首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
The genetic structure of 18 populations of Lumnitzera racemosa from the Indo-West Pacific, including South China, Malay Peninsula, Sri Lanka, and North Australia, was assessed by inter simple sequence repeat (ISSR) markers. Our results showed a relatively high level of genetic variation at the species level (P = 87.04%, He = 0.260). The value of Gst was 0.642, suggesting significant genetic differentiation among populations. At the population level, however, genetic diversity was low (P = 32.17%, He = 0.097). When populations were grouped according to geographic regions, i.e., South China Sea, the East Indian Ocean, and North Australia, it was inferred from AMOVA that more than half the total variation (55.37%) was accounted for by differentiation between regions. A UPGMA dendrogram based on genetic distance also revealed a deep split between populations from these regions, indicating that Malay Peninsula and the Indonesia archipelago may play an important part on the genetic differentiation in L. racemosa. The high degree of population differentiation between regions and low genetic variation within populations recorded here highlights the need for appropriate conservation measures for this species, both in terms of incorporating further populations into protected areas, and the restoration strategies for separate regions.  相似文献   

2.
Aegiceras corniculatum is a cryptoviviparous mangrove tree distributed in the Indo-West Pacific. The genetic structure of 13 populations of A. corniculatum from South China, Malay Peninsula, Sri Lanka, and North Australia, was assessed by amplified fragment length polymorphism (AFLP) markers. Our results showed a relatively high level of genetic variation at the species level (P = 92%, HE = 0.294 and Hs = 0.331 ± 0.001). The value of GST was 0.698, suggesting significant genetic differentiation among populations. At the population level, however, genetic diversity was low (P = 24%, HE = 0.086 and Hs = 0.127 ± 0.001). When populations were grouped according to geographic regions, i.e., South China, Malay Peninsula and Sri Lanka, it was inferred from analysis of molecular variance (AMOVA) that about half the total variation (49%) was accounted for differentiation between regions. A UPGMA dendrogram based on genetic distance also revealed five major clades corresponding to geographical regions within the distribution of A. corniculatum, although the precise relationships among the clades were not fully concordant with expected geographical delineations and need further study.  相似文献   

3.
Pomegranate Punica granatum was first introduced to Sri Lanka, possibly through ancient trade routes, thousands of years ago. However, there is no information about the diversity of the pomegranate germplasm in the country, which is important both for breeding new varieties and for conservation efforts. We used inter‐simple sequence repeat (ISSR) regions to investigate the genetic diversity and population structure of pomegranate on the island of Sri Lanka. Hundred and twenty accessions representing seven populations from all pomegranate growing regions of the country were analyzed using 20 ISSR primers. A total of 107 loci were amplified with an average polymorphism information content of 0.3. While the average inter‐population genetic distance was 0.141, it was 0.149 between populations, indicating moderate genetic diversity both within and among populations. Analysis of molecular variance and Nei's genetic diversity revealed higher genetic variation within populations than among populations, and low genetic differentiation (GST) in pair‐wise comparison of populations also suggested limited population differentiation. A considerable level of among‐population gene flow (Nm) was indicated, irrespective of geographical structure and distances. The results of cluster analysis was also in agreement with above analysis and suggest human mediated gene flow and migration patterns. Cluster analysis revealed two main population clusters with several sub‐clusters. While these clusters did not show any correlation with geography, all red peeled accessions clustered into a small sub‐cluster. The results indicate that analysis of ISSR variability is sufficiently informative and powerful to assess the genetic diversity of P. granatum landraces in Sri Lanka.  相似文献   

4.
Calamus thwaitesii Becc. is a potentially useful rattan found in the Western Ghats of India and Sri Lanka. The wild stock of this rattan species is greatly diminished due to overexploitation for the furniture industry and increasingly rare. Genetic diversity was estimated in 80 samples representing eight populations from the Western Ghats and Sri Lanka using Random Amplified Polymorphic DNA (RAPD) markers. RAPDs generated a total of 120 markers with 10 decamer primers, of which 85% were found to be polymorphic. The percentage of polymorphic loci varied from 40.00 to 60.83 and genetic distance between populations ranged from 0.0332 to 0.2777. Among the analysed populations, Goa was found to be genetically superior followed by Achenkovil, Sinharaja and Talakkaveri. Majority of the genetic diversity was distributed within populations (70.79%) and only (29.21%) among populations. Genetic relationships estimated by the unweighted pair-group method with arithmetic averaging (UPGMA) cluster analysis and principal co-ordinate analysis failed to separate Indian and Sri Lankan populations geographically into two distinct groups.  相似文献   

5.
Hu J  Zhang JL  Nardi F  Zhang RJ 《Genetica》2008,134(3):319-324
The melon fly, Bactrocera cucurbitae Coquillett, is a species of fruit flies of significant agricultural interest. Of supposed Indian origin, the melon fly is now widely distributed throughout South East Asia up to China, while it has been recently eradicated from Japan. The population structure of seven geographic populations from coastal China, as well as samples from other regions of South East Asia and Japan, including lab colonies, have been studied using a 782 bp fragment of mitochondrial cytochrome oxidase I (COI) gene sequence. The observed genetic diversity was exceedingly low, considering the geographic scale of the sampling, and one single haplotype was found to be predominant from Sri Lanka to China. We confirm that Bactrocera cucurbitae exists in South East Asia as a single phyletic lineage, that Chinese populations are genetically uniform, and that no apparent genetic differentiation exists between these and three available Japanese melon fly sequences.  相似文献   

6.
The present paper reports the first record of the eGnus Stachyphrynium, Marantaceae, in China. It is characterized by solitary spikes, elongated and erect with impricated bracts. The inflorescence arises from a short stem on the rhizome. In this genus there are 14 species in total. They are distributed from Sri Lanke to Java and Borneo, through Indo-China Peninsula, Malay Pennisula. Its distribution center is in Indo-China Penninsula and Malay Penninsula. The north limit lies in southern Yunnan of China. Most species of the genus have a stenochorie area, for example, S. zeylanicum is endemic to Sri Lanka; S. latifolium occurs in Java only and so on. A New species, S. Sinense H. Li, to China, is illustrated and described in Latin.  相似文献   

7.
Increased infestation of weedy rice—a noxious agricultural pest has caused significant reduction of grain yield of cultivated rice (Oryza sativa) worldwide. Knowledge on genetic diversity and structure of weedy rice populations will facilitate the design of effective methods to control this weed by tracing its origins and dispersal patterns in a given region. To generate such knowledge, we studied genetic diversity and structure of 21 weedy rice populations from Sri Lanka based on 23 selected microsatellite (SSR) loci. Results indicated an exceptionally high level of within-population genetic diversity (He = 0.62) and limited among-population differentiation (Fst = 0.17) for this predominantly self-pollinating weed. UPGMA analysis showed a loose genetic affinity of the weedy rice populations in relation to their geographical locations, and no obvious genetic structure among populations across the country. This phenomenon was associated with the considerable amount of gene flow between populations. Limited admixture from STRUCTURE analyses suggested a very low level of hybridization (pollen-mediated gene flow) between populations. The abundant within-population genetic diversity coupled with limited population genetic structure and differentiation is likely caused by the considerable seed-mediated gene flow of weedy rice along with the long-distance exchange of farmer-saved rice seeds between weedy-rice contaminated regions in Sri Lanka. In addition to other effective weed management strategies, promoting the application of certified rice seeds with no weedy rice contamination should be the immediate action to significantly reduce the proliferation and infestation of this weed in rice ecosystems in countries with similar rice farming styles as in Sri Lanka.  相似文献   

8.
To evaluate the genetic diversity of a mangrove species and clarify the genetic structure of its populations, we studied nucleotide polymorphism in two DNA regions of Bruguiera gymnorhiza collected from the southern islands of Japan, Thailand, Malaysia, Indonesia, Micronesia, and India. The two DNA sequences were the chloroplast (cp) intergenic spacer between trnL and trnF genes (ca. 300 bp), and a part (ca. 550 bp) of the nuclear gene coding for glyceraldehyde-3-phosphate dehydrogenase (GapCp). Little polymorphism was found within each of the three geographical regions, Pacific Ocean, Bay of Bengal and Arabian Sea. Throughout the vast regions east of the Malay peninsula including Indonesia, Thailand, Micronesia and the southern islands of Japan (Pacific Ocean), essentially only one haplotype (apart from variation in number of a T repeat) was present. A second haplotype was present on the western coast of Malay Peninsula and the eastern coast of India (Bay of Bengal). On the southwest of Malay Peninsula both of these haplotypes were present. Finally a third haplotype was found only on the western coast of India (Arabian Sea). When taken over all geographic populations, total nucleotide variation within the species was large (μ = 0.006, average of the two genes). Our results are consistent with the hypothesis that this low genetic diversity within any local population and differentiation between the different oceans or regions are caused by very low gene flow between each of the different oceans coupled with frequent fluctuation of population sizes due to the change in sea level. The significance of these results is discussed from evolutionary point of the mangrove forests.  相似文献   

9.
Weedy rice (WR, Oryza sativa L. f. spontanea) is a noxious agricultural weed, infesting rice fields worldwide and causing tremendous yield losses of cultivated rice. However, little is known about the relationship between genetic diversity and distribution of WR populations across a wide latitudinal gradient, in addition to its reasons for genetic differentiation. To determine the distribution of genetic diversity and differentiation, we analyzed 20 WR populations collected from wide geographic ranges of rice-planting regions across Northeast, Jiangsu and Guangdong provinces of China, and Sri Lanka, based on 20 simple sequence repeat loci. Our results indicated a significant negative correlation (R = 0.84, P < 0.01) between genetic diversity and latitudinal locations of WR populations. The Mantel test (R2 = 0.49, P < 0.01) showed distinct groupings of WR populations from different rice-planting regions, fitting an isolation-by-distance pattern. In addition, the STRUCTURE analysis and principal coordinates (PCoA) analysis indicated considerable genetic differentiation of WR from different rice-planting regions, which was associated with the types of co-occurring rice cultivars. We conclude based on the above results that WR genetic diversity is affected by the latitudes where WR populations are located. The genetic differentiation of WR populations is determined by their spatial distances and co-occurring rice cultivars. Such a pattern of genetic diversity and differentiation across different regions may facilitate the design of effective WR control, in addition to understanding adaptive evolution of this weed.  相似文献   

10.
Inference of genetic structure and demographic history is fundamental issue in evolutionary biology. We examined the levels and patterns of genetic variation of a widespread mangrove species in the Indo‐West Pacific region, Bruguiera gymnorrhiza, using ten nuclear gene regions. Genetic variation of individual populations covering its distribution range was low, but as the entire species it was comparable to other plant species. Genetic differentiation among the investigated populations was high. They could be divided into two genetic clusters: the West and East clusters of the Malay Peninsula. Our results indicated that these two genetic clusters derived from their ancestral population whose effective size of which was much larger compared to the two extant clusters. The point estimate of speciation time between B. gymnorrhiza and Bruguiera sexangula was two times older than that of divergence time between the two clusters. Migration from the West cluster to the East cluster was much higher than the opposite direction but both estimated migration rates were low. The past Sundaland and/or the present Malay Peninsula are likely to prevent gene flow between the West and East clusters and function as a geographical or land barrier.  相似文献   

11.
《Aquatic Botany》2005,81(2):175-188
Comprehensive information of mangrove genetic resources is requisite for developing strategies for their effective conservation and sustainable use. Genetic diversity within and among populations of a widespread viviparous mangrove Ceriops decandra was determined using inter-simple sequence repeat (ISSR). Ten natural populations were collected from Malay Peninsula and North Australia. At the species level, high genetic variation was detected (P = 72%, HE = 0.253, and I = 0.379). The estimate of GST was 0.882, indicating a high level of genetic differentiation among populations. When populations were grouped according to geographic regions, i.e., East Malaya, West Malaya, Southmost Malaya, and North Australia, AMOVA suggested that most of the total variation (87%) was accounted for by differentiation between regions, with only 4% accounting for variation among populations within regions, and a further 9% partitioned among individuals within a population. A UPGMA dendrogram based on genetic distance revealed a deep split between populations from the eastern Indian Ocean and all others from the western Pacific Ocean, which may result from the historical lowering of sea level at these regions during the recent Pleistocene glaciations. An understanding of the genetic structure of C. decandra provides insight for the conservation and management of this species.  相似文献   

12.
The genetic structure of mangrove species is greatly affected by their geographic history. Nine natural populations of Ceriops tagal were collected from Borneo, the Malay Peninsula, and India for this phylogeographic study. Completely different haplotype compositions on the east versus west coasts of the Malay Peninsula were revealed using the atpB-rbcL and trnL-trnF spacers of chloroplast DNA. The average haplotype diversity (Hd) of the total population was 0.549, nucleotide diversity (θ) was 0.030, and nucleotide difference (π) was 0.0074. The cladogram constructed by the index of population differentiation (G ST) clearly separated the South China Sea populations from the Indian Ocean populations. In the analysis of the minimum spanning network, the Indian Ocean haplotypes were all derived from South China Sea haplotypes, suggesting a dispersal route of C. tagal from Southeast Asia to South Asia. The Sunda Land river system and surface currents might be accountable for the gene flow directions in the South China Sea and Bay of Bengal, respectively. The historical geography not only affected the present genotype distribution but also the evolution of C. tagal. These processes result in the genetic differentiation and the differentiated populations that should be considered as Management Units (MUs) for conservation measurements instead of random forestation, which might lead to gene mixing and reduction of genetic variability of mangrove species. According to this phylogeographic study, populations in Borneo, and east and west Malay Peninsula that have unique genotypes should be considered as distinct MUs, and any activities resulting in gene mixing with each other ought to be prevented.  相似文献   

13.
The phylogeography of coastal plant species is heavily influenced by past sealevel fluctuations, dispersal barriers, and life-history traits, such as long-distance dispersal ability of the propagules. Unlike the widely studied mangroves, phylogeographic patterns have remained mostly obscure for other coastal plant species. In this study, we sampled 42 populations of Scaevola taccada (Gaertn.) Roxb., a coastal shrub of the family Goodeniaceae, from 17 countries across its distribution range. We used five chloroplast DNA (cpDNA) and 14 nuclear microsatellite (simple sequence repeat [SSR]) markers to assess the influence of abiotic factors and population genetic processes on the phylogeographic pattern of the species. Geographical distribution of cpDNA haplotypes suggests that the species originated in Australia, followed by historical dispersal and expansion of its geographic range. Multiple abiotic factors, including the sealevel changes during the Pleistocene, the presence of landmasses like the Malay Peninsula, and contemporary oceanic circulation patterns, restricted gene flow between geographically distinct populations, thereby creating low haplotype diversity and a strong population structure. Population genetic processes acted on these isolated populations, leading to high nuclear genetic diversity and population differentiation, as revealed from analyzing the polymorphic SSR loci. Although genetic divergence was mostly concordant between cpDNA and SSR data, asymmetrical gene flow and ancestral polymorphism could explain the discordance in the detailed genetic structure. Overall, our findings indicate that abiotic factors and population genetic processes interactively influenced the evolutionary history and current phylogeographic pattern of S. taccada across its distribution range.  相似文献   

14.
Information on the genetic diversity of wild rice species in Sri Lanka is relatively meagre, though it plays a key role in crop improvement programs of cultivated rice (Oryza sativa L.). The present study was carried out to identify the morphological variation pattern of the wild populations of O. nivara in Sri Lanka. Seven populations (P1 to P7) collected from different agro-ecological regions were characterized in a common garden based on nine morphological traits. The findings revealed a high level of phenotypic variation between populations when compared to within a population. The most variable traits were the flag leaf panicle neck length (FLPNL) and flag leaf angle (FLA), whereas the least variable trait was the flag leaf length (FLL). Box plots clearly illustrated the large differentiation of phenotypic traits in the entire distribution of wild rice populations. The cumulative values of the two principal components, i.e., FLPNL and FLA, explained 58.7% of the total variance. Populations from similar natural habitats clustered together. The P7 was adapted to intercept more sunlight by increasing flag leaf width (FLW) and FLA to compete with weeds and other shrubs. P2 and P5 were the most closely related populations representing approximately similar ecological conditions of the dry zone. The P3 population from the intermediate zone showed a vigorous plant growth with the highest plant height, culm girth and awn length (P < 0.05). Knowledge of such morphological diversity would facilitate designing conservation strategies and basic information for the proper utilization of wild resources in rice genetic improvement.  相似文献   

15.
We assessed the variability of chloroplast DNA sequences in populations of the dipterocarp forest tree, Shorea curtisii. This species is widely distributed in hill and coastal hill dipterocarp forests of the Malay Peninsula, whereas isolated populations are found in the coastal hills of north Borneo. Two chloroplast DNA regions (1555 bp of trnHpsbAtrnK and 925 bp of trnLtrnF) were sequenced from 123 individuals collected from six Malay Peninsula and two Bornean populations. There were 15 chloroplast haplotypes derived from 16 polymorphic sites. A haplotype network revealed two distinct haplogroups that correlate with two geographic regions, the Malay Peninsula and Borneo. These two haplogroups differed by a number of mutations, and no haplotypes were shared between populations from the different geographic regions. This suggests an ancient diversification of these haplogroups, and that long‐distance seed dispersal was unlikely to have occurred during the Pleistocene when the Sunda Shelf was a contiguous landmass. Phylogenetic analysis of the haplotypes together with those found in other Shorea species showed that two haplogroups in S. curtisii appear in different positions of the phylogenetic tree. This could be explained by the persistence of ancestral polymorphisms or by ancient chloroplast capture. Low levels of genetic differentiation were found between populations within each geographic region. Signature of a bottleneck followed by demographic expansion was detected in the Malay Peninsula haplogroup. The presence of two distinct evolutionary lineages in the different regions suggests that they should be managed independently to conserve the major sources of genetic diversity in S. curtisii.  相似文献   

16.
The existence of three distinct strains of E. granulosus in Australia has been previously demonstrated on the basis of several criteria. In the present study, numerous isolates of E. granulosus from domestic and wild animal populations in different geographical areas of Australia were subjected to detailed biochemical analysis using isoelectric focusing of soluble proteins. Three different populations were recognised which corresponded to the three strains described previously, thus confirming their genetic distinction. One strain is common to all domestic intermediate hosts on the Australian mainland. Evidence is presented that humans and macropod marsupials are also susceptible to infection with this strain and that it is similar to E. granulosus occurring in sheep in New Zealand and the United Kingdom. The other two strains are confined to macropod marsupials on the Australian mainland and sheep in Tasmania respectively.  相似文献   

17.
The East Indies triangle, bordered by the Phillipines, Malay Peninsula and New Guinea, has a high level of tropical marine species biodiversity. Pristipomoides multidens is a large, long-lived, fecund snapper species that is distributed throughout the East Indies and Indo-Pacific. Samples were analysed from central and eastern Indonesia and northern Australia to test for genetic discontinuities in population structure. Fish (n = 377) were collected from the Indonesian islands of Bali, Sumbawa, Flores, West Timor, Tanimbar and Tual along with 131 fish from two northern Australian locations (Arafura and Timor Seas) from a previous study. Genetic variation in the control region of the mitochondrial genome was assayed using restriction fragment length polymorphism and direct sequencing. Haplotype diversity was high (0.67-0.82), as was intraspecific sequence divergence (range 0-5.8%). F(ST) between pairs of populations ranged from 0 to 0.2753. Genetic subdivision was apparent on a small spatial scale; F(ST) was 0.16 over 191 km (Bali/Sumbawa) and 0.17 over 491 km (Bali/Flores). Constraints to dispersal that contribute to, and maintain, the observed degree of genetic subdivision are experienced presumably by all life history stages of this tropical marine finfish. The constraints may include (1) little or no movement of eggs or larvae, (2) little or no home range or migratory movement of adults and (3) loss of larval cohorts due to transport of larvae away from suitable habitat by prevailing currents.  相似文献   

18.
Genetic diversity of European freshwater pearl mussel, Margaritifera margaritifera (L.), appears exceptional with highest genetic variability found in the northernmost European populations of Scandinavia and lower genetic variability in central and southern Europe. The objective of this study was to investigate genetic diversity and differentiation of 14 southernmost populations on the Iberian Peninsula which greatly differ in terms of life span and habitat conditions from the rest of central and northern European populations. The analyses of ten microsatellite loci revealed a pronounced level of genetic divergence and very low genetic diversity. These results match the expectations of geographically peripheral populations with respect to their genetic composition. The life history strategy, the narrow ecological niche of the species, and anthropogenic habitat modifications have most likely shaped the genetic pattern of Iberian pearl mussel populations. The peripheral position with less optimal habitat conditions may increase the extinction risk of these populations and thus effective conservation strategies for the Iberian M. margaritifera are needed. The successful conservation of the species at its southwestern margin requires inclusion of genetically different conservation units which may reveal local adaptation.  相似文献   

19.
Sargassum polycystum C. Agardh is one of the most abundant marine brown algae and is distributed widely in warm and temperate waters, particularly in the Indo-west Pacific region and Australia. Although its commercial potential and ecological and evolutionary importance are recognized, many pivotal aspects of its biology remain unexplored. Current knowledge of the historical biogeographical affinities and patterns is limited, but some data are available about its genetics, the genetic variation among populations, and spatial patterns. This study aimed to analyze the genetic population structure and distribution patterns of S. polycystum populations in 13 different locations from Indonesia to Japan using the mitochondrial gene cox3. The seven haplotypes of cox3 identified in this study indicated a low level of genetic diversity. Homogeneity of this haplotype was observed particularly in the Gulf of Thailand, Cambodia, and Japan, whereas higher haplotype diversity was found in Phuket (Thailand), Bali (Indonesia), and Singapore. Those data suggest that S. polycystum is likely to have expanded from the south of Indonesia and the west of the Malay Peninsula towards the northeast of the region. Geological studies showed that Sundaland, now corresponding to the Gulf of Thailand, was submerged due to sea level rises after the last glacial period. Therefore, the decrease in the genetic diversity of S. polycystum populations is interpreted here as a population expansion after the rise in sea levels.  相似文献   

20.
基于cpDNA序列, 研究柴达木野生黑果枸杞(Lycium ruthenicum)的遗传多样性、遗传结构和单倍型进化关系, 可为其种群的遗传保护提供理论依据。该研究基于3个筛选的叶绿体多态引物: psbA-trnH、psbK-psbI和trnV, 利用群体遗传分析方法研究柴达木盆地野生黑果枸杞的遗传变异格局: 利用软件DnaSP 6.0和Permut 2.0计算分子多样性指标, 利用分子方差分析研究组间和种群间的遗传变异来源, 利用单倍型网络分析和主坐标分析研究单倍型的聚类关系; 利用最大似然树和贝叶斯系统树分析单倍型的谱系进化关系。结果显示: 叶绿体序列psbA-trnH、psbK-psbI和trnV拼接后的总长度为1 454 bp, 鉴别出14个核苷酸变异位点, 共定义了7个单倍型。种群间总的遗传多样(hT)和种群内遗传多样性(hS)分别为0.916和0.512。AMOVA分析结果表明, 80%以上的遗传变异来源于组间和种群间。叶绿体单倍型的贝叶斯系统树和最大似然树均表明柴达木盆地黑果枸杞种群聚为2支: 德令哈和格尔木为一支, 诺木洪为另一支。单倍型网络和主坐标分析结果揭示的拓扑结构和聚类关系与系统树一致。Mantel检验结果表明柴达木黑果枸杞种群间的遗传距离与地理距离存在显著的弱相关关系(r = 0.591 1, p = 0.000 9)。柴达木盆地黑果枸杞种群具有较高的遗传多样性, 种群间遗传分化显著。从遗传多样性保护的角度而言, 具有较高遗传多样性的诺木洪林业站和格尔木新乐村种群可划分为保护管理单元。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号