisubunit, bidirectional [NiFe]-hydrogenase has been identified and characterized in a number of bacteria, including cyanobacteria, where it is hypothesized to function as an electron valve, balancing reductant in the cell. In cyanobacteria, this Hox hydrogenase consists of five proteins in two functional moieties: a hydrogenase moiety (HoxYH) with homology to heterodimeric [NiFe]-hydrogenases and a diaphorase moiety (HoxEFU) with homology to NuoEFG of respiratory Complex I, linking NAD(P)H ↔ NAD(P)+ as a source/sink for electrons. Here, we present an extensive study of Hox hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803. We identify the presence of HoxEFUYH, HoxFUYH, HoxEFU, HoxFU, and HoxYH subcomplexes as well as association of the immature, unprocessed large subunit (HoxH) with other Hox subunits and unidentified factors, providing a basis for understanding Hox maturation and assembly. The analysis of mutants containing individual and combined hox gene deletions in a common parental strain reveals apparent alterations in subunit abundance and highlights an essential role for HoxF and HoxU in complex/subcomplex association. In addition, analysis of individual and combined hox mutant phenotypes in a single strain background provides a clear view of the function of each subunit in hydrogenase activity and presents evidence that its physiological function is more complicated than previously reported, with no outward defects apparent in growth or photosynthesis under various growth conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号