首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
There is now direct evidence that copper is bound to amyloid-beta peptide (Abeta) in senile plaque of Alzheimer's disease. Copper is also linked with the neurotoxicity of Abeta and free radical damage, and Cu(2+) chelators represent a possible therapy for Alzheimer's disease. We have therefore used a range of complementary spectroscopies to characterize the coordination of Cu(2+) to Abeta in solution. The mode of copper binding is highly pH-dependent. EPR spectroscopy indicates that both coppers have axial, Type II coordination geometry, square-planar or square-pyramidal, with nitrogen and oxygen ligands. Circular dichroism studies indicate that copper chelation causes a structural transition of Abeta. Competition studies with glycine and l-histidine indicate that copper binds to Abeta-(1-28) at pH 7.4 with an affinity of K(a) approximately 10(7) m(-1). (1)H NMR indicates that histidine residues are involved in Cu(2+) coordination but that Tyr(10) is not. Studies using analogues of Abeta-(1-28) in which each of the histidine residues have been replaced by alanine or in which the N terminus is acetylated suggest that the N terminus and His(13) are crucial for Cu(2+) binding and that His(6) and His(14) are also implicated. Evidence for the link between Alzheimer's disease and Cu(2+) is growing, and our studies have made a significant contribution to understanding the mode of Cu(2+) binding to Abeta in solution.  相似文献   

2.
Elevated levels of zinc2+ and copper2+ are found chelated to the amyloid-beta-peptide (Abeta) in isolated senile plaque cores of Alzheimer's disease (AD) patients. However, the precise residues involved in Zn2+ ligation are yet to be established. We have used 1H NMR and CD to probe the binding of Zn2+ to Abeta(1-28). Zinc binding to Abeta causes a number of 1H NMR resonances to exhibit intermediate exchange broadening upon Zn2+ addition, signals in slow and fast exchange are also observed. In addition, there is a general loss of signal for all resonances with Zn2+ addition, suggestive of the formation of high molecular weight polymeric species. Perturbations in specific 1H NMR resonances between residues 6 and 14, and analysis of various Abeta analogues in which each of the three His residues have been replaced by alanine, indicates that His6, His13 and His14 residues are implicated in Zn-Abeta binding. Complementary studies with Cd2+ ions cause perturbations to 1H NMR spectra that are strikingly similar to that observed for Zn2+. Binding monitored at Val12 indicates a 1:1 stoichiometry with Abeta for both Zn2+ and Cd2+ ions. Circular Dichroism (CD) studies in the far-UV indicate quite minimal ordering of the main-chain with Zn2+ or Cd2+ addition. Changes in the far-UV are quite different from that obtained with Cu2+ additions indicating that Zn2+ coordination is distinct from that of Cu2+ ions. Taken together, these observations seem to suggest that Zn2+ coordination is dominated by inter-molecular coordination and the formation of polymeric species.  相似文献   

3.
With a combination of complementary experimental techniques, namely sedimentation assay, Fourier transform infrared spectroscopy, and x-ray absorption spectroscopy, we are able to determine the atomic structure around the metal-binding site in samples where amyloid-beta (Abeta) peptides are complexed with either Cu(II) or Zn(II). Exploiting information obtained on a selected set of fragments of the Abeta peptide, we identify along the sequence the histidine residues coordinated to the metal in the various peptides we have studied (Abeta(1-40), Abeta(1-16), Abeta(1-28), Abeta(5-23), and Abeta(17-40)). Our data can be consistently interpreted assuming that all of the peptides encompassing the minimal 1-16 amino acidic sequence display a copper coordination mode that involves three histidines (His(6), His(13), and His(14)). In zinc-Abeta complexes, despite the fact that the metal coordination appears to be more sensitive to solution condition and shows a less rigid geometry around the binding site, a four-histidine coordination mode is seen to be preferred. Lacking a fourth histidine along the Abeta peptide sequence, this geometrical arrangement hints at a Zn(II)-promoted interpeptide aggregation mode.  相似文献   

4.
A contributing factor to the pathology of Alzheimer's disease is the generation of reactive oxygen species, most probably a consequence of the beta-amyloid (Abeta) peptide coordinating copper ions. Experimental and theoretical results indicate that His13 and His14 are the two most firmly established ligands in the coordination sphere of Cu(II) bound to Abeta. Abeta1-42 is known to reduce Cu(II) to Cu(I). The Abeta-Cu(II) complex has been shown to catalytically generate H(2)O(2) from reducing agents and O(2). Cu(II) in the presence of Abeta has been reported to have a formal reduction potential of +0.72-0.77 V (vs. the standard hydrogen electrode). Quantum chemical calculations using the B3LYP hybrid density functional method with the 6-31G(d) basis set were performed to model the reduction of previously studied Cu(II) complexes representing the His13-His14 portion of Abeta (Raffa et al. in J. Biol. Inorg. Chem. 10:887-902, 2005). The effects of solvation were accommodated using the CPCM method. The most stable complex between Cu(I) and the model compound, 3-(5-imidazolyl)propionylhistamine (1) involves tricoordinated Cu(I) in a distorted-T geometry, with the Npi of both imidazoles as well as the oxygen of the backbone carbonyl bound to copper. This model would be the most likely representation of a Cu(I) binding site for a His-His peptide in aqueous solution. A variety of possible redox processes are discussed.  相似文献   

5.
Dysregulation of copper and zinc homeostasis in the brain plays a critical role in Alzheimer disease (AD). Copper binding to amyloid-beta peptide (Abeta) is linked with the neurotoxicity of Abeta and free radical damage. Metallothionein-3 (MT-3) is a small cysteine- and metal-rich protein expressed in the brain and found down-regulated in AD. This protein occurs intra- and extracellularly, and it plays an important role in the metabolism of zinc and copper. In cell cultures Zn7MT-3, by an unknown mechanism, protects neurons from the toxicity of Abeta. We have, therefore, used a range of complementary spectroscopic and biochemical methods to characterize the interaction of Zn7MT-3 with free Cu2+ ions. We show that Zn7MT-3 scavenges free Cu2+ ions through their reduction to Cu+ and binding to the protein. In this reaction thiolate ligands are oxidized to disulfides concomitant with Zn2+ release. The binding of the first four Cu2+ is cooperative forming a Cu(I)4-thiolate cluster in the N-terminal domain of Cu4,Zn4MT-3 together with two disulfides bonds. The Cu4-thiolate cluster exhibits an unusual stability toward air oxygen. The results of UV-visible, CD, and Cu(I) phosphorescence at 77 K suggest the existence of metal-metal interactions in this cluster. We have demonstrated that Zn7MT-3 in the presence of ascorbate completely quenches the copper-catalyzed hydroxyl radical (OH.) production. Thus, zinc-thiolate clusters in Zn7MT-3 can efficiently silence the redox-active free Cu2+ ions. The biological implication of our studies as to the protective role of Zn7MT-3 from the Cu2+ toxicity in AD and other neurodegenerative disorders is discussed.  相似文献   

6.
β-amyloid peptide (Aβ) is considered to be responsible for the formation of senile plaques,which is the hallmark of Alzheimer's disease (AD).Oxidative stress,manifested by protein oxidation andlipid peroxidation,among other alterations,is a characteristic of AD brain.A growing body of evidence hasbeen presented in support of Aβ_(1-40) forming an oligomeric complex that binds copper at a CuZn superoxidedismutase-like binding site. Aβ_(1-40)Cu(Ⅱ) complexes generate neurotoxic hydrogen peroxide (H_2O_2) from O_2via Cue reduction,though the precise reaction mechanism is unclear.The toxicity of Aβ_(1-40) or the Aβ_(1-40)Cu(Ⅱ)complexes to cultured primary cortical neurons was partially attenuated when ( )-α-tocopherol (vitamin E)as free radical antioxidant was added at a concentration of 100 μM.The data derived from lactate dehydro-genase (LDH) release and the formation of H_2O_2 confirmed the results from the MTT assay.These findingsindicate that copper binding to Aβ_(1-40) can give rise to greater production of H_2O_2, which leads to a break-down in the integrity of the plasma membrane and subsequent neuronal death.Groups treated with vitaminE exhibited much slighter damage,suggesting that vitamin E plays a key role in protecting neuronal cellsfrom dysfunction or death.  相似文献   

7.
Shin BK  Saxena S 《Biochemistry》2008,47(35):9117-9123
We provide direct evidence that all three histidine residues in amyloid-beta 1-16 (Abeta 1-16) coordinate to Cu(II). In our approach, we generate Abeta 1-16 analogues, in each of which a selected histidine residue is isotopically enriched with (15)N. Pulsed electron spin resonance (ESR) experiments such as electron spin echo envelope modulation (ESEEM) and hyperfine sublevel correlation (HYSCORE) spectroscopy clearly show that all three histidine imidazole rings at positions 6, 13 and 14 in Abeta 1-16 bind to Cu(II). The method employed here does not require either chemical side chain modification or amino acid residue replacement, each of which is traditionally used to determine whether an amino acid residue in a protein binds to a metal ion. We find that the histidine coordination in the Abeta 1-16 peptide is independent of the Cu(II)-to-peptide ratio, which is in contrast to the Abeta 1-40 peptide. The ESR results also suggest tight binding between the histidine residues and the Cu(II) ion, which is likely the reason for the high binding affinity of the Abeta peptide for Cu(II).  相似文献   

8.
N-Terminal deletions modify the Cu2+ binding site in amyloid-beta   总被引:2,自引:0,他引:2  
Karr JW  Akintoye H  Kaupp LJ  Szalai VA 《Biochemistry》2005,44(14):5478-5487
Copper is implicated in the in vitro formation and toxicity of Alzheimer's disease amyloid plaques containing the beta-amyloid (Abeta) peptide (Bush, A. I., et al. (2003) Proc. Natl. Acad. Sci. U.S.A. 100, 11934). By low temperature electron paramagnetic resonance (EPR) spectroscopy, the importance of the N-terminus in creating the Cu(2+) binding site in native Abeta has been examined. Peptides that contain the proposed binding site for Cu(2+)-three histidines (H6, H13, and H14) and a tyrosine (Y10)-but lack one to three N-terminal amino acids, do not bind Cu(2+) in the same coordination environment as the native peptide. EPR spectra of soluble Abeta with stoichiometric amounts of Cu(2+) show type 2 Cu(2+) EPR spectra for all peptides. The ligand donor atoms to Cu(2+) are 3N1O when Cu(2+) is bound to any of the Abetapeptides (Abeta16, Abeta28, Abeta40, and Abeta42) that contain the first 16 amino acids of full-length Abeta. When a Y10F mutant of Abeta is used, the coordination environment for Cu(2+) remains 3N1O and Cu(2+) EPR spectra of this mutant are identical to the wild-type spectra. Isotopic labeling experiments show that water is not the O-atom donor to Cu(2+) in Abeta fibrils or in the Y10F mutant. Further, we find that Cu(2+) cannot be removed from Cu(2+)-containing fibrils by washing with buffer, but that Cu(2+) binds to fibrils initially assembled without Cu(2+) in the same coordination environment as in fibrils assembled with Cu(2+). Together, these results indicate (1) that the O-atom donor ligand to Cu(2+) in Abeta is not tyrosine, (2) that the native Cu(2+) binding site in Abeta is sensitive to small changes at the N-terminus, and (3) that Cu(2+) binds to Abetafibrils in a manner that permits exchange of Cu(2+) into and out of the fibrillar architecture.  相似文献   

9.
COMMD1 (copper metabolism gene MURR1 (mouse U2af1-rs1 region1) domain) belongs to a family of multifunctional proteins that inhibit nuclear factor NF-kappaB. COMMD1 was implicated as a regulator of copper metabolism by the discovery that a deletion of exon 2 of COMMD1 causes copper toxicosis in Bedlington terriers. Here, we report the detailed characterization and specific copper binding properties of purified recombinant human COMMD1 as well as that of the exon 2 product, COMMD(61-154). By using various techniques including native-PAGE, EPR, UV-visible electronic absorption, intrinsic fluorescence spectroscopies as well as DEPC modification of histidines, we demonstrate that COMMD1 specifically binds copper as Cu(II) in 1:1 stoichiometry and does not bind other divalent metals. Moreover, the exon 2 product, COMMD(61-154), alone was able to bind Cu(II) as well as the wild type protein, with a stoichiometry of 1 mol of Cu(II) per protein monomer. The protection of DEPC modification of COMMD1 by Cu(II) implied that Cu(II) binding involves His residues. Further investigation by DEPC modification of COMMD(61-154) and subsequent MALDI MS mapping and MS/MS sequencing identified the protection of His101 and His134 residues in the presence of Cu(II). Fluorescence studies of single point mutants of the full-length protein revealed the involvement of M110 in addition to H134 in direct Cu(II) binding. Taken together, the data provide insight into the function of COMMD1 and especially COMMD(61-154), a product of exon 2 that is deleted in terriers affected by copper toxicosis, as a regulator of copper homeostasis.  相似文献   

10.
Amyloid deposits within the cerebral tissue constitute a characteristic lesion associated with Alzheimer disease. They mainly consist of the amyloid peptide Abeta and display an abnormal content in Zn(2+) ions, together with many truncated, isomerized, and racemized forms of Abeta. The region 1-16 of Abeta can be considered the minimal zinc-binding domain and contains two aspartates subject to protein aging. The influence of zinc binding and protein aging related modifications on the conformation of this region of Abeta is of importance given the potentiality of this domain to constitute a therapeutic target, especially for immunization approaches. In this study, we determined from NMR data the solution structure of the Abeta-(1-16)-Zn(2+) complex in aqueous solution at pH 6.5. The residues His(6), His(13), and His(14) and the Glu(11) carboxylate were identified as ligands that tetrahedrally coordinate the Zn(II) cation. In vitro aging experiments on Abeta-(1-16) led to the formation of truncated and isomerized species. The major isomer generated, Abeta-(1-16)-l-iso-Asp(7), displayed a local conformational change in the His(6)-Ser(8) region but kept a zinc binding propensity via a coordination mode involving l-iso-Asp(7). These results are discussed here with regard to Abeta fibrillogenesis and the potentiality of the region 1-16 of Abeta to be used as a therapeutic target.  相似文献   

11.
The prion protein (PrP) is a Cu(2+) binding cell surface glycoprotein that can misfold into a beta-sheet-rich conformation to cause prion diseases. The majority of copper binding studies have concentrated on the octarepeat region of PrP. However, using a range of spectroscopic techniques, we show that copper binds preferentially to an unstructured region of PrP between residues 90 and 115, outside of the octarepeat domain. Comparison of recombinant PrP with PrP-(91-115) indicates that this prion fragment is a good model for Cu(2+) binding to the full-length protein. In contrast to previous reports we show that Cu(2+) binds to this region of PrP with a nanomolar dissociation constant. NMR and EPR spectroscopy indicate a square-planar or square-pyramidal Cu(2+) coordination utilizing histidine residues. Studies with PrP analogues show that the high affinity site requires both His(96) and His(111) as Cu(2+) ligands, rather than a complex centered on His(96) as has been previously suggested. Our circular dichroism studies indicate a loss of irregular structure on copper coordination with an increase in beta-sheet conformation. It has been shown that this unstructured region, between residues 90 and 120, is vital for prion propagation and different strains of prion disease have been linked with copper binding. The role of Cu(2+) in prion misfolding and disease must now be re-evaluated in the light of these findings.  相似文献   

12.
Miura T  Suzuki K  Kohata N  Takeuchi H 《Biochemistry》2000,39(23):7024-7031
Aggregation of the amyloid beta-peptide (Abeta) into insoluble fibrils is a key pathological event in Alzheimer's disease. Zn(II) induces the Abeta aggregation at acidic-to-neutral pH, while Cu(II) is an effective inducer only at mildly acidic pH. We have examined Zn(II) and Cu(II) binding modes of Abeta and their pH dependence by Raman spectroscopy. The Raman spectra clearly demonstrate that three histidine residues in the N-terminal hydrophilic region provide primary metal binding sites and the solubility of the metal-Abeta complex is correlated with the metal binding mode. Zn(II) binds to the N(tau) atom of the histidine imidazole ring and the peptide aggregates through intermolecular His(N(tau))-Zn(II)-His(N(tau)) bridges. The N(tau)-metal ligation also occurs in Cu(II)-induced Abeta aggregation at mildly acidic pH. At neutral pH, however, Cu(II) binds to N(pi), the other nitrogen of the histidine imidazole ring, and to deprotonated amide nitrogens of the peptide main chain. The chelation of Cu(II) by histidine and main-chain amide groups results in soluble Cu(II)-Abeta complexes. Under normal physiological conditions, Cu(II) is expected to protect Abeta against Zn(II)-induced aggregation by competing with Zn(II) for histidine residues of Abeta.  相似文献   

13.
Zinc, iron and copper are concentrated in senile plaques of Alzheimer disease. Copper and iron catalyze the Fenton-Haber-Weiss reaction, which likely contributes to oxidative stress in neuronal cells. In this study, we found that ascorbate oxidase activity and the intensity of ascorbate radicals measured using ESR spectroscopy, generated by free Cu(II), was decreased in the presence of amyloid-beta (Abeta), the major component of senile plaques. Specifically, the ascorbate oxidase activity was strongly inhibited (85% decrease) in the presence of Abeta1-16 or Abeta1-42, whereas it was only slightly inhibited in the presence of Abeta1-12 or Abeta25-35 (<20% inhibition). Ascorbate-dependent hydroxyl radical generation by free Cu(II) decreased in the presence of Abeta in the identical order of Abeta1-42, Abeta1-16 > Abeta1-12 and was abolished in the presence of 2-fold molar excess glycylhystidyllysine (GHK). Ascorbate oxidase activity and ascorbate-dependent hydroxyl radical generation by free Fe(III) were inhibited by Abeta1-42, Abeta1-16, and Abeta1-12. Although Cu(II)-Abeta shows a significant SOD-like activity, the rate constant for the reaction of superoxide with Cu(II)-Abeta was much slower than that with SOD. Overall, our results suggest that His6, His13, and His14 residues of Abeta1-42 control the redox activity of transition metals present in senile plaques.  相似文献   

14.
The prion protein (PrP) is a cell-surface Cu(2+)-binding glycoprotein that when misfolded is responsible for a number of transmissible spongiform encephalopathies. Full-length PrP-(23-231) and constructs in which the octarepeat region has been removed, or His(95) and His(110) is replaced by alanine residues, have been used to elucidate the order and mode of Cu(2+) coordination to PrP-(23-231). We have built on our understanding of the appearance of visible CD spectra and EPR for various PrP fragments to characterize Cu(2+) coordination to full-length PrP. At physiological pH, Cu(2+) initially binds to full-length PrP in the amyloidogenic region between the octarepeats and the structured domain at His(95) and His(110). Only subsequent Cu(2+) ions bind to single histidine residues within the octarepeat region. Ni(2+) ions are used to further probe metal binding and, like Cu(2+), Ni(2+) will bind individually to His(95) and His(110), involving preceding main chain amides. Competitive chelators are used to determine the affinity of the first mole equivalent of Cu(2+) bound to full-length PrP; this approach places the affinity in the nanomolar range. The affinity and number of Cu(2+) binding sites support the suggestion that PrP could act as a sacrificial quencher of free radicals generated by copper redox cycling.  相似文献   

15.
Aberrant interactions of copper and zinc ions with the amyloid-beta peptide (Abeta) potentiate Alzheimer's disease (AD) by participating in the aggregation process of Abeta and in the generation of reactive oxygen species (ROS). The ROS production and the neurotoxicity of Abeta are associated with copper binding. Metallothionein-3 (Zn(7)MT-3), an intra- and extracellularly occurring metalloprotein, is highly expressed in the brain and downregulated in AD. This protein protects, by an unknown mechanism, cultured neurons from the toxicity of Abeta. Here, we show that a metal swap between Zn(7)MT-3 and soluble and aggregated Abeta(1-40)-Cu(II) abolishes the ROS production and the related cellular toxicity. In this process, copper is reduced by the protein thiolates forming Cu(I)(4)Zn(4)MT-3, in which an air-stable Cu(I)(4)-thiolate cluster and two disulfide bonds are present. The discovered protective effect of Zn(7)MT-3 from the copper-mediated Abeta(1-40) toxicity may lead to new therapeutic strategies for treating AD.  相似文献   

16.
Karr JW  Szalai VA 《Biochemistry》2008,47(17):5006-5016
Copper has been proposed to play a role in Alzheimer's disease through interactions with the amyoid-beta (Abeta) peptide. The coordination environment of bound copper as a function of Cu:Abeta stoichiometry and Abeta oligomerization state are particularly contentious. Using low-temperature electron paramagnetic resonance (EPR) spectroscopy, we spectroscopically distinguish two Cu(II) binding sites on both soluble and fibrillar Abeta (for site 1, A parallel = 168 +/- 1 G and g parallel = 2.268; for site 2, A parallel = 157 +/- 2 G and g parallel = 2.303). When fibrils that have been incubated with more than 1 equiv of Cu(II) are washed, the second Cu(II) ion is removed, indicating that it is only weakly bound to the fibrils. No change in the Cu(II) coordination environment is detected by EPR spectroscopy of Cu(II) with Abeta (1:1 ratio) collected as a function of Abeta fibrillization time, which indicates that the Cu(II) environment is independent of Abeta oligomeric state. The initial Cu(II)-Abeta complexes go on to form Cu(II)-containing Abeta fibrils. Transmission electron microscopy images of Abeta fibrils before and after Cu(II) addition are the same, showing that once incorporated, Cu(II) does not affect fibrillar structure; however, the presence of Cu(II) appears to induce fibril-fibril association. On the basis of our results, we propose a model for Cu(II) binding to Abeta during fibrillization that is independent of peptide oligomeric state.  相似文献   

17.
The prion protein (PrP) is a Cu2+ binding cell surface glyco-protein. Misfolding of PrP into a beta-sheet rich conformation is associated with transmissible spongiform encephalopathies. Here we use Ni2+ as a diamagnetic probe to further understand Cu2+ binding to PrP. Like Cu2+, Ni2+ preferentially binds to an unstructured region between residues 90 and 126 of PrP, which is a key region for amyloidogenicity and prion propagation. Using both 1H NMR and visible-circular dichroism (CD) spectroscopy, we show that two Ni2+ ions bind to His96 and His111 independently of each other. 1H NMR indicates that both Ni2+ binding sites form square-planar diamagnetic complexes. We have previously shown that Cu2+ forms a paramagnetic square-planar complex in this region, suggesting that Ni2+ could be used as a probe for Cu2+ binding. In addition, competition studies show that two Cu2+ ions can displace Ni2+ from these sites. Upon Ni2+ addition 1H NMR changes in chemical shifts indicate the imidazole ring and amide nitrogen atoms to the N terminus of both His96 and His111 act as coordinating ligands. Use of peptide fragments confirm that PrP(92-96) and PrP(107-111) represent the minimal binding motif for the two Ni2+ binding sites. Analysis of Cu2+ loaded visible-CD spectra show that as with Ni2+, PrP(90-115) binds two Cu2+ ions at His96 and His111 independently of each other. Visible CD studies with PrP(23-231Delta51-90), a construct of PrP(23-231) with the octarepeat region deleted to improve solubility, confirm binding of Ni2+ to His96 and His111 in octarepeat deleted PrP(23-231). The structure of the Cu/Ni complexes is discussed in terms of the implications for prion protein function and disease.  相似文献   

18.
Copper(II) complexes of dipeptides of histidine containing additional chelating bis(imidazol-2-yl) agent at the C-termini (PheHis-BIMA [N-phenylalanyl-histidyl-bis(imidazol-2-yl)methylamine] and HisPhe-BIMA [N-histidyl-phenylalanyl-bis(imidazol-2-yl)methylamine]) were studied by potentiometric, UV-Visible and Electron Paramagnetic Resonance (EPR) techniques. The imidazole nitrogen donor atoms of the bis(imidazol-2-yl)methyl group are described as the primary metal binding sites forming stable mono- and bis(ligand) complexes at acidic pH. The formation of a ligand-bridged dinuclear complex [Cu2L2]4+ is detected in equimolar solutions of copper(II) and HisPhe-BIMA. The coordination isomers of the dinuclear complex are described via the metal binding of the bis(imidazol-2-yl)methyl, amino-carbonyl and amino-imidazole(His) functions. In the case of the copper(II)-PheHis-BIMA system the [NH2, N-(amide), N(Im)] tridentate coordination of the ligand is favoured and results in the formation of di- and trinuclear complexes [Cu2H(-1)L]3+ and [Cu3H(-2)L2]4+ in equimolar solutions. The presence of these coordination modes shifts the formation of "tripeptide-like" ([NH2, N-, N-, N(Im)]-coordinated) [CuH(-2)L] complexes into alkaline pH range as compared to other dipeptide derivatives of bis(imidazol-2-yl) ligands. Although there are different types of imidazoles in these ligands, the deprotonation and coordination of the pyrrole-type N(1)H groups does not occur below pH 10.  相似文献   

19.
The Amyloid beta peptide (Abeta) of Alzheimer's diseases (AD) is closely linked to the progressive cognitive decline associated with the disease. Cu2+ ions can induce the de novo aggregation of the Abeta peptide into non-amyloidogenic aggregates and the production of a toxic species. The mechanism by which Cu2+ mediates the change from amyloid material toward Cu2+ induced aggregates is poorly defined. Here we demonstrate that the aggregation state of Abeta1-42 at neutral pH is governed by the Cu2+:peptide molar ratio. By probing amyloid content and total aggregation, we observed a distinct Cu2+ switching effect centered at equimolar Cu2+:peptide ratios. At sub-equimolar Cu2+:peptide molar ratios, Abeta1-42 forms thioflavin-T reactive amyloid; conversely, at supra-equimolar Cu2+:peptide molar ratios, Abeta1-42 forms both small spherical oligomers approximately 10-20 nm in size and large amorphous aggregates. We demonstrate that these insoluble aggregates form spontaneously via a soluble species without the presence of an observable lag phase. In seeding experiments, the Cu2+ induced aggregates were unable to influence fibril formation or convert into fibrillar material. Aged Cu2+ induced aggregates are toxic when compared to Abeta1-42 aged in the absence of Cu2+. Importantly, the formation of dityrosine crosslinked Abeta, by the oxidative modification of the peptide, only occurs at equimolar molar ratios and above. The formation of dityrosine adducts occurs following the initiation of aggregation and hence does not drive the formation of the Cu2+ induced aggregates. These results define the role Cu2+ plays in modulating the aggregation state and toxicity of Abeta1-42.  相似文献   

20.
The prion protein (PrP) binds Cu(2+) in its N-terminal octarepeat domain, composed of four or more tandem PHGGGWGQ segments. Previous work from our laboratory demonstrates that copper interacts with the octarepeat domain through three distinct coordination modes at pH 7.4, depending upon the precise ratio of Cu(2+) to protein. Here, we apply both electron paramagnetic resonance (EPR) and fluorescence quenching to determine the copper affinity for each of these modes. At low copper occupancy, which favors multiple His coordination, the octarepeat domain binds Cu(2+) with a dissociation constant of 0.10 (+/-0.08) nM. In contrast, high copper occupancy, involving coordination through deprotonated amide nitrogens, exhibits a weaker affinity characterized by dissociation constants in the range of 7.0-12.0 microM. Decomposition of the EPR spectra reveals the proportions of all coordination species throughout the copper concentration range and identifies significant populations of intermediates, consistent with negative cooperativity. At most copper concentrations, the Hill coefficient is less than 1.0 and approximately 0.7 at half copper occupancy. These findings demonstrate that the octarepeat domain is responsive to a remarkably wide copper concentration range covering approximately 5 orders of magnitude. Consideration of these findings, along with the demonstrated ability of the protein to quench copper redox activity at high occupancy, suggests that PrP may function to protect cells by scavenging excess copper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号