首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Symbiobacterium thermophilum is a tryptophanase-positive thermophile which shows normal growth only in coculture with its supporting bacteria. Analysis of the 16S rRNA gene (rDNA) indicated that the bacterium belongs to a novel phylogenetic branch at the outermost position of the gram-positive bacterial group without clustering to any other known genus. Here we describe the distribution and diversity of S. thermophilum and related bacteria in the environment. Thermostable tryptophanase activity and amplification of the specific 16S rDNA fragment were effectively employed to detect the presence of Symbiobacterium. Enrichment with kanamycin raised detection sensitivity. Mixed cultures of thermophiles containing Symbiobacterium species were frequently obtained from compost, soil, animal feces, and contents in the intestinal tracts, as well as feeds. Phylogenetic analysis and denaturing gradient gel electrophoresis of the specific 16S rDNA amplicons revealed a diversity of this group of bacteria in the environment.  相似文献   

2.
Bauxite residue (red mud), generated during the extraction of alumina from bauxite ore is characterized by high pH, high concentrations of soluble ions with low or virtually no organic matter. These extreme conditions along with numerous nutrient deficiencies, limit the microbial growth and vegetation establishment. In the present study, diversity of both cultivable and non-cultivable bacteria present in the red mud was investigated by 16S rDNA sequence analyses. The cultivable bacteria were identified as Agromyces indicus, Bacillus litoralis, B. anthracis, Chungangia koreensis, Kokuria flava, K. polaris, Microbacterium hominis, Planococcus plakortidis, Pseudomonas alcaliphila and Salinococcus roseus based on their 16S rDNA sequence analysis. These isolates were alkali tolerant, positive for one or more of the enzyme activities tested, able to produce organic acids and oxidize wide range of carbon substrates. For non-cultivable diversity of bacteria, DNA was extracted from the bauxite residue samples and 16S rDNA clone library was constructed. The 16S rDNA clones of this study showed affiliation to three major phyla predominant being betaproteobacteria (41.1 %) followed by gammaproteobacteria (37.5 %) and bacteroidetes (21.4 %). We are reporting for the first time about the bacterial diversity of this unique and extreme environment.  相似文献   

3.
The diversity of methanotrophic bacteria associated with roots of submerged rice plants was assessed using cultivation-independent techniques. The research focused mainly on the retrieval of pmoA, which encodes the α subunit of the particulate methane monooxygenase. A novel methanotroph-specific community-profiling method was established using the terminal restriction fragment length polymorphism (T-RFLP) technique. The T-RFLP profiles clearly revealed a more complex root-associated methanotrophic community than did banding patterns obtained by pmoA-based denaturing gradient gel electrophoresis. The comparison of pmoA-based T-RFLP profiles obtained from rice roots and bulk soil of flooded rice microcosms suggested that there was a substantially higher abundance of type I methanotrophs on rice roots than in the bulk soil. These were affiliated to the genera Methylomonas, Methylobacter, Methylococcus, and to a novel type I methanotroph sublineage. By contrast, type II methanotrophs of the Methylocystis-Methylosinus group could be detected with high relative signal intensity in both soil and root compartments. Phylogenetic treeing analyses and a set of substrate-diagnostic amino acid residues provided evidence that a novel pmoA lineage was detected. This branched distinctly from all currently known methanotrophs. To examine whether the retrieval of pmoA provided a complete view of root-associated methanotroph diversity, we also assessed the diversity detectable by recovery of genes coding for subunits of soluble methane monooxygenase (mmoX) and methanol dehydrogenase (mxaF). In addition, both 16S rRNA and 16S ribosomal DNA (rDNA) were retrieved using a PCR primer set specific to type I methanotrophs. The overall methanotroph diversity detected by recovery of mmoX, mxaF, and 16S rRNA and 16S rDNA corresponded well to the diversity detectable by retrieval of pmoA.  相似文献   

4.
Primer sets were designed to target specific 16S ribosomal DNA (rDNA) sequences of photosynthetic bacteria, including the green sulfur bacteria, the green nonsulfur bacteria, and the members of the Heliobacteriaceae (a gram-positive phylum). Due to the phylogenetic diversity of purple sulfur and purple nonsulfur phototrophs, the 16S rDNA gene was not an appropriate target for phylogenetic rDNA primers. Thus, a primer set was designed that targets the pufM gene, encoding the M subunit of the photosynthetic reaction center, which is universally distributed among purple phototrophic bacteria. The pufM primer set amplified DNAs not only from purple sulfur and purple nonsulfur phototrophs but also from Chloroflexus species, which also produce a reaction center like that of the purple bacteria. Although the purple bacterial reaction center structurally resembles green plant photosystem II, the pufM primers did not amplify cyanobacterial DNA, further indicating their specificity for purple anoxyphototrophs. This combination of phylogenetic- and photosynthesis-specific primers covers all groups of known anoxygenic phototrophs and as such shows promise as a molecular tool for the rapid assessment of natural samples in ecological studies of these organisms.  相似文献   

5.
We characterized the intracellular symbiotic bacteria of the mulberry psyllid Anomoneura mori by performing a molecular phylogenetic analysis combined with in situ hybridization. In its abdomen, the psyllid has a large, yellow, bilobed mycetome (or bacteriome) which consists of many round uninucleated mycetocytes (or bacteriocytes) enclosing syncytial tissue. The mycetocytes and syncytium harbor specific intracellular bacteria, the X-symbionts and Y-symbionts, respectively. Almost the entire length of the bacterial 16S ribosomal DNA (rDNA) was amplified and cloned from the whole DNA of A. mori, and two clones, the A-type and B-type clones, were identified by restriction fragment length polymorphism analysis. In situ hybridization with specific oligonucleotide probes demonstrated that the A-type and B-type 16S rDNAs were derived from the X-symbionts and Y-symbionts, respectively. Molecular phylogenetic analyses of the 16S rDNA sequences showed that these symbionts belong to distinct lineages in the γ subdivision of the Proteobacteria. No 16S rDNA sequences in the databases were closely related to the 16S rDNA sequences of the X- and Y-symbionts. However, the sequences that were relatively closely related to them were the sequences of endosymbionts of other insects. The nucleotide compositions of the 16S rDNAs of the X- and Y-symbionts were highly AT biased, and the sequence of the X-symbiont was the most AT-rich bacterial 16S rDNA sequence reported so far.  相似文献   

6.
The Japan Trench land slope at a depth of 6,400 m is the deepest cold-seep environment with Calyptogena communities. Sediment samples from inside and beside the Calyptogena communities were collected, and the microbial diversity in the sediment samples was studied by molecular phylogenetic techniques. From DNA extracted directly from the sediment samples, 16S rDNAs were amplified by the polymerase chain reaction method. The sequences of the amplified 16S rDNAs selected by restriction fragment length polymorphism analysis were determined and compared with sequences in DNA databases. The results showed that 33 different bacterial 16S rDNA sequences from the two samples analyzed fell into similar phylogenetic categories, the α-, γ-, δ-, and ɛ-subdivisions of Proteobacteria, Cytophaga, and gram-positive bacteria; some of the 16S rDNA sequences were common to both samples. δ- and ɛ-Proteobacteria-related sequences were abundant in both sediments. These sequences are mostly related to sulfate-reducing or sulfur-reducing bacteria and epibionts, respectively. Eight different archaeal 16S rDNA sequences were cloned from the sediments. The majority of the archaeal 16S rDNA sequences clustered in Crenarchaeota and showed high similarities to marine group I archaeal rDNA. A Methanococcoides burtonii–related sequence obtained from the sediment clustered in the Euryarchaeota indicating that M. burtonii–related strains in the area of Calyptogena communities may contribute to production of methane in this environment. From these results, we propose a possible model of sulfur circulation within the microbial community and that of Calyptogena clams in the cold-seep environment. Received June 15, 1998; accepted November 10, 1998.  相似文献   

7.
A Lactobacillus group-specific PCR primer, S-G-Lab-0677-a-A-17, was developed to selectively amplify 16S ribosomal DNA (rDNA) from lactobacilli and related lactic acid bacteria, including members of the genera Leuconostoc, Pediococcus, and Weissella. Amplicons generated by PCR from a variety of gastrointestinal (GI) tract samples, including those originating from feces and cecum, resulted predominantly in Lactobacillus-like sequences, of which ca. 28% were most similar to the 16S rDNA of Lactobacillus ruminis. Moreover, four sequences of Leuconostoc species were retrieved that, so far, have only been detected in environments other than the GI tract, such as fermented food products. The validity of the primer was further demonstrated by using Lactobacillus-specific PCR and denaturing gradient gel electrophoresis (DGGE) of the 16S rDNA amplicons of fecal and cecal origin from different age groups. The stability of the GI-tract bacterial community in different age groups over various time periods was studied. The Lactobacillus community in three adults over a 2-year period showed variation in composition and stability depending on the individual, while successional change of the Lactobacillus community was observed during the first 5 months of an infant’s life. Furthermore, the specific PCR and DGGE approach was tested to study the retention in fecal samples of a Lactobacillus strain administered during a clinical trial. In conclusion, the combination of specific PCR and DGGE analysis of 16S rDNA amplicons allows the diversity of important groups of bacteria that are present in low numbers in specific ecosystems to be characterized, such as the lactobacilli in the human GI tract.  相似文献   

8.
Molecular techniques were employed to document the microbial diversity associated with the marine sponge Rhopaloeides odorabile. The phylogenetic affiliation of sponge-associated bacteria was assessed by 16S rRNA sequencing of cloned DNA fragments. Fluorescence in situ hybridization (FISH) was used to confirm the presence of the predominant groups indicated by 16S rDNA analysis. The community structure was extremely diverse with representatives of the Actinobacteria, low-G+C gram-positive bacteria, the β- and γ-subdivisions of the Proteobacteria, Cytophaga/Flavobacterium, green sulfur bacteria, green nonsulfur bacteria, planctomycetes, and other sequence types with no known close relatives. FISH probes revealed the spatial location of these bacteria within the sponge tissue, in some cases suggesting possible symbiotic functions. The high proportion of 16S rRNA sequences derived from novel actinomycetes is good evidence for the presence of an indigenous marine actinomycete assemblage in R. odorabile. High microbial diversity was inferred from low duplication of clones in a library with 70 representatives. Determining the phylogenetic affiliation of sponge-associated microorganisms by 16S rRNA analysis facilitated the rational selection of culture media and isolation conditions to target specific groups of well-represented bacteria for laboratory culture. Novel media incorporating sponge extracts were used to isolate bacteria not previously recovered from this sponge.  相似文献   

9.
Contemporary microbial community analysis frequently involves PCR-amplified sequences of the 16S rRNA gene (rDNA). However, this technology carries the inherent problem of heterogeneity between copies of the 16S rDNA in many species. As an alternative to 16S rDNA sequences in community analysis, we employed the gene for the RNA polymerase beta subunit (rpoB), which appears to exist in one copy only in bacteria. In the present study, the frequency of 16S rDNA heterogeneity in bacteria isolated from the marine environment was assessed using bacterial isolates from the red alga Delisea pulchra and from the surface of a marine rock. Ten strains commonly used in our laboratory were also assessed for the degree of heterogeneity between the copies of 16S rDNA and were used to illustrate the effect of this heterogeneity on microbial community pattern analysis. The rock isolates and the laboratory strains were also used to confirm nonheterogeneity of rpoB, as well as to investigate the versatility of the primers. In addition, a comparison between 16S rDNA and rpoB PCR-DGGE (denaturing gradient gel electrophoresis)-based community analyses was performed using a DNA mixture of nine isolates from D. pulchra. Eight out of 14 isolates from D. pulchra, all rock isolates, and 6 of 10 laboratory strains displayed multiple bands for 16S rDNA when analyzed by DGGE. There was no indication of heterogeneity for either the rock isolates or the laboratory strains when rpoB was used for PCR-DGGE analysis. Microbial community pattern analysis using 16S rDNA PCR-DGGE showed an overestimation of the number of laboratory strains in the sample, while some strains were not represented. Therefore, the 16S rDNA PCR-DGGE-based community analysis was proven to be severely limited by 16S rDNA heterogeneity. The mixture of isolates from D. pulchra proved to be more accurately described using rpoB, compared to the 16S rDNA-based PCR-DGGE.  相似文献   

10.
Phylogenetic analysis of 16S ribosomal DNA (rDNA) clones obtained by PCR from uncultured bacteria inhabiting a wide range of environments has increased our knowledge of bacterial diversity. One possible problem in the assessment of bacterial diversity based on sequence information is that PCR is exquisitely sensitive to contaminating 16S rDNA. This raises the possibility that some putative environmental rRNA sequences in fact correspond to contaminant sequences. To document potential contaminants, we cloned and sequenced PCR-amplified 16S rDNA fragments obtained at low levels in the absence of added template DNA. 16S rDNA sequences closely related to the genera Duganella (formerly Zoogloea), Acinetobacter, Stenotrophomonas, Escherichia, Leptothrix, and Herbaspirillum were identified in contaminant libraries and in clone libraries from diverse, generally low-biomass habitats. The rRNA sequences detected possibly are common contaminants in reagents used to prepare genomic DNA. Consequently, their detection in processed environmental samples may not reflect environmentally relevant organisms.  相似文献   

11.
The environmental distribution of Dehalococcoides group organisms and their association with chloroethene-contaminated sites were examined. Samples from 24 chloroethene-dechlorinating sites scattered throughout North America and Europe were tested for the presence of members of the Dehalococcoides group by using a PCR assay developed to detect Dehalococcoides 16S rRNA gene (rDNA) sequences. Sequences identified by sequence analysis as sequences of members of the Dehalococcoides group were detected at 21 sites. Full dechlorination of chloroethenes to ethene occurred at these sites. Dehalococcoides sequences were not detected in samples from three sites at which partial dechlorination of chloroethenes occurred, where dechlorination appeared to stop at 1,2-cis-dichloroethene. Phylogenetic analysis of the 16S rDNA amplicons confirmed that Dehalococcoides sequences formed a unique 16S rDNA group. These 16S rDNA sequences were divided into three subgroups based on specific base substitution patterns in variable regions 2 and 6 of the Dehalococcoides 16S rDNA sequence. Analyses also demonstrated that specific base substitution patterns were signature patterns. The specific base substitutions distinguished the three sequence subgroups phylogenetically. These results demonstrated that members of the Dehalococcoides group are widely distributed in nature and can be found in a variety of geological formations and in different climatic zones. Furthermore, the association of these organisms with full dechlorination of chloroethenes suggests that they are promising candidates for engineered bioremediation and may be important contributors to natural attenuation of chloroethenes.  相似文献   

12.
This study aimed at investigating the fecal microbiota and metabolome of children with Pervasive Developmental Disorder Not Otherwise Specified (PDD-NOS) and autism (AD) in comparison to healthy children (HC). Bacterial tag-encoded FLX-titanium amplicon pyrosequencing (bTEFAP) of the 16S rDNA and 16S rRNA analyses were carried out to determine total bacteria (16S rDNA) and metabolically active bacteria (16S rRNA), respectively. The main bacterial phyla (Firmicutes, Bacteroidetes, Fusobacteria and Verrucomicrobia) significantly (P<0.05) changed among the three groups of children. As estimated by rarefaction, Chao and Shannon diversity index, the highest microbial diversity was found in AD children. Based on 16S-rRNA and culture-dependent data, Faecalibacterium and Ruminococcus were present at the highest level in fecal samples of PDD-NOS and HC children. Caloramator, Sarcina and Clostridium genera were the highest in AD children. Compared to HC, the composition of Lachnospiraceae family also differed in PDD-NOS and, especially, AD children. Except for Eubacterium siraeum, the lowest level of Eubacteriaceae was found on fecal samples of AD children. The level of Bacteroidetes genera and some Alistipes and Akkermansia species were almost the highest in PDD-NOS or AD children as well as almost all the identified Sutterellaceae and Enterobacteriaceae were the highest in AD. Compared to HC children, Bifidobacterium species decreased in AD. As shown by Canonical Discriminant Analysis of Principal Coordinates, the levels of free amino acids and volatile organic compounds of fecal samples were markedly affected in PDD-NOS and, especially, AD children. If the gut microbiota differences among AD and PDD-NOS and HC children are one of the concomitant causes or the consequence of autism, they may have implications regarding specific diagnostic test, and/or for treatment and prevention.  相似文献   

13.
The culturability of abundant members of the domain Bacteria in North Sea bacterioplankton was investigated by a combination of various cultivation strategies and cultivation-independent 16S rRNA-based techniques. We retrieved 16S rRNA gene (rDNA) clones from environmental DNAs and determined the in situ abundance of different groups and genera by fluorescence in situ hybridization (FISH). A culture collection of 145 strains was established by plating on oligotrophic medium. Isolates were screened by FISH, amplified ribosomal DNA restriction analysis (ARDRA), and sequencing of representative 16S rDNAs. The majority of isolates were members of the genera Pseudoalteromonas, Alteromonas, and Vibrio. Despite being readily culturable, they constituted only a minor fraction of the bacterioplankton community. They were not detected in the 16S rDNA library, and FISH indicated rare (<1% of total cell counts) occurrence as large, rRNA-rich, particle-associated bacteria. Conversely, abundant members of the Cytophaga-Flavobacteria and gamma proteobacterial SAR86 clusters, identified by FISH as 17 to 30% and up to 10% of total cells in the North Sea bacterioplankton, respectively, were cultured rarely or not at all. Whereas SAR86-affiliated clones dominated the 16S rDNA library (44 of 53 clones), no clone affiliated to the Cytophaga-Flavobacterum cluster was retrieved. The only readily culturable abundant group of marine bacteria was related to the genus Roseobacter. The group made up 10% of the total cells in the summer, and the corresponding sequences were also present in our clone library. Rarefaction analysis of the ARDRA patterns of all of the isolates suggested that the total culturable diversity by our method was high and still not covered by the numbers of isolated strains but was almost saturated for the gamma proteobacteria. This predicts a limit to the isolation of unculturable marine bacteria, particularly the gamma-proteobacterial SAR86 cluster, as long as no new techniques for isolation are available and thus contrasts with more optimistic accounts of the culturability of marine bacterioplankton.  相似文献   

14.
In this study, the nitrogen fixing Astragalus glycyphyllos symbionts were characterized by phenotypic properties, restriction fragment length polymorphism (RFLP), and sequences of 16S rDNA. The generation time of A. glycyphyllos rhizobia in yeast extract mannitol medium was in the range 4–6 h. The studied isolates exhibited a low resistance to antibiotics, a moderate tolerance to NaCl, assimilated di- and trisaccharides, and produced acid in medium containing mannitol as a sole carbon source. In the cluster analysis, based on 86 phenotypic properties of A. glycyphyllos symbionts and the reference rhizobia, examined isolates and the genus Mesorhizobium strains were placed on a single branch, clearly distinct from other lineages of rhizobial genera. By the comparative analysis of 16S rRNA gene sequences and 16S rDNA–RFLP, A. glycyphyllos nodulators were also identified as the members of the genus Mesorhizobium. On the 16S rDNA sequence phylogram, the representatives of A. glycyphyllos nodule isolates formed a robust, monophyletic cluster together with the Mesorhizobium species at 16S rDNA sequence similarity of these bacteria between 95 and 99 %. Similarly, the cluster analysis of the combined RFLP–16S rDNA patterns, obtained with seven restriction endonucleases, showed that A. glycyphyllos rhizobia are closely related to the genus Mesorhizobium bacteria. The taxonomic approaches used in this paper allowed us to classify the studied bacteria into the genus Mesorhizobium.  相似文献   

15.
Several studies isolated fungal and bacterial species from extreme environments, such as Sabkha and hot deserts, as their natural habitat, some of which are of medicinal importance. Current research aimed investigating the microbial (fungi and bacteria) diversity and abundance in Sabkha and desert areas in Saudi Arabia. Soil samples from nine different geographical areas (Al-Aushazia lake, AlQasab, AlKasar, Tabuk, Al-Kharj, Al-Madina, Jubail, Taif and Abqaiq) were collected and cultured for microbial isolation. Isolated fungi and bacteria were identified by molecular techniques (PCR and sequencing). Based on 18S rDNA sequencing, 203 fungal species belonging to 33 genera were identified. The most common fungal genera were Fusarium, Alternaria, Chaetomium, Aspergillus Cochliobolus and Pencillium, while the most common species were Chaetomium globosum and Fusarium oxysporum. By 16S rDNA sequencing 22 bacterial species belonging to only two genera, Bacillus and Lactobacillus, were identified. The most commonly isolated bacterial species were Bacillus subtilis and Lactobacillus murinus. Some fungal species were confined to specific locations, such as Actinomyces elegans, Fusarium proliferatum, Gymnoascus reesii and Myzostoma spp. that were only isolated from Al-Aushazia soil. AlQasab soil had the highest microbial diversity among other areas with abundances of 23.5% and 4.4% of total fungi, and bacteria, respectively. Findings of this study show a higher degree of fungal diversity than that of bacteria in all studied areas. Further studies needed to investigate the connection between some isolated species and their habitat ecology, as well as to identify those of medicinal importance.  相似文献   

16.
There is a paucity of knowledge on microbial community diversity and naturally occurring seasonal variations in agricultural soil. For this purpose the soil microbial community of a wheat field on an experimental farm in The Netherlands was studied by using both cultivation-based and molecule-based methods. Samples were taken in the different seasons over a 1-year period. Fatty acid-based typing of bacterial isolates obtained via plating revealed a diverse community of mainly gram-positive bacteria, and only a few isolates appeared to belong to the Proteobacteria and green sulfur bacteria. Some genera, such as Micrococcus, Arthrobacter, and Corynebacterium were detected throughout the year, while Bacillus was found only in July. Isolate diversity was lowest in July, and the most abundant species, Arthrobacter oxydans, and members of the genus Pseudomonas were found in reduced numbers in July. Analysis by molecular techniques showed that diversity of cloned 16S ribosomal DNA (rDNA) sequences was greater than the diversity among cultured isolates. Moreover, based on analysis of 16S rDNA sequences, there was a more even distribution among five main divisions, Acidobacterium, Proteobacteria, Nitrospira, cyanobacteria, and green sulfur bacteria. No clones were found belonging to the gram-positive bacteria, which dominated the cultured isolates. Seasonal fluctuations were assessed by denaturing gradient gel electrophoresis. Statistical analysis of the banding patterns revealed significant differences between samples taken in different seasons. Cluster analysis of the patterns revealed that the bacterial community in July clearly differed from those in the other months. Although the molecule- and cultivation-based methods allowed the detection of different parts of the bacterial community, results from both methods indicated that the community present in July showed the largest difference from the communities of the other months. Efforts were made to use the sequence data for providing insight into more general ecological relationships. Based on the distribution of 16S rDNA sequences among the bacterial divisions found in this work and in literature, it is suggested that the ratio between the number of Proteobacteria and Acidobacterium organisms might be indicative of the trophic level of the soil.  相似文献   

17.
Within the last several years, molecular techniques have uncovered numerous 16S rRNA gene (rDNA) sequences which represent a unique and globally distributed lineage of the kingdom Crenarchaeota that is phylogenetically distinct from currently characterized crenarchaeotal species. rDNA sequences of members of this novel crenarchaeotal group have been recovered from low- to moderate-temperature environments (−1.5 to 32°C), in contrast to the high-temperature environments (temperature, >80°C) required for growth of the currently recognized crenarchaeotal species. We determined the diversity and abundance of the nonthermophilic members of the Crenarchaeota in soil samples taken from cultivated and uncultivated fields located at the Kellogg Biological Station’s Long-Term Ecological Research site (Hickory Corners, Mich.). Clones were generated from 16S rDNA that was amplified by using broad-specificity archaeal PCR primers. Twelve crenarchaeotal sequences were identified, and the phylogenetic relationships between these sequences and previously described crenarchaeotal 16S rDNA sequences were determined. Phylogenetic analyses included nonthermophilic crenarchaeotal sequences found in public databases and revealed that the nonthermophilic Crenarchaeota group is composed of at least four distinct phylogenetic clusters. A 16S rRNA-targeted oligonucleotide probe specific for all known nonthermophilic crenarchaeotal sequences was designed and used to determine their abundance in soil samples. The nonthermophilic Crenarchaeota accounted for as much as 1.42% ± 0.42% of the 16S rRNA in the soils analyzed.  相似文献   

18.
Sun L  Qiu F  Zhang X  Dai X  Dong X  Song W 《Microbial ecology》2008,55(3):415-424
The endophytic bacterial diversity in the roots of rice (Oryza sativa L.) growing in the agricultural experimental station in Hebei Province, China was analyzed by 16S rDNA cloning, amplified ribosomal DNA restriction analysis (ARDRA), and sequence homology comparison. To effectively exclude the interference of chloroplast DNA and mitochondrial DNA of rice, a pair of bacterial PCR primers (799f–1492r) was selected to specifically amplify bacterial 16S rDNA sequences directly from rice root tissues. Among 192 positive clones in the 16S rDNA library of endophytes, 52 OTUs (Operational Taxonomic Units) were identified based on the similarity of the ARDRA banding profiles. Sequence analysis revealed diverse phyla of bacteria in the 16S rDNA library, which consisted of alpha, beta, gamma, delta, and epsilon subclasses of the Proteobacteria, Cytophaga/Flexibacter/Bacteroides (CFB) phylum, low G+C gram-positive bacteria, Deinococcus-Thermus, Acidobacteria, and archaea. The dominant group was Betaproteobacteria (27.08% of the total clones), and the most dominant genus was Stenotrophomonas. More than 14.58% of the total clones showed high similarity to uncultured bacteria, suggesting that nonculturable bacteria were detected in rice endophytic bacterial community. To our knowledge, this is the first report that archaea has been identified as endophytes associated with rice by the culture-independent approach. The results suggest that the diversity of endophytic bacteria is abundant in rice roots.  相似文献   

19.
Symbiobacterium thermophilum is a syntrophic bacterium whose growth depends on coculture with a Bacillus sp. Recently, we discovered that CO2 generated by Bacillus is the major inducer for the growth of S. thermophilum; however, the evidence suggested that an additional element is required for its full growth. Here, we studied the self-growth-inhibitory substances produced by S. thermophilum. We succeeded in purifying two substances from an ether extract of the culture supernatant of S. thermophilum by multiple steps of reverse-phase chromatography. Electron ionization mass spectrometry and nuclear magnetic resonance analyses of the purified preparation identified the substances as 2,2-bis(3′-indolyl)indoxyl (BII) and 1,1-bis(3′-indolyl)ethane (BIE). The pure growth of S. thermophilum was inhibited by authentic BII and BIE with MICs of 12 and 7 μg/ml, respectively; however, its growth in coculture with Bacillus was not inhibited by BII at the saturation concentration and was inhibited by BIE with an MIC of 14 μg/ml. Both BII and BIE inhibited the growth of other microorganisms. Unexpectedly, the accumulation levels of both BII and BIE in the pure culture of S. thermophilum were far lower than the MICs (<0.1 μg/ml) while a marked amount of BIE (6 to 7 μg/ml) equivalent to the MIC had accumulated in the coculture. An exogenous supply of surfactin alleviated the sensitivities of several BIE-sensitive bacteria against BIE. The results suggest that Bacillus benefits S. thermophilum by detoxifying BII and BIE in the coculture. A similar mechanism may underlie mutualistic relationships between different microorganisms.  相似文献   

20.
Chaudhary PP  Sirohi SK  Saxena J 《Gene》2012,493(1):13-17
The molecular diversity of rumen methanogens was investigated by 16S rDNA gene library prepared from the rumen contents obtained from Murrah buffaloes in India. Genomic DNA was isolated from adult male fistulated buffaloes and PCR conditions were set up using specific primers. Amplified product was cloned into a suitable vector, and the positive clones were selected assuming based on blue-white screening and sequenced. Positive clones were reamplified and the resulting PCR products were further subjected to Amplified Ribosomal DNA Restriction Analysis (ARDRA) by using HaeIII enzyme. A total of 108 clones were examined, and the analysis revealed 16 phylotypes. Out of sixteen phylotypes, nine phylotypes belong to the uncultured group of methanogens, and the rest of seven phylotypes belong to the order Methanomicrobiales, Methanococcales and Methanobacteriales. Out of the 108 rDNA clones, 66 clones which constitute 61.1% of the total clone representing 9 phylotypes, show less than 97% sequence similarity with any of the cultured strain of methanogens. The second largest group of clones (24 clones) represented by four phylotypes show a sequence similarity ranging from 91% to 99% with Methanomicrobium mobile strain of methanogens. The third group of 16S rDNA clones clustered along with M. burtonii strain of methanogens. This group consists of 6 clones and constitutes about 5.5% of the total clones and represented by only single phylotype. Fourth and fifth clusters of 16S rDNA clones consist of 5 and 7 clones respectively, and these were matched with Methanobrevibacter gottschalkii and Methanobrevibacter rumanatium strain of methanogens and constitute about 4.6% and 6.4% of the total clones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号