首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cells resuspended in hypotonic medium initially swell as nearly perfect osmometers, but later recover their volume with an associated KCl loss. This regulatory volume decrease (RVD) is unaffected when nitrate is substituted for Cl- or if bumetanide or 4,4'-diisothiocyanostilbene-2,2'-disulfonate (DIDS) is added. It is inhibited by quinine, Ba2+, low pH, anticalmodulin drugs, and depletion of intracellular Ca2+. It is accelerated by the Ca2+ ionophore A23187, or by a sudden increase in external Ca2+ and at high pH. A net KCl loss is also seen after addition of ionophore A23187 in isotonic medium. Similarities are demonstrated between the KCl loss seen after addition of A23187 and the KCl loss seen during RVD. It is proposed that separate conductive K+ and Cl- channels are activated during RVD by release of Ca2+ from internal stores, and that the effect is mediated by calmodulin. After restoration of tonicity the cells shrink initially, but recover their volume with an associated KCl uptake. This regulatory volume increase (RVI) is inhibited when NO3- is substituted for Cl-, and is also inhibited by furosemide or bumetanide, but it is unaffected by DIDS. The unidirectional Cl-flux ratio is compatible with either a coupled uptake of Na+ and Cl-, or an uptake via a K+/Na+/2Cl- cotransport system. No K+ uptake was found, however, in ouabain-poisoned cells where a bumetanide-sensitive uptake of Na+ and Cl- in nearly equimolar amounts was demonstrated. Therefore, it is proposed that the primary process during RVI is an activation of an otherwise quiescent Na+/Cl- cotransport system with subsequent replacement of Na+ by K+ via the Na+/K+ pump. There is a marked increase in the rate of pump activity in the absence of a detectable increase in intracellular Na+ concentration.  相似文献   

2.
We present a new technique for the simultaneous measurement of cell volume changes and intracellular ionic activities in single cells. The technique uses measurement of changes in the concentration of intracellularly trapped fluorescent dyes to report relative cell volume. By using pH- or Ca(2+)-sensitive dyes and recording at the ion-sensitive and -insensitive (isosbestic) wavelengths, the method can measure both cell volume changes and intracellular ionic activities. The technique was used to study the mechanisms of regulatory volume decrease (RVD) in the osteosarcoma cell line UMR-106-01 grown on cover slips. Swelling cells in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered hypotonic medium was followed by stable cytosolic acidification and a decrease in cell volume back toward normal. The recovery of cell volume could be blocked by depolarization, treatment with ouabain, or depletion of cell Cl-. These suggest the conductive efflux of K+ and Cl- during RVD. The cytosolic acidification that accompanied cell swelling was not blocked by amiloride, bafilomycin A, or removal of Cl- and could not be reproduced by depletion of cellular ATP. These findings exclude Na+/H+ and Cl-/HCO-3 exchange, intracellularly generated acid, or increased metabolism, respectively, as the cause of the acidification. The cell swelling-induced acidification was inhibited by depolarization, suggesting the involvement of an electrogenic pathway. The acidification, as well as RVD, was inhibited by short incubation with deoxyglucose, and these effects could not be reversed by valinomycin. Thus, the anionic pathway(s) participating in RVD and the acidification are sensitive to the cellular level of ATP. Together, these studies indicate that RVD in UMR-106-01 cells in HEPES-buffered medium is mediated by the conductive efflux of K+, Cl-, and OH-.  相似文献   

3.
Volume-induced increase of anion permeability in human lymphocytes   总被引:14,自引:7,他引:7       下载免费PDF全文
Peripheral blood mononuclear cells (PBM) readjust their volumes after swelling in hypotonic media. This regulatory volume decrease (RVD) is associated with a loss of cellular K+ and is thought to be promoted by an increased permeability to this ion. In contrast, no change in volume was observed when K+ permeability of PBM in isotonic media was increased to comparable or higher levels using valinomycin. Moreover, valinomycin-induced 86Rb+ loss in K+-free medium was considerably slower than in K+-rich medium. These results suggest that anion conductance limits net salt loss in isotonic media. Direct measurements of relative conductance confirmed that in volume-static cells, anion conductance is lower than that of K+. In volume-regulating cells depolarization occurred presumably as a result of increased anion conductance. Accordingly, the efflux of 36Cl from PBM was markedly increased by hypotonic stress. Since both membrane potential and intracellular 36Cl concentration are reduced in hypotonically swollen cells, the increased efflux is probably due to a change in Cl- permeability. Anions and cations seem to move independently through the volume-induced pathways: the initial rate of 86Rb uptake in swollen cells was not affected by replacement of external Cl- by SO=4; conversely, 36Cl fluxes were unaffected by substitution of K+ by Na+. The data indicate that anion conductance is rate-determining in salt and water loss from PBM. An increase in anion conductance is suggested to be the critical step of RVD of human PBM.  相似文献   

4.
Cell volume regulation occurs in both tight, Na+-transporting epithelia (e.g., frog skin) and in leaky. NaCl-transporting epithelia (e.g. amphibian gallbladder). In tight epithelia volume regulation occurs only in response to cell swelling, i.e. only regulatory volume decrease (RVD) is observed, whereas in leaky epithelia cell volume regulation has been observed in response to osmotic challenges that either swell or shrink the cells. In other words, both RVD and regulatory volume increase (RVI) are present. Both volume regulatory responses involve stimulation of ion transport in a polarized fashion: in RVD the response is basolateral KCl efflux, whereas in RVI it is apical membrane NaCl uptake. The loss of KCl during RVD appears to result in most instances from increases in basolateral electrodiffusive K+ and Cl-permeabilities. In gallbladder, concomitant activation of coupled KCl efflux may also occur. The RVI response includes activation of apical membrane cation (Na+/H+) and anion (Cl-/HCO-3) exchangers. It is presently unclear whether the net ion fluxes resulting from activation of these transporters, during either RVD or RVI, account for the measured rates of restoration of cell volume. In gallbladder epithelium, RVD is inhibited by agents which disrupt microfilaments or interfere with the Ca2+-calmodulin system. These pharmacologic effects are absent in RVI. Some steps in the chain of events resulting in either RVI or RVD have been established, but the signals involved remain largely unknown. There is reason to suspect a role of intracellular pH in the case of RVI and of membrane insertion of transporters in the case of RVD, possibly with causal roles of both intracellular Ca2+ and the cytoskeleton in the latter.  相似文献   

5.
Volume-regulating behavior of human platelets   总被引:3,自引:0,他引:3  
Human platelets exposed to hypotonic media undergo an initial swelling followed by shrinking (regulatory volume decrease [RVD]). If the RVD is blocked, the degree of swelling is in accord with osmotic behavior. The cells could swell at least threefold without significant lysis. Two methods were used to follow the volume changes, electronic sizing and turbidimetry. Changes in shape produced only limited contribution to the measurements. The RVD was very rapid, essentially complete in 2 to 8 minutes, with a rate proportional to the degree of initial cell swelling. RVD involved a loss of KCl via volume-activated conductive permeability pathways for K+ and anions, presumably Cl-. In media containing greater than 50 mM KCl, the shrinking was inhibited and with higher concentrations was reversed (secondary swelling), suggesting that it is driven by the net gradient of K+ plus Cl-. The K+ pathway was specific for Rb+ and K+ compared to Li+ and Na+. The Cl- pathway accepted NO-3 and SCN- but not citrate or SO4(2-). In isotonic medium, the permeability of platelets to Cl- appeared to be low compared to that of K+. After hypotonic swelling both permeabilities were increased, but the Cl- permeability exceeded that of K+. The Cl- conductive pathway remained open as long as the cells were swollen. RVD was incomplete unless amiloride, an inhibitor of Na+/H+ exchange, was present or unless Na+ was replaced by an impermeant cation. In addition, acidification of the cytoplasm occurred upon cell swelling. This reduction in pHi appeared to activate Na+/H+ exchange, with a resultant uptake of Na+ and reduction in the rate and amount of shrinking. Like other cells, platelets responded to hypertonic shrinking with activation of Na+/H+ exchange, but regulatory volume increase was not detectable.  相似文献   

6.
Incubation of rabbit alveolar macrophages in hypo-osmotic solutions transiently increases cell volume and inhibits membrane internalization, resulting in an increase in surface receptor number. Since recent reports suggest that hypo-osmotic treatment decreases intracellular pH, and that reduced pH inhibits receptor internalization, pH was measured in hypo-osmotically treated macrophages. We found that cells incubated in iso-osmotic solutions of pH less than 7.2 exhibited a decrease in intracellular pH upon exposure to hypo-osmotic solutions, while cells in iso-osmotic solutions of pH greater than 7.2 had an increase in pH upon exposure to hypo-osmotic solutions. The relative increase in surface receptor number was unaffected by the initial pH or by the direction of change in pH. Incubation of cells in high K+/low Na+ hypotonic buffers induced a persistent increase in cell volume and surface receptor number. Cell volume and surface receptor number fell to baseline values after restoration of isotonicity by the addition of hypertonic sucrose. These manipulations had little effect on intracellular pH. We conclude that the inhibition of membrane internalization observed in cells exposed to hypo-osmotic solutions is independent of changes in intracellular pH. The inhibition of internalization observed in this system may be due directly to forces produced as a consequence of cell swelling.  相似文献   

7.
The cell regulatory volume decrease (RVD) response triggered by hypotonic solutions is mainly achieved by the coordinated activity of Cl- and K+ channels. We now describe the molecular nature of the K(+) channels involved in the RVD response of the human bronchial epithelial (HBE) cell line 16HBE14o-. These cells, under isotonic conditions, present a K+ current consistent with the activity of maxi K+ channels, confirmed by RT-PCR and Western blot. Single-channel and whole cell maxi K+ currents were readily and reversibly activated following the exposure of HBE cells to a 28% hypotonic solution. Both maxi K+ current activation and RVD response showed calcium dependency, inhibition by TEA, Ba2+, iberiotoxin, and the cationic channel blocker Gd3+ but were insensitive to clofilium, clotrimazole, and apamin. The presence of the recently cloned swelling-activated, Gd3+-sensitive cation channels (TRPV4, also known as OTRPC4, TRP12, or VR-OAC) was detected by RT-PCR in HBE cells. This channel, TRPV4, which senses changes in volume, might provide the pathway for Ca2+ influx under hypotonic solutions and, consequently, for the activation of maxi K+ channels.  相似文献   

8.
Total crypt volume has been estimated by analysis of photographic images of intact viable crypts isolated from guinea-pig small intestine. Exposing these crypts to a hypotonic medium, led to transient swelling followed by regulatory volume decrease (RVD) in 12-20 min. RVD was blocked by inhibitors of K+ and Cl- conductance, suggesting that it occurs by activation of K+ and Cl- permeability pathways and loss of these ions.  相似文献   

9.
Human peripheral blood lymphocytes regulate their volumes in hypotonic solutions. In hypotonic media in which Na+ is the predominant cation, an initial swelling phase is followed by a regulatory volume decrease (RVD) associated with a net loss of cellular K+. In media in which K+ is the predominant cation, the rapid initial swelling is followed by a slower second swelling phase. 86Rb+ fluxes increased during RVD and returned to normal when the original volume was approximately regained. Effects similar to those induced by hypotonic stress could also be produced by raising the intracellular Ca++ level. In isotonic, Ca++- containing media cells were found to shrink upon addition of the Ca++ ionophore A23187 in K+-free media, but to swell in K+-rich media. Exposure to Ca++ plus A23187 also increased 86Rb+ fluxes. Quinine (75 microM), an inhibitor of the Ca++-activated K+ pathway in other systems blocked RVD, the associated K+ loss, and the increase in 86Rb+ efflux. Quinine also inhibited the volume changes and the increased 86Rb fluxes induced by Ca++ plus ionophore. The calmodulin inhibitors trifluoperazine, pimozide and chlorpromazine blocked RVD as well as Ca++ plus A23187-induced volume changes. Trifluoperazine also prevented the increase in 86Rb+ fluxes and K+ loss induced by hypotonicity. Chlorpromazine sulfoxide, a relatively ineffective calmodulin antagonist, was considerably less potent as an inhibitor of RVD than chlorpromazine. It is suggested than an elevation in cytoplasmic [Ca++], triggered by cell swelling, increases the plasma membrane permeability to K+, the ensuing increased efflux of K+, associated anions, and osmotically obliged water, leading to cell shrinking (RVD).  相似文献   

10.
In numerous animal cells, experimental manipulations that increase the intracellular free Ca2+ concentration induce cell volume reduction. This may occur under isosmotic conditions, e.g. when external Ca2+ (Ca(o)) is replaced by Mg2+ (42) or during exposure to hypoosmotic conditions (i.e. regulatory volume decrease, RVD) in the presence of Ca(o). We determined the osmolytes responsible for volume reduction under isosmotic and hypoosmotic conditions in barnacle muscle cells. Organic osmolytes (i.e. free amino acids and methylamines) and inorganic ions accounted for approximately 78% and 22% of the intracellular isosmotic activity, respectively. Isosmotic Ca(o) removal induced a net loss of KCI (with a ratio of 1K:1Cl) and free amino acids (FAA, mainly glycine and taurine). During RVD. the same ions (but in a proportion of 2K:1Cl) and FAA were lost. Since RVD was accompanied by extracellular alkalinization, the 2K:1Cl loss may be explained by the presence of a K+/H+ exchanger (or K+-OH- co-transporter) or Cl-/OH- exchanger. The lack of RVD in the absence of Ca(o) cannot be attributed to the loss of intracellular osmolytes during isosmotic Ca(o) removal because addition of Ca(o) during cell swelling promoted RVD.  相似文献   

11.
HeLa cells had their normal medium replaced by an isosmotic medium containing 80 mM K+, 70 mM Na+ and 100 microM ouabain. The cellular contents of K+ first increased and then decreased to the original values, that is, the cells showed a regulatory decrease (RVD) in size. The initial increase was not inhibited by various agents except by substitution of medium Cl- with gluconate. In contrast, the regulatory decrease was inhibited strongly by addition of either 1 mM quinine, 10 microM BAPTA-AM without medium Ca2+, or 0.5 mM DIDS, and partly by either 1 mM EGTA without medium Ca2+, 10 microM trifluoperazine, or substitution of medium Cl- with NO3-. Addition of DIDS to the NO3(-)-substituted medium further suppressed the K+ loss but the effect was incomplete. Intracellular Ca2+ showed a transient increase after the medium replacement. These results suggest that the initial increase in cell K+ is a phenomenon related to osmotic water movement toward Donnan equilibrium, whereas the regulatory K+ decrease is caused by K+ efflux through Ca(2+)-dependent K+ channels. The K+ decrease induced a decrease in cellular water, i.e., RVD. The K+ efflux may be more selectively associated with Cl- efflux through DIDS-sensitive channels than the efflux of other anions.  相似文献   

12.
The involvement of Ca2+ in the regulatory volume decrease (RVD) mechanism was studied in both isolated enterocytes and intestine of the eel, Anguilla anguilla. Videometric methods and electrophysiological techniques were respectively employed. The isolated enterocytes rapidly swelled following a change from isotonic (315 mOsm/kg) to hypotonic (180 mOsm/kg) saline solutions. Afterwards, they tended to recover their original size. This homeostatic response was inhibited both in the absence of extracellular Ca2+ and in the presence of TMB8, an inhibitor of Ca2+ release from intracellular stores. It is likely that Ca2+ entry through verapamil-sensitive Ca2+ channels is responsible for RVD since the blocker impaired the ability of the cell to recover its volume after the hypotonic shock. The observation that a 10-fold increase of K+ concentration as well as the presence of quinine in the hypotonic solution completely abolished RVD indicated the involvement of K+ in this response. Experiments performed with the isolated intestine suggested that the opening of basolateral K+ channels facilitates K+ loss (and hence water efflux) from the cell during RVD and that this opening is probably due to Ca2+ entry into the cell through both the mucosal and the serosal membranes.  相似文献   

13.
Activation of mitogen-activated protein (MAP) kinases has been reported to occur after a hypo-osmotic cell swelling in various types of cells. In renal epithelial A6 cells, the hypo-osmotic shock induced a rapid increase in the phosphorylation of an extracellular signal-regulated kinase (ERK)-like protein that was maximal 10 min after osmotic stress. Activation of ERK was significantly increased when hypo-osmotic stress was performed in the absence of extracellular Ca2+, a condition that inhibits regulatory volume decrease (RVD). Exposure of cells to PD98059, an inhibitor of the MAP kinase kinase MEK, at a concentration that fully cancelled ERK activation, did not inhibit RVD. On the contrary, RVD was abolished when osmotic shock was induced in the presence of SB203580, an inhibitor of stress-activated protein kinases (SAPKs). These results suggest that different MAP kinases are activated after hypo-osmotic stress in A6 cells. SAPKs would be involved in the control of RVD, while ERK would lead to later events, such as gene expression or energy metabolism.  相似文献   

14.
The technique for the simultaneous recording of cell volume changes and pHi in single cells was used to study the role of HCO3- in regulatory volume decrease (RVD) by the osteosarcoma cells UMR-106-01. In the presence of HCO3-, steady state pHi is regulated by Na+/H+ exchange, Na+ (HCO3-)3 cotransport and Na(+)-independent Cl-/HCO3- exchange. Following swelling in hypotonic medium, pHi was reduced from 7.16 +/- 0.02 to 6.48 +/- 0.02 within 3.4 +/- 0.28 min. During this period of time, the cells performed RVD until cell volume was decreased by 31 +/- 5% beyond that of control cells (RVD overshoot). Subsequently, while the cells were still in hypotonic medium, pHi slowly increased from 6.48 +/- 0.02 to 6.75 +/- 0.02. This increase in pHi coincided with an increase in cell volume back to normal (recovery from RVD overshoot or hypotonic regulatory volume increase (RVI)). The same profound changes in cell volume and pHi after cell swelling were observed in the complete absence of Cl- or Na+, providing HCO3- was present. On the other hand, depolarizing the cells by increasing external K+ or by inhibition of K+ channels with quinidine, Ba2+ or tetraethylammonium prevented the changes in pHi and RVD. These findings suggest that in the presence of HCO3-, RVD in UMR-106-01 cells is largely mediated by the conductive efflux of K+ and HCO3-. Removal of external Na+ but not Cl- prevented the hypotonic RVI that occurred after the overshoot in RVD. Amiloride had no effect, whereas pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) strongly inhibited hypotonic RVI. Thus, hypotonic RVI is mediated by a Na+(out)-dependent, Cl(-)-independent and DIDS-inhibitable mechanism, which is indicative of a Na+(HCO3-)3 cotransporter. This is the first evidence for the involvement of this transporter in cell volume regulation. The present results also stress the power of the new technique used in delineating complicated cell volume regulatory mechanisms in attached single cells.  相似文献   

15.
Chondrocytes experience a dynamic extracellular osmotic environment during normal joint loading when fluid is forced from the matrix, increasing the local proteoglycan concentration and therefore the ionic strength and osmolarity. To exist in such a challenging environment, chondrocytes must possess mechanisms by which cell volume can be regulated. In this study, we investigated the ability of bovine articular chondrocytes (BAC) to regulate cell volume during a hypo-osmotic challenge. We also examined the effect of hypo-osmotic stress on early signaling events including [Ca2+](i) and membrane currents. Changes in cell volume were measured by monitoring the fluorescence of calcein-loaded cells. [Ca2+](i) was quantified using fura-2, and membrane currents were recorded using patch clamp. BAC exhibited regulated volume decrease (RVD) when exposed to hypo-osmotic saline which was inhibited by Gd3+. Swelling stimulated [Ca2+](i) transients in BAC which were dependent on swelling magnitude. Gd3+, zero [Ca2+](o), and thapsigargin all attenuated the [Ca2+](i) response, suggesting roles for Ca2+ influx through stretch activated channels, and Ca2+ release from intracellular stores. Inward and outward membrane currents significantly increased during cell swelling and were inhibited by Gd3+. These results indicate that RVD in BAC may involve [Ca2+](i) and ion channel activation, both of which play pivotal roles in RVD in other cell types. These signaling pathways are also similar to those activated in chondrocytes subjected to other biophysical signals. It is possible, then, that these signaling events may also be involved in a mechanism by which mechanical loads are transduced into appropriate cellular responses by chondrocytes.  相似文献   

16.
A decrease in external osmolarity results in cell swelling and the immediate activation of a mechanism to restore cell volume, known as regulatory volume decrease (RVD). When exposed to a gradual osmolarity decrease (GODE), some cells do not swell. This reflects the operation of an active regulatory process known as isovolumetric regulation (IVR). The mechanisms underlying IVR appear similar to those activated during RVD, namely the extrusion of K+, Cl-, amino acids, and other organic molecules. A previous study has documented IVR in cerebellar granule neurons, parallel to an early efflux of taurine and Cl-, whereas K+ efflux is delayed. In this work we briefly review the importance of amino acids in the mechanisms of cell volume control in the brain, with emphasis on IVR. We also present experiments showing the response to GODE in cerebellar astrocytes. The currents activated during GODE, recorded in the whole-cell configuration of the patch clamp technique, indicate the early activation of an anion current, followed by a more delayed cation current. A correlation between the time course of amino acid efflux during GODE and the occurrence or not of IVR in various cell types, suggest the importance of these osmolytes in the volume regulatory process in this model.  相似文献   

17.
The properties of the K+ pathway underlying regulatory volume decrease (RVD) in human blood lymphocytes were investigated. Evidence is presented for the existence of three types of K+ conductance in these cells. Ionomycin, a Ca2+ ionophore, induced a K(+)-dependent hyperpolarization, indicating the presence of Ca2(+)-activated K+ channels, which were blocked by charybdotoxin (CTX). CTX also induced a depolarization of the resting membrane potential, even at subphysiological cytosolic [Ca2+]([Ca2+]i), which suggests the existence of a second CTX-sensitive, but Ca2(+)-independent conductance. A CTX-resistant K+ conductance was also detected. RVD in blood lymphocytes was partially (approximately 75%) blocked by CTX. However, volume regulation was not accompanied by detectable changes in [Ca2+]i, nor was it prevented by removal of extracellular Ca2+ and depletion or buffering of intracellular Ca2+. These observations suggest that K+ loss during RVD is mediated by Ca2(+)-independent, CTX-sensitive channels or that Ca2(+)-dependent channels can be activated by cell swelling at normal or subnormal [Ca2+]i. The former interpretation is supported by findings in rat thymic lymphocytes. These cells also displayed a CTX-sensitive Ca2(+)-dependent hyperpolarization. However, CTX did not significantly alter the resting potential, suggesting the absence of functional Ca2(+)-independent, toxin-sensitive channels. Volume regulation in thymic lymphocytes was less efficient than in human blood cells. In contrast to blood lymphocytes, RVD in thymocytes was not affected by CTX. These observations indicate that, though present in lymphocytes, Ca2(+)-activated K+ channels do not play an important role in volume regulation. Instead, RVD seems to be mediated by Ca2(+)-independent K+ channels. We propose that two types of channels, one CTX sensitive and the other CTX insensitive, mediate RVD in human blood lymphocytes, whereas only the latter type is involved in rat thymocytes.  相似文献   

18.
Activation of mitogen-activated protein (MAP) kinases has been reported to occur after a hypo-osmotic cell swelling in various types of cells. In renal epithelial A6 cells, the hypo-osmotic shock induced a rapid increase in the phosphorylation of an extracellular signal-regulated kinase (ERK)-like protein that was maximal 10 min after osmotic stress. Activation of ERK was significantly increased when hypo-osmotic stress was performed in the absence of extracellular Ca2+, a condition that inhibits regulatory volume decrease (RVD). Exposure of cells to PD98059, an inhibitor of the MAP kinase kinase MEK, at a concentration that fully cancelled ERK activation, did not inhibit RVD. On the contrary, RVD was abolished when osmotic shock was induced in the presence of SB203580, an inhibitor of stress-activated protein kinases (SAPKs). These results suggest that different MAP kinases are activated after hypo-osmotic stress in A6 cells. SAPKs would be involved in the control of RVD, while ERK would lead to later events, such as gene expression or energy metabolism.  相似文献   

19.
Cell volume regulation in lymphocytes   总被引:6,自引:0,他引:6  
This article reviews what is known about the volume regulatory responses of lymphocytes. We present a discussion of recent data and hypotheses pertaining to the underlying mechanisms in regulatory volume increase (RVI) and regulatory volume decrease (RVD). New results from our laboratory are included to demonstrate that RVD is modulated by both temperature and pH, and that RVD occurs in proliferating as well as quiescent lymphocytes. This information is considered in the context of a model that includes the dynamics of membrane potential, K+ conductance. Cl- conductance, a proposed stretch-activated conductance, gating mechanisms, and equilibrium potentials, as RVD progresses. The physiological relevance of volume homeostasis in lymphocyte function, in particular, and in cell growth and proliferation, in general, is discussed.  相似文献   

20.
Volume regulation by flounder red blood cells in anisotonic media   总被引:4,自引:2,他引:2       下载免费PDF全文
The nucleated high K, low Na red blood cells of the winter flounder demonstrated a volume regulatory response subsequent to osmotic swelling or shrinkage. During volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation the net water flow was secondary to net inorganic cation flux. Volume regulation after osmotic swelling is referred to as regulatory volume decrease (RVD) and was characterized by net K and water loss. Since the electrochemical gradient for K is directed out of the cell there is no need to invoke active processes to explain RVD. When osmotically shrunken, the flounder erythrocyte demonstrated a regulatory volume increase (RVI) back toward control cell volume. The water movements characteristic of RVI were a consequence of net cellular NaCl and KCl uptake with Na accounting for 75 percent of the increase in intracellular cation content. Since the Na electrochemical gradient is directed into the cell, net Na uptake was the result of Na flux via dissipative pathways. The addition of 10(-4)M ouabain to suspensions of flounder erythrocytes was without effect upon net water movements during volume regulation. The presence of ouabain did however lead to a decreased ration of intracellular K:Na. Analysis of net Na and K fluxes in the presence and absence of ouabain led to the conclusion that Na and K fluxes via both conservative and dissipative pathways are increased in response to osmotic swelling or shrinkage. In addition, the Na and K flux rate through both pump and leak pathways decreased in a parallel fashion as cell volume was regulated. Taken as a whole, the Na and K movements through the flounder erythrocyte membrane demonstrated a functional dependence during volume regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号