首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been known for decades that low-fat, high-carbohydrate diets can increase plasma triglyceride levels, but the mechanism for this effect has been uncertain. Recently, new isotopic and nonisotopic methods have been used to determine in vivo whether low-fat, high-carbohydrate diets increase triglyceride levels by stimulating fatty acid synthesis. The results of a series of studies in lean and obese weight-stable volunteers showed that very-low-fat (10%), high-carbohydrate diets enriched in simple sugars increased the fraction of newly synthesized fatty acids, along with a proportionate increase in the concentration of plasma triglyceride. Furthermore, the concentration of the saturated fatty acid, palmitate, increased and the concentration of the essential polyunsaturated fatty acid, linoleate, decreased in triglyceride and VLDL triglyceride. The magnitude of the increase in triglyceride varied considerably among subjects, was unrelated to sex, body mass index, or insulin levels, and was higher when fatty acid synthesis was constantly elevated rather than having a diurnal variation. It was notable that minimal stimulation of fatty acid synthesis occurred with higher fat diets (>30%) or with 10% fat diets enriched in complex carbohydrate. Public health recommendations to reduce dietary fat must take into account the distinct effects of different types of carbohydrate that may increase plasma triglycerides and fatty acid synthesis in a highly variable manner. The mediators and health consequences of this dietary effect deserve further study.  相似文献   

2.
BACKGROUND: Hepatic de novo lipogenesis (DNL) is markedly stimulated in humans by low-fat diets enriched in simple sugars. However, the dietary responsiveness of the key enzyme controlling DNL in human adipose tissue, fatty acid synthase (FAS), is uncertain. HYPOTHESIS: Adipose tissue mRNA for FAS is increased in lean and obese subjects when hepatic DNL is elevated by a eucaloric, low-fat, high-sugar diet. DESIGN: Twelve lean and seven obese volunteers were given two eucaloric diets (10% vs. 30% fat; 75% vs. 55% carbohydrate; sugar/starch 60/40) each for 2 weeks by a random-order cross-over design. FAS mRNA in abdominal and gluteal adipose tissues was compared to hepatic DNL measured in serum by isotopic and nonisotopic methods. Adipose tissue mRNA for tumor necrosis factor-alpha and IL-6, which are inflammatory cytokines that modulate DNL, was also assayed. RESULTS: The low-fat high-sugar diet induced a 4-fold increase in maximum hepatic DNL (P<.001) but only a 1.3-fold increase in adipose tissue FAS mRNA (P=.029) and no change in cytokine mRNA. There was a borderline significant positive correlation between changes in FAS mRNA and hepatic DNL (P=.039). Compared to lean subjects, obese subjects had lower levels of FAS mRNA and higher levels of cytokine mRNA (P<.001). CONCLUSIONS: The results suggest that key elements of human adipose tissue DNL are less responsive to dietary carbohydrate than is hepatic DNL and may be regulated by diet-independent factors. Irrespective of diet, there is reduced expression of the FAS gene and increased expression of cytokine genes in adipose tissues of obese subjects.  相似文献   

3.
We evaluated plasma fatty acid availability and plasma and whole body fatty acid oxidation during exercise in five lean and five abdominally obese women (body mass index = 21 +/- 1 vs. 38 +/- 1 kg/m(2)), who were matched on aerobic fitness, to test the hypothesis that obesity alters the relative contribution of plasma and nonplasma fatty acids to total energy production during exercise. Subjects exercised on a recumbent cycle ergometer for 90 min at 54% of their peak oxygen consumption. Stable isotope tracer methods ([(13)C]palmitate) were used to measure fatty acid rate of appearance in plasma and the rate of plasma fatty acid oxidation, and indirect calorimetry was used to measure whole body substrate oxidation. During exercise, palmitate rate of appearance increased progressively and was similar in obese and lean groups between 60 and 90 min of exercise [3.9 +/- 0.4 vs. 4.0 +/- 0.3 micromol. kg fat free mass (FFM)(-1). min(-1)]. The rate of plasma fatty acid oxidation was also similar in obese and lean subjects (12.8 +/- 1.7 vs. 14.5 +/- 1.8 micromol. kg FFM(-1). min(-1); P = not significant). However, whole body fatty acid oxidation during exercise was 25% greater in obese than in lean subjects (21.9 +/- 1.2 vs. 17.5 +/- 1.6 micromol. kg FFM(-1). min(-1); P < 0.05). These results demonstrate that, although plasma fatty acid availability and oxidation are similar during exercise in lean and obese women, women with abdominal obesity use more fat as a fuel by oxidizing more nonplasma fatty acids.  相似文献   

4.
The effect of relative body fat mass on exercise-induced stimulation of lipolysis and fatty acid oxidation was evaluated in 15 untrained men (5 lean, 5 overweight, and 5 obese with body mass indexes of 21 +/- 1, 27 +/- 1, and 34 +/- 1 kg/m2, respectively, and %body fat ranging from 12 to 32%). Palmitate and glycerol kinetics and substrate oxidation were assessed during 90 min of cycling at 50% peak aerobic capacity (VO2 peak) by use of stable isotope-labeled tracer infusion and indirect calorimetry. An inverse relationship was found between %body fat and exercise-induced increase in glycerol appearance rate relative to fat mass (r2 = 0.74; P < 0.01). The increase in total fatty acid uptake during exercise [(micromol/kg fat-free mass) x 90 min] was approximately 50% smaller in obese (181 +/- 70; P < 0.05) and approximately 35% smaller in overweight (230 +/- 71; P < 0.05) than in lean (354 +/- 34) men. The percentage of total fatty acid oxidation derived from systemic plasma fatty acids decreased with increasing body fat, from 49 +/- 3% in lean to 39 +/- 4% in obese men (P < 0.05); conversely, the percentage of nonsystemic fatty acids, presumably derived from intramuscular and possibly plasma triglycerides, increased with increasing body fat (P < 0.05). We conclude that the lipolytic response to exercise decreases with increasing adiposity. The blunted increase in lipolytic rate in overweight and obese men compared with lean men limits the availability of plasma fatty acids as a fuel during exercise. However, the rate of total fat oxidation was similar in all groups because of a compensatory increase in the oxidation of nonsystemic fatty acids.  相似文献   

5.
Postprandial lipemia after an oral fat challenge was studied in middle-aged men with visceral obesity. The two groups had similar plasma cholesterol levels, but obese subjects had higher levels of plasma triglyceride and reduced amounts of high-density cholesterol. Fasting plasma insulin was fourfold greater in obese subjects because of concomitant insulin resistance, with a calculated HOMA score of 3.1 +/- 0.6 vs. 0.8 +/- 0.2, respectively. Plasma apolipoprotein B(48) (apoB(48)) and retinyl palmitate (RP) after an oral fat challenge were used to monitor chylomicron metabolism. Compared with lean subjects, the fasting concentration of apoB(48) was more than twofold greater in obese individuals, suggestive of an accumulation of posthydrolyzed particles. After the oral lipid load, the incremental areas under the apoB(48) and RP curves (IAUC) were both significantly greater in obese subjects (apoB(48): 97 +/- 17 vs. 44 +/- 12 microg.ml(-1). h; RP: 3,120 +/- 511 vs. 1,308 +/- 177 U. ml(-1). h, respectively). A delay in the conversion of chylomicrons to remnants probably contributed to postprandial dyslipidemia in viscerally obese subjects. The triglyceride IAUC was 68% greater in obese subjects (4.7 +/- 0.6 vs. 2.8 +/- 0.8 mM. h, P < 0.06). Moreover, peak postprandial triglyceride was delayed by approximately 2 h in obese subjects. The reduction in triglyceride lipolysis in vivo did not appear to reflect changes in hydrolytic enzyme activities. Postheparin plasma lipase rates were found to be similar for lean and obese subjects. In this study, low-density lipoprotein (LDL) receptor expression on monunuclear cells was used as a surrogate marker of hepatic activity. We found that, in obese subjects, the binding of LDL was reduced by one-half compared with lean controls (70.9 +/- 15.07 vs. 38.9 +/- 4.6 ng LDL bound/microg cell protein, P = 0.02). Because the LDL receptor is involved in the removal of proatherogenic chylomicron remnants, we suggest that the hepatic clearance of these particles might be compromised in insulin-resistant obese subjects. Premature and accelerated atherogenesis in viscerally obese, insulin-resistant subjects may in part reflect delayed clearance of postprandial lipoprotein remnants.  相似文献   

6.
De novo lipogenesis and dietary fat uptake are two major sources of fatty acid deposits in fat of obese animals. To determine the relative contribution of fatty acids from these two sources in obesity, we have determined the distribution of c16 and c18 fatty acids of triglycerides in plasma, liver, and epididymal fat pad of Zucker diabetic fatty (ZDF) rats and their lean littermates (ZL) under two isocaloric dietary fat conditions. Lipogenesis was also determined using the deuterated water method. Conversion of palmitate to stearate and stearate to oleate was calculated from the deuterium incorporation by use of the tracer dilution principle. In the ZL rat, lipogenesis was suppressed from 70 to 24%, conversion of palmitate to stearate from 86 to 78%, and conversion of stearate to oleate from 56 to 7% in response to an increase in the dietary fat-to-carbohydrate ratio. The results suggest that suppression of fatty acid synthase and stearoyl-CoA desaturase activities is a normal adaptive mechanism to a high-fat diet. In contrast, de novo lipogenesis, chain elongation, and desaturation were not suppressed by dietary fat in the ZDF rat. The lack of ability to adapt to a high-fat diet resulted in a higher plasma triglyceride concentration and excessive fat accumulation from both diet and de novo synthesis in the ZDF rat.  相似文献   

7.
High carbohydrate diets enhance the hepatic output of very low density lipoprotein triglycerides. The fatty acids of these triglycerides could come from exogenous sources (i.e., diet or adipose tissue) or from de novo fatty acid synthesis in the liver. The role of exogenous free fatty acids was evaluated in rats fed Purina Chow or diets containing 10% fructose for up to 14 wk. In carbohydrate-fed rats, serum triglycerides were twice normal, and VLDL accounted for about 60% of the increases. Pre-beta-lipoprotein was increased and alpha- and beta-lipoprotein were decreased. Phospholipid and cholesterol levels were unchanged. Livers were perfused with glucose and free fatty acids. Perfusate free fatty acids rose from 180 to 1800 micro eq/liter as the infused acids increased from 0 to 992 micro eq/3 hr; simultaneously, net free fatty acid uptake rose from < 1 to 18 micro eq/g/hr and triglyceride output by the liver doubled. However, rates of secretion of triglyceride became constant, and triglyceride accumulated in liver at uptakes of free fatty acids > 13 micro eq/g/hr. More lauric and myristic acid appeared in the perfusate than was infused, suggesting the hepatic discharge of free fatty acids. Livers of fructose-fed rats secreted twice as much oleate-(14)C-labeled triglyceride as controls at all levels of free fatty acid uptake. The ratios of the specific activities of perfusate triglyceride to free oleate-(14)C were unaffected by diet and were about 0.6 and 1.0 at low and high triglyceride secretion rates, respectively. Thus, carbohydrate feeding did not result in altered uptakes of free fatty acids or preferential secretion of triglycerides containing endogenously synthesized fatty acid. Instead, the increased secretion of triglyceride was accomplished by enhanced formation of VLDL triglyceride from exogenous free fatty acids.  相似文献   

8.
In order to identify the mechanisms which underlie fattening in commercial birds, lean and fat broiler chickens have been selected according to 3 different criteria: abdominal fat content, plasma glucose level and plasma concentration of very-low-density lipoproteins (VLDL), the latter being the main substrate from which bird adipose tissues accumulate triglycerides. Chickens selected for high abdominal fat content displayed a higher level of VLDL and a lower level of glucose than their lean counterparts. Conversely, selection for high plasma VLDL or low plasma glucose resulted in 2 fat lines of chickens. The differences in intermediate- and low-density lipoproteins reflected a different balance in synthesis and catabolism of VLDL among the lines, whereas there was no difference in high-density lipoproteins. These data clearly demonstrate the relationship between lipid and carbohydrate metabolism and their role in the susceptibility to fattening. They suggest a greater use of carbohydrate for hepatic lipogenesis in fat chickens, resulting in a higher synthesis and secretion of VLDL and of their subsequent accumulation of triglycerides in the adipose tissue.  相似文献   

9.
AIM: To study the effect of two different isoenergetic meals, one rich in carbohydrates and one rich in fat, on plasma active ghrelin levels in lean or obese subjects. METHODS: Eight obese and eight lean women, strictly matched for age, were fed two isoenergetic meals of different composition, one rich in fat and one rich in carbohydrates (CHO), on separate days. Plasma active ghrelin levels were measured just before and at 1, 2 and 3 hours after meal consumption. RESULTS: Overall, plasma active ghrelin levels were significantly lower in the obese compared to the lean women (71.7 +/- 29.7 vs. 222.2 +/- 127.2 pmol/liter respectively, p < 0.0001). Furthermore, ghrelin levels decreased significantly by 30 % from baseline values in the lean subjects in the first hour after the CHO-rich meal (mean difference +/- SD): -66.2 +/- 49.0 pmol/liter (p = 0.03), returning to near-baseline levels by 2 hours, while no significant change was observed in the obese subjects. After the fat-rich meal, active ghrelin levels did not change significantly in either group (p > 0.05). CONCLUSIONS: A fat-rich meal does not suppress plasma active ghrelin levels in either lean or obese women. Moreover, in obese, unlike lean women, a high carbohydrate meal also fails to suppress plasma ghrelin levels, which are already quite low. This suggests that ghrelin-induced satiety mechanisms may be compromised in these subjects.  相似文献   

10.
The objectives of this study were to measure intestinal very-low-density lipoprotein (VLDL) production in obese Zucker rats and to assess an eventual effect of a high-fat diet. VLDL secretion was specifically inhibited by orotic acid, and intestinal VLDL output was measured following the Triton WR-1339 method. After a control diet, total VLDL secretion (without orotic acid) was 4.8 +/- 0.3 and 1.4 +/- 0.1 mg triacylglycerol/ml in obese and lean rats, respectively, decreasing by 30% in obese rats after fat-feeding. Intestinal VLDL production was similar in obese and lean rats fed the control diet (0.32 +/- 0.05 and 0.27 +/- 0.05 mg triacylglycerol/ml, respectively), increasing 2.5-fold after fat-feeding in both genotypes. Thus, intestine contributed 21 and 60% of total VLDL in lean but only 7 and 24% in obese rats with the control and high-fat diets, respectively. These results show that the intestine of obese Zucker rats does not contribute to their hypertriglyceridemia, suggesting that it originates solely from liver. Moreover, their intestinal VLDL production was stimulated by fat-feeding to the same extent as in lean animals.  相似文献   

11.
Objective: Adiponectin influences insulin sensitivity (SI) and fat oxidation. Little is known about changes in adiponectin with changes in the fat content of eucaloric diets. We hypothesized that dietary fat content may influence adiponectin according to an individual's SI. Research Methods and Procedures: We measured changes in adiponectin, insulin, glucose, and leptin in response to high‐fat (HF) and low‐fat (LF) eucaloric diets in lean (n = 10) and obese (n = 11) subjects. Obese subjects were further subdivided in relation to a priori SI. Results: We found significantly higher insulin, glucose, and leptin and lower adiponectin in obese vs. lean subjects during both HF and LF. The mean group values of these measurements, including adiponectin (lean, HF 21.9 ± 9.8; LF, 20.8 ± 6.6; obese, HF 10.0 ± 3.3; LF, 9.5 ± 2.3 ng/mL; mean ± SD), did not significantly change between HF and LF diets. However, within the obese group, the insulin‐sensitive subjects had significantly higher adiponectin during HF than did the insulin‐resistant subjects. Additionally, the change in adiponectin from LF to HF diet correlated positively with the obese subjects’ baseline SI. Discussion: Although in lean and obese women, group mean values for adiponectin did not change significantly with a change in fat content of a eucaloric diet, a priori measured SI in obese subjects predicted an increase in adiponectin during the HF diet; this may be a mechanism that preserves SI in an already obese group.  相似文献   

12.
AIM: To investigate fasting and postprandial adiponectin levels in PWS patients as compared to obese and lean subjects and whether they could contribute to the pathogenesis of obesity in this syndrome. METHODS: We studied 7 patients with PWS, 16 obese patients and 42 lean subjects for the fasting study. From this group, we evaluated 7 patients with PWS, 7 age-sex-BMI-matched obese non-PWS patients and 7 age-sex-matched lean subjects before and after the administration of 3,139.5 kJ (750 kcal) of a standard liquid meal (53.2% carbohydrate, 30% fat, 16.7% protein) after an overnight fast. Blood samples were obtained every 15 min for the first hour and every 30 min thereafter until 6 h. Adiponectin, IGF-I, glucose, triglycerides, cholesterol, and insulin were measured. RESULTS: Fasting plasma adiponectin levels were lower in PWS than in lean subjects (5.24+/-2.56 vs. 8.28+/-4.63 microg/ml, p=0.041) but higher than in obese patients (4.01+/-1.27 microg/ml, p=0.047). After the meal, adiponectin concentrations mildly decreased in PWS at time point 240 min, while in obese and lean subjects no changes were observed. However, 6-hour postprandial AUC for adiponectin was similar in all three groups. CONCLUSION: Fasting adiponectin levels are low in PWS, but they are so mildly modulated postprandially that these changes do not seem significant for the pathogenesis of obesity in this syndrome.  相似文献   

13.
14.
Effects of fish oil on VLDL triglyceride kinetics in humans   总被引:8,自引:0,他引:8  
Dietary n-3 fatty acids (FAs) found in fish oils markedly lower plasma triglyceride (TG) and very low density lipoprotein (VLDL) levels in both normal and hypertriglyceridemic subjects. The present study examined the mechanism of this effect. Ten subjects with widely different plasma triglyceride levels (82 to 1002 mg/dl) were fed metabolically controlled diets containing 20% fat. The control diet contained a blend of cocoa butter and peanut oil (P/S = 0.8). The test diet contained fish oil (P/S = 1.1) and provided 10-17 g of n-3 FAs per day (depending on calorie intake). After 3 to 5 weeks of each diet, the kinetics of VLDL-TG were determined over a 48-h period after the injection of [3H]glycerol. The fish oil diet reduced the VLDL-TG synthetic rate from 23 +/- 14.3 (mean +/- SD) to 12.6 +/- 7.5 mg/h per kg ideal weight (P less than 0.005) and increased the fractional catabolic rate (FCR) for VLDL-TG from 0.23 +/- 0.12 to 0.38 +/- 0.16 h -1 (P less than 0.005). At the same time, there was a 66% reduction of plasma triglyceride levels, resulting largely from a 78% decrease in VLDL-TG levels (398 +/- 317 to 87 +/- 77 mg/dl; P less than 0.005). There was a strong correlation (r = 0.83; P less than 0.01) between the change in synthetic rates and pool sizes, but there was no correlation (r = 0.24; NS) between changes in FCRs and pool sizes. The VLDL cholesterol: triglyceride ratio increased during the n-3 diet suggesting that smaller VLDL particles were present. These particles would be expected to leave the VLDL fraction more rapidly than larger particles producing a higher FCR. We conclude that the hypotriglyceridemic effect of fish oil appears to be caused primarily by an inhibition of very low density lipoprotein-triglyceride synthesis, but an additional, independent effect upon VLDL catabolism cannot be ruled out.  相似文献   

15.
A catabolic and hypolipemic effect of glucagon has been described in normal animals. We therefore studied the role of glucagon in genetically obese, hyperlipemic rats. Twelve genetically obese hyperlipemic LA/N-cp/cp (corpulent) rats and 12 lean littermates were fed either 54% starch or 54% sucrose for 12 weeks. Plasma glucagon and insulin levels and glucagon and insulin binding to liver membranes were measured. Comparing all corpulent and lean animals regardless of diet, a significant (P less than 0.0001) phenotypical effect (cp/cp greater than lean) was observed in plasma insulin levels (464 +/- 54 vs 70.3 +/- 7.6 muu/ml, mean +/- SEM). Insulin binding (2.68 vs 16.1%/50 micrograms protein) and glucagon binding (25.6 vs 47.3%/50 micrograms protein) were both significantly lower (P less than 0.0001) in corpulent rats as compared to their lean littermates. Sucrose feeding had marginal effect on plasma insulin or insulin binding. It, however, decreased glucagon binding in corpulent rats but not in their controls. A significant negative correlation was observed between plasma insulin and insulin binding, while a positive correlation was seen for plasma glucagon and glucagon binding. A significant negative correlation was observed between plasma glucagon and lipogenic enzymes (glucose-6-phosphate dehydrogenase and malic enzyme) in liver and between glucagon binding and these enzymes. We propose that in these genetically obese rats, in addition to hyperinsulinemia, impaired glucagon activity as manifested by decreased glucagon binding to target cells may be an important contributor to the hyperlipemia and obesity. A further decrease in glucagon binding in rats fed sucrose indicates that sucrose, per se, may be an additional contributory factor.  相似文献   

16.
The effects of conventional doses of two synthetic contraceptive steroids on the concentration and rate of secretion of plasma triglycerides from the splanchnic region were investigated. Studies were undertaken in miniature swine under steady state conditions produced by prolonged constant hypercaloric intravenous infusions of glucose. The steroids, alone or in combination, were administered with the high carbohydrate diet for at least 2 weeks prior to study of splanchnic metabolism and were also infused intravenously during the studies. Splanchnic triglyceride secretion was determined from measurements of plasma flow and transsplanchnic radiochemical gradients of plasma triglycerides. Compared with studies in the untreated animal, norethindrone acetate significantly reduced the arterial concentration (1.1 +/- 0.1 vs. 0.7 +/- 0.1 mM) and rate of splanchnic secretion of plasma triglyceride fatty acids (2.0 +/- 0.4 vs. 0.8 +/- 0.1 micro mol/min.kg body wt(0.75)) and decreased the percent of free fatty acids entering the splanchnic region that was converted to plasma triglycerides (22 +/- 5 vs. 13 +/- 3%, P < 0.05). Ethynylestradiol, in the dose employed, had no significant effect on these variables; however, ethynylestradiol and norethindrone acetate together gave responses similar to norethindrone acetate alone. When the glucose was given intraduodenally vs. intravenously, values for splanchnic metabolism of triglycerides were unchanged. The hypolipemic effect of norethindrone acetate in glucose-fed swine was attributable to inhibition of hepatic triglyceride secretion.-Wolfe, B. M., and D. M. Grace. Norethindrone acetate inhibition of splanchnic triglyceride secretion in conscious glucose-fed swine.  相似文献   

17.
The objective of this study was to test the hypothesis that increased fatty acid trapping by subcutaneous adipose tissue might contribute to the development and/or maintenance of obesity. To do so, venoarterial (V-A) gradients across subcutaneous adipose tissue for triglycerides, glycerol, nonesterified fatty acid (NEFA), and acylation-stimulating protein (ASP) were determined in eight lean females [body mass index (BMI), 22.2 +/- 0.6] and eight obese females (BMI, 34.4 +/- 3.4). Plasma insulin was also measured at intervals throughout this period. Fasting plasma triglyceride was significantly higher in the obese group and postprandial triglyceride was also significantly delayed. In contrast, both triglyceride clearance and fatty acid uptake by subcutaneous adipose tissue were significantly greater in the obese group compared with the lean group. Fasting insulin did not differ between the groups, but postprandial insulin values were significantly higher in the obese group. The pattern of ASP release from subcutaneous adipose tissue also appeared to differ in that it was significantly greater in the early postprandial period (0;-90 min) in the obese group versus the lean group and this correlated with greater triglyceride clearance during this period. Moreover, there were strong, positive correlations between BMI and the V-A gradient for fasting ASP, the 0- to 90-min area under the curve (AUC) for ASP V-A gradient fasting insulin, and the 0- to 90-min AUC for fatty acid incorporation into adipose tissue. Taken together, these data demonstrate that fatty acid trapping by adipose tissue can be increased even when overall plasma triglyceride clearance is delayed. The postprandial pattern of insulin, in particular, was altered in the obese, although it is certainly possible that differences in ASP release or response could also contribute to increased fatty acid trapping in the obese.The data, therefore, suggest that increased fatty acid trapping by adipose tissue may be a feature of some forms of obesity.  相似文献   

18.
This study examines the immediate effect of ingestion of oral carbohydrate and fat on lipoprotein lipase (LPL) activity post-heparin in six lean and six obese age-matched women. Subjects were given, on two separate occasions, 340 kcal carbohydrate or an equicaloric amount of fat, both in 300 ml of water. Post-heparin LPL activity (10,000 U) was measured on each occasion 120 minutes after ingestion of the meal. Following oral carbohydrate postprandial plasma insulin levels were significantly higher in obese subjects than in lean (p < 0.01). Impaired glucose tolerance was seen in the obese group. GIP secretion was similar in lean and obese subjects both during oral fat and carbohydrate ingestion. GLP-1 secretion post-carbohydrate was lower in obese subjects. Total LPL activity unadjusted for body weight was similar in the two groups after carbohydrate administration but was significantly lower when adjusted per kg body weight. Total LPL activity was lower in the lean group at 130 minutes after fat administration (p < 0.02). Fasting serum triglycerides were higher in the obese group and were inversely related to the post-carbohydrate LPL activity (r = - 0.65, p < 0.02). Intraluminal lipoprotein lipase activity is not increased in established obesity. Fat and carbohydrate nutrients may affect LPL activity differently in lean and obese subjects.  相似文献   

19.
Oxidative stress is higher in obese diabetic than in non-diabetic subjects. This pilot study evaluates oxidative stress during short-term administration of a very low calorie diet in obese persons. Nine obese Type 2 diabetic patients (age 55+/-5 years, BMI 35.9+/-1.9 kg/m2) and nine obese non-diabetic control subjects (age 52+/-6 years, BMI 37.3+/-2.1 kg/m2) were treated by a very low calorie diet (600 kcal daily) during 8 days stay in the hospital. Serum cholesterol, triglycerides, non-esterified fatty acids (NEFA), beta-hydroxybutyrate (B-HB), ascorbic acid (AA), alpha-tocopherol (AT), plasma malondialdehyde (MDA) and superoxide dismutase (SOD) activity in erythrocytes were measured before and on day 3 and 8 of very low calorie diet administration. A decrease of serum cholesterol and triglyceride concentrations on day 8 was associated with a significant increase of NEFA (0.30+/-0.13 vs. 0.47+/-0.11 micromol/l, p<0.001) and B-HB (0.36+/-.13 vs. 2.23+/-1.00 mmol/l, p<0.001) in controls but only of B-HB (1.11+/-0.72 vs. 3.02+/-1.95 mmol/l, p<0.001) in diabetic patients. A significant decrease of plasma MDA and serum AT together with an increase of SOD activity and AA concentration (p<0.01) was observed in control persons, whereas an increase of SOD activity (p<0.01) was only found in diabetic patients after one week of the very low calorie diet. There was a significant correlation between NEFA or B-HB and SOD activity (p<0.01). We conclude that one week of a very low calorie diet administration decreases oxidative stress in obese non-diabetic but only partly in diabetic persons. Diabetes mellitus causes a greater resistance to the effects of a low calorie diet on oxidative stress.  相似文献   

20.
Soybean and its isoflavones have been shown to have beneficial effects on carbohydrate and lipid metabolism and on renal function. Probiotics may potentiate the beneficial effects of isoflavones by converting the inactive isoflavone glycoside to aglycones, which are biologically active, thereby producing a synergistic effect. We therefore studied the effects of soybean isoflavones in the presence and absence of probiotics on glucose and triglyceride metabolism and the peptide hormones involved in their metabolism. Lean and obese SHR/N-cp rats were fed AIN-93 diets containing 0.1% soybean isoflavone mixture, 0.1% probiotics mixture or both. Plasma was analyzed for glucose, triglycerides, parameters of renal function and peptide hormones -- insulin, leptin, glucagon and ACTH -- that are involved in glucose and lipid metabolism. Isoflavones given alone lowered plasma glucose in both phenotypes while triglyceride was decreased only in lean animals. Isoflavones also lowered aspartate amino transferase and alanine amino transferase in both phenotypes. Isoflavones had significant effect on plasma insulin, leptin and glucagon in lean rats but not in obese rats. Thus, our data show that in lean animals, isoflavones have hypoglycemic and hypolipidemic effect, and the effect is mediated by changes in peptide hormones. When lipid levels are very high as in obese rats, isoflavones fail to lower plasma triglyceride levels. Probiotics do not appear to enhance the effect of isoflavones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号