首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 535 毫秒
1.
The effects of the enantiomers of (+/-)-CAMP and (+/-)-TAMP [(+/-)-cis- and (+/-)-trans-2-aminomethylcyclopropanecarboxylic acids, respectively], which are cyclopropane analogues of GABA, were tested on GABA(A) and GABA(C) receptors expressed in Xenopus laevis oocytes using two-electrode voltage clamp methods. (+)-CAMP was found to be a potent and full agonist at homooligomeric GABA(C) receptors (K:(D) approximately 40 microM: and I:(max) approximately 100% at rho(1); K:(D) approximately 17 microM: and I:(max) approximately 100% at rho(2)) but a very weak antagonist at alpha(1)beta(2)gamma(2L) GABA(A) receptors. In contrast, (-)-CAMP was a very weak antagonist at both alpha(1)beta(2)gamma(2L) GABA(A) receptors and homooligomeric GABA(C) receptors (IC(50) approximately 900 microM: at rho(1) and approximately 400 microM: at rho(2)). Furthermore, (+)-CAMP appears to be a superior agonist to the widely used GABA(C) receptor partial agonist cis-4-aminocrotonic acid (K:(D) approximately 74 microM: and I:(max) approximately 78% at rho(1); K:(D) approximately 70 microM: and I:(max) approximately 82% at rho(2)). (-)-TAMP was the most potent of the cyclopropane analogues on GABA(C) receptors (K:(D) approximately 9 microM: and I:(max) approximately 40% at rho(1); K:(D) approximately 3 microM: and I:(max) approximately 50-60% at rho(2)), but it was also a moderately potent GABA(A) receptor partial agonist (K:(D) approximately 50-60 microM: and I:(max) approximately 50% at alpha(1)beta(2)gamma(2L) GABA(A) receptors). (+)-TAMP was a less potent partial agonist at GABA(C) receptors (K:(D) approximately 60 microM: and I:(max) approximately 40% at rho(1); K:(D) approximately 30 microM: and I:(max) approximately 60% at rho(2)) and a weak partial agonist at alpha(1)beta(2)gamma(2L) GABA(A) receptors (K:(D) approximately 500 micro: and I:(max) approximately 50%). None of the isomers of (+/-)-CAMP and (+/-)-TAMP displayed any interaction with GABA transport at the concentrations tested. Molecular modeling based on the present results provided new insights into the chiral preferences for either agonism or antagonism at GABA(C) receptors.  相似文献   

2.
3.
Evidence from electrophysiological studies suggests that 5-HT neuronal firing in the dorsal raphe nucleus (DRN) may be regulated by both GABA(A) and GABA(B) receptors. Here, we addressed the question of whether the activity of individual 5-HT neurons is regulated by both GABA(A) and GABA(B) receptors. In addition, we examined the concentration-response relationships of GABA(A) and GABA(B) receptor activation and determined if GABA receptor regulation of 5-HT neuronal firing is altered by moderate alterations in circulating corticosterone. The activity of 5-HT neurons in the DRN of the rat was examined using in vitro extracellular electrophysiology. The firing of all individual neurons tested was inhibited by both the GABA(A) receptor agonist 4,5,6,7-tetrahydroisoxazolo-[5,4-c]-pyridin-3-ol hydrochloride (THIP) (25 microM) and the GABA(B) receptor agonist baclofen (1 microM). Responses to THIP (5, 10, 25 microM) and baclofen (1, 3, 10 microM) were concentration dependent and attenuated by the GABA(A) and GABA(B) receptor antagonists, bicuculline (50 microM) and phaclofen (200 microM), respectively. To examine the effects of corticosterone on the sensitivity of 5-HT neurons to GABA receptor activation, experiments were conducted on adrenalectomized animals with corticosterone maintained for two weeks at either a low or moderate level within the normal diurnal range. These changes in corticosterone levels had no significant effects on the 5-HT neuronal response to either GABA(A) or GABA(B) receptor activation. The data indicate that the control of 5-HT neuronal activity by GABA is mediated by both GABA(A) and GABA(B) receptors and that this control is insensitive to moderate changes in circulating glucocorticoid levels.  相似文献   

4.
Allosteric modulation of GABA(B) receptor function in human frontal cortex   总被引:2,自引:0,他引:2  
In the present study, the effects of different allosteric modulators on the functional activity of gamma-aminobutyric acid (GABA)B receptors in membranes of post-mortem human frontal cortex were examined. Western blot analysis indicated that the tissue preparations expressed both GABA(B1) and GABA(B2) subunits of the GABA(B) receptor heterodimer. In [35S]-GTPgammaS binding assays, Ca2+ ion (1 mM) enhanced the potency of the agonists GABA and 3-aminopropylphosphinic acid (3-APA) and that of the antagonist CGP55845, but not that of the GABA(B) receptor agonist (-)-baclofen. CGP7930 (2,6-di-t-Bu-4-(3-hydroxy-2,2-dimethyl-propyl)-phenol), a positive allosteric modulator of GABA(B) receptors, potentiated both GABA(B) receptor-mediated stimulation of [35S]-GTPgammaS binding and inhibition of forskolin (FSK)-stimulated adenylyl cyclase activity. Chelation of Ca2+ ion by EGTA reduced the CGP7930 enhancement of GABA potency in stimulating [35S]-GTPgammaS binding by two-fold. Fendiline, also reported to act as a positive allosteric modulator of GABA(B) receptors, failed to enhance GABA stimulation of [35S]-GTPgammaS binding but inhibited the potentiating effect of CGP7930. The inhibitory effect was mimicked by the phenothiazine antipsychotic trifluoperazine (TFP), but not by other compounds, such as verapamil or diphenydramine (DPN). These data demonstrate that the function of GABA(B) receptors of human frontal cortex is positively modulated by Ca2+ ion and CGP7930, which interact synergistically. Conversely, fendiline and trifluoperazine negatively affect the allosteric regulation by CGP7930.  相似文献   

5.
(R,S)-4-Amino-3-(7-methylbenzo[b]furan-2-yl)-butanoic acid (7-MBFG), a new benzofuran analogue of the GABA(B) receptor agonist baclofen, has been evaluated for pharmacological activity on GABA(B) receptors in the guinea-pig isolated ileum and rat neocortical slices. 7-MBFG (300 and 500 microM) reversibly antagonized the (R,S)-baclofen induced depression of cholinergic twitch contractions in the guinea-pig ileum and shifted the concentration-response curve for baclofen to the right, in a parallel manner, giving an apparent pA2 value of 3.7+/-0.3. Likewise, 7-MBFG (300 and 500 microM) reversibly blocked the baclofen-induced suppression of spontaneous discharges, in rat neocortical slices maintained in Mg2+ -free Krebs medium, and caused a rightward, parallel shift of the baclofen concentration-response curve, giving an apparent pA2 value of 4.1+/-0.1. The compound 7-MBFG belongs to a novel, new class of antagonist at central and peripheral GABA(B) receptors, in which the antagonist properties reside in the pseudo-aromatic character of their 3-benzo[b]furan-2-yl substituents, and might provide useful leads for further development of GABA(B) receptor ligands.  相似文献   

6.
GABA(B) receptor subunits are widely expressed on neurons throughout the central nervous system (CNS), at both pre- and postsynaptic sites, where they mediate the late and slow component of the inhibitory response to the major inhibitory neurotransmitter GABA. Recently, GABA(B) receptors have been reported to be expressed in astrocytes and microglia in the rat CNS by immunocytochemistry. However, there are few reports available for the functional characterization of GABA(B) receptors on astrocytes. In the present study, we therefore investigated the functional expression and characteristics of GABA(B) receptors in primary cultures of astrocytes from rat cerebral cortex. In the presence of 10 microM GTP, forskolin concentration-dependently increased adenylylcyclase (AC) activity in membranes prepared from rat astrocytes. The selective GABA(B) agonist (R)-baclofen concentration-dependently reduced forskolin-stimulated AC activity in the presence of 10 microM GTP. This effect was reversed by the selective GABA(B) antagonists, CGP-55845 and CGP-54626, and was completely abolished by treatment of astrocytic membranes with pertussis toxin. In addition, RT-PCR, Western blotting, and immunocytochemistry clearly showed that metabotropic GABA(B) receptor isoforms (GABA(B)R1 and GABA(B)R2) are expressed in rat cerebrocortical astrocytes. Taken collectively, these results demonstrate that functionally active metabotropic GABA(B) receptors are expressed in rat cerebrocortical astrocytes.  相似文献   

7.
Nicotinic acetylcholine (ACh) receptors, such as alpha7, alpha3beta4 and alpha4beta2 receptors in the hippocampus, are suggested to modulate neurotransmitter release. 8-[2-(2-Pentyl-cyclopropylmethyl)-cyclopropyl]-octanoic acid (DCP-LA) (100 nM), a linoleic acid derivative, potentiated responses of alpha7, alpha3beta4 and alpha4beta2 ACh receptors expressed in Xenopus oocytes that are blocked by 3-(1-[dimethylaminopropyl] indol-3-yl)-4-[indol-3-yl] maleimide (GF109203X), a selective inhibitor of protein kinase C (PKC), except for alpha3beta4 ACh receptors. DCP-LA enhanced the nicotine-triggered release of GABA from rat hippocampal slices in the presence of tetrodotoxin in a bell-shaped dose-dependent manner at concentrations ranging from 10 nM to 10 microM, although DCP-LA by itself had no effect on GABA release. The DCP-LA action was inhibited by GF109203X or alpha-bungarotoxin, an inhibitor of alpha7 ACh receptors, but not by mecamylamine or dihydro-beta-erithroidine, an inhibitor of alpha3beta4 and alpha4beta2 ACh receptors. A similar effect on GABA release was obtained with 12-O-tetradecanoylphorbol 13-acetate, a PKC activator. DCP-LA (100 nM) also enhanced GABA release triggered by choline, an agonist of alpha7 ACh receptors, but not 3-[2(s)-azetidinylmethoxy] pyridine, an agonist of alpha4beta2 ACh receptors. In addition, DCP-LA (100 nM) increased the rate of nicotine-triggered GABA(A) receptor-mediated miniature inhibitory post-synaptic currents, monitored from CA1 pyramidal neurons of rat hippocampal slices, and the effect was also inhibited by GF109203X or alpha-bungarotoxin but not by mecamylamine. Thus, the results of the present study indicate that DCP-LA stimulates GABA release by enhancing activity of pre-synaptic alpha7 ACh receptors present on the GABAergic terminals of interneurons that transmit to CA1 pyramidal neurons via a PKC pathway.  相似文献   

8.
The R- and S-enantiomers of 4-amino-3-hydroxybutanoic acid (GABOB) were full agonists at human recombinant rho1 GABA(C) receptors. Their enantioselectivity (R>S) matched that reported for their agonist actions at GABA(B) receptors, but was the opposite to that reported at GABA(A) receptors (S>R). The corresponding methylphosphinic acid analogues proved to be rho1 GABA(C) receptor antagonists with R(+)-CGP44533 being more potent than S(-)-CGP44532, thus showing the opposite enantioselectivity to the agonists R(-)- and S(+)-GABOB. These studies highlight the different stereochemical requirements for the hydroxy group in these analogues at GABA(A), GABA(B) and GABA(C) receptors.  相似文献   

9.
A series of 16 1-phenyl-1H-1,2,3-triazoles with substituents at both the 4- and 5-positions of the triazole ring were synthesized, and a total of 49 compounds, including previously reported 4- or 5-monosubstituted analogues, were examined for their ability to inhibit the specific binding of [(3)H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a non-competitive antagonist, to human homo-oligomeric beta3 and hetero-oligomeric alpha1beta2gamma2 gamma-aminobutyric acid (GABA) receptors. Among all tested compounds, the 4-n-propyl-5-chloromethyl analogue of 1-(2,6-dichloro-4-trifluoromethylphenyl)-1H-1,2,3-triazole showed the highest level of affinity for both beta3 and alpha1beta2gamma2 receptors, with K(i) values of 659pM and 266nM, respectively. Most of the tested compounds showed selectivity for beta3 over alpha1beta2gamma2 receptors. Among all 1-phenyl-1H-1,2,3-triazoles, the 4-n-propyl-5-ethyl analogue exhibited the highest (>1133-fold) selectivity, followed by the 4-n-propyl-5-methyl analogue of 1-(2,6-dibromo-4-trifluoromethylphenyl)-1H-1,2,3-triazole with a >671-fold selectivity. The 2,6-dichloro plus 4-trifluoromethyl substitution pattern on the benzene ring was found to be important for the high affinity for both beta3 and alpha1beta2gamma2 receptors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) provided similar contour maps, revealing that an electronegative substituent at the 4-position of the benzene ring, a compact, hydrophobic substituent at the 4-position of the triazole ring, and a small, electronegative substituent at the 5-position of the triazole ring play significant roles for the high potency in beta3 receptors. Molecular docking studies suggested that the putative binding sites for 1-phenyl-1H-1,2,3-triazole antagonists are located in the channel-lining 2'-6' region of the second transmembrane segment of beta3 and alpha1beta2gamma2 receptors. A difference in the hydrophobic environment at the 2' position might underlie the selectivity of 1-phenyl-1H-1,2,3-triazoles for beta3 over alpha1beta2gamma2 receptors. The compounds that had high affinity for beta3 receptors with homology to insect GABA receptors showed insecticidal activity against houseflies with LD(50) values in the pmol/fly range. The information obtained in the present study should prove helpful for the discovery of selective insect control chemicals.  相似文献   

10.
This study used whole cell patch clamp recordings in rat hypothalamic slice preparations to evaluate the effects of GABA(B) receptor activation on GABA(A)-mediated inhibitory postsynaptic currents (IPSCs) in paraventricular nucleus magnocellular neurons evoked by electrical stimulation in the suprachiasmatic nucleus (SCN). Baclofen induced a dose-dependent (1-10 microM) and reversible reduction in SCN-evoked IPSC amplitude (11/11 cells), blockable with 2-hydroxysaclofen (300 microM; 3/3 cells). IPSCs displayed paired-pulse depression (PPD), attenuated by both baclofen and 2-hydroxysaclofen, but neither altered resting membrane conductances or IPSC time constants of decay. Baclofen induced a significant dose-dependent (1-100 microM) reduction in frequency, but not amplitude, of spontaneous IPSCs and miniature IPSCs, reversible with 2-hydroxysaclofen pretreatment. Baclofen effects and PPD persisted in slices pretreated with pertussis toxin (PTX) and N-ethylmaleimide, implying that these GABA(B) receptors are coupled to PTX-insensitive G proteins. Responses were unaltered by barium (2 mM) or nimodipine, ruling out involvement of K(+) channels and L-type Ca(2+) channels. Thus pre- and postsynaptic GABA(B) and GABA(A) receptors participate in SCN entrainment of paraventricular neurosecretory neurons.  相似文献   

11.
Lithium trialkylborohydrides were found to effect rapid monodealkylation of phosphonic diesters, and this reaction was applied to the synthesis of alkylphosphonic acid 2-aminoethyl esters [H(2)N(CH(2))(2)OP(OH)R, 4], a little-explored class of analogs of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA). Compound 4a (R=Me) proved to be a potent antagonist at human rho1 GABA(C) receptors (expressed in Xenopus laevis oocytes), with an IC(50) of 11.1 microM, but is inactive at alpha(1)beta(2)gamma(2) GABA(A) receptors.  相似文献   

12.
gamma-Aminobutyric acid (GABA), having minimal intrinsic activity, potentiates dopamine-induced fluid secretion in salivary glands of female ixodid ticks. Because the effect of GABA was similar to that of spiperone, we tested whether these two drugs act at a common recognition site. Potentiation was not augmented when salivary glands were exposed to supramaximal concentrations of spiperone (1 microM) plus GABA (100 microM). (+/-)-Sulpiride (100 microM), a spiperone antagonist in this system, also blocked GABA-induced potentiation. Picrotoxin (100 microM) and (-)-bicuculline (100 microM), two GABA antagonists, blocked GABA-induced and spiperone-induced potentiation. Inhibition of GABA by picrotoxin and (-)-bicuculline was noncompetitive. Muscimol (an agonist at GABAA receptors) also potentiated dopamine-induced secretion. Baclofen (an agonist at GABAB receptors) did not elicit potentiation. We suggest that GABA may function as a neuromodulator for dopamine-induced fluid secretion in tick salivary glands.  相似文献   

13.
We studied the effects of the positive allosteric modulator GS39783 on GABA(B) receptors at a biochemical level in vivo. Changes in extracellular levels of cyclic AMP following GABA(B) receptor activation were monitored in the striatum of freely moving rats using microdialysis. Locally applied GABA(B) agonist R(-)-baclofen inhibited cyclic AMP formation stimulated by a water-soluble forskolin analogue in a concentration-dependent manner (EC50 7.3 microM, maximal inhibition 40%). The selective GABA(B) antagonist CGP56999 reversed R(-)-baclofen-induced cyclic AMP inhibition to control levels, but not higher. Orally applied GS39783 lacked effects on its own but, together with a threshold concentration of R(-)-baclofen (1 microM), significantly decreased cyclic AMP formation in a dose-dependent fashion. Effects of GS39783 were revoked with CGP56999, showing dependence on GABA(B) receptor activation and suggesting allosteric modulation as a mechanism of action in vivo. Administered with a maximally active dose of R(-)-baclofen, GS39783 failed to further inhibit cyclic AMP formation. The data obtained with CGP56999 and the lack of effect of GS39783 alone suggest that there is no detectable endogenous activation of GABA(B) receptors controlling cyclic AMP formation in rat striatum. To our knowledge, these results provide the first biochemical demonstration of in vivo activity of a G protein-coupled receptor-positive allosteric modulator.  相似文献   

14.
Fipronil [5-amino-3-cyano-1-(2,6-dichloro-4-trifluoromethylphenyl)-4-trifluoromethylsulfinylpyrazole] is one of the most important insecticides. Structure-activity studies described here reveal that fipronil retains its very high binding potency at the human beta3 and house fly gamma-aminobutyric acid (GABA) receptors and toxicity to house flies on replacing the pyrazole trifluoromethylsulfinyl moiety with tert-butyl or isopropyl and the phenyl trifluoromethyl substituent with ethynyl, trifluoromethoxy, bromo or chloro. Among the compounds studied, those with other alkyl groups at the 4-position of the pyrazole, as well as phenyl substitution without one or both of the 2,6-dichloro groups, are less effective. 5-Amino-4-tert-butyl-3-cyano-1-(2,6-dichloro-4-ethynylphenyl)pyrazole is highly effective and almost isosteric with 4-tert-butyl-3-cyano-1-(4-ethynylphenyl)-2,6,7-trioxabicyclo[2.2.2]octane (the most potent 4-alkyl-1-phenyltrioxabicyclooctane) as a noncompetitive GABA antagonist and insecticide. These findings are interpreted as three binding subsites in the GABA receptor: a hydrophobic site undergoing steric interaction with the tert-butyl or equivalent group; a hydrogen bonding site to pyrazole N-2; a pi bonding site to the face of the phenyl moiety; with supplemental enhancement by the 3-cyano and 4-ethynyl substituents.  相似文献   

15.
The effects of the enantiomers of a number of flexible and cis-constrained GABA analogues were tested on GABA(C) receptors expressed in Xenopus laevis oocytes using two-electrode voltage-clamp electrophysiology. (1S,2R)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((+)-CAMP), a potent and full agonist at the rho1 (EC(50) approximately 40 microM, I(max) approximately 100%) and rho 2 (EC(50) approximately 17 microM, I(max) approximately 100%) receptor subtypes, was found to be a potent partial agonist at rho3 (EC(50) approximately 28 microM, I(max) approximately 70%). (1R,2S)-cis-2-Aminomethylcyclopropane-1-carboxylic acid ((-)-CAMP), a weak antagonist at human rho1 (IC(50) approximately 890 microM) and rho2 (IC(50) approximately 400 microM) receptor subtypes, was also found to be a moderately potent antagonist at rat rho3 (IC(50) approximately 180 microM). Similarly, (1R,4S)-4-aminocyclopent-2-ene-1-carboxylic acid ((+)-ACPECA) was a full agonist at rho1 (EC(50) approximately 135 microM, I(max) approximately 100%) and rho2 (EC(50) approximately 60 microM, I(max) approximately 100%), but only a partial agonist at rho3 (EC(50) approximately 112 microM, I(max) approximately 37%), while (1S,4R)-4-aminocyclopent-2-ene-1-carboxylic acid ((-)-ACPECA) was a weak antagonist at all three receptor subtypes (IC(50)>300 microM). 4-Amino-(S)-2-methylbutanoic acid ((S)-2MeGABA) and 4-amino-(R)-2-methylbutanoic acid ((R)-2MeGABA) followed the same trend, with (S)-2MeGABA acting as a full agonist at the rho1 (EC(50) approximately 65 microM, I(max) approximately 100%), and rho2 (EC(50) approximately 20 microM, I(max) approximately 100%) receptor subtypes, and a partial agonist at rho3 (EC(50) approximately 25 microM, I(max) approximately 90%). (R)-2MeGABA, however, was a moderately potent antagonist at all three receptor subtypes (IC(50) approximately 16 microM at rho1, 125 microM at rho2 and 35 microM at rho3). On the basis of these expanded biological activity data and the solution-phase molecular structures obtained at the MP2/6-31+G* level of ab initio theory, a rationale is proposed for the genesis of this stereoselectivity effect.  相似文献   

16.
D J Cash  K Subbarao 《Biochemistry》1987,26(24):7562-7570
The function of gamma-aminobutyric acid (GABA) receptors, which mediate transmembrane chloride flux, can be studied by use of 36Cl- isotope tracer with membrane from mammalian brain by quench-flow technique, with reaction times that allow resolution of the receptor desensitization rates from the ion flux rates. The rates of chloride exchange into the vesicles in the absence and presence of GABA were characterized with membrane from rat cerebral cortex. Unspecific 36Cl- influx was completed in three phases of ca. 3% (t 1/2 = 0.6 s), 56% (t 1/2 = 82 s), and 41% (t 1/2 = 23 min). GABA-mediated, specific chloride exchange occurred with 6.5% of the total vesicular internal volume. The GABA-dependent 36Cl- influx proceeded in two phases, each progressively slowed by desensitization. The measurements supported the presence of two distinguishable active GABA receptors on the same membrane mediating chloride exchange into the vesicles with initial first-order rate constants of 9.5 s-1 and 2.3 s-1 and desensitizing with first-order rate constants of 21 s-1 and 1.4 s-1, respectively, at saturation. The half-response concentrations were similar for both receptors, 150 microM and 114 microM GABA for desensitization and 105 microM and 82 microM for chloride exchange, for the faster and slower desensitizing receptors, respectively. The two receptors were present in the activity ratio of ca. 4/1, similar to the ratio of "low-affinity" to "high-affinity" GABA sites found in ligand binding experiments. The desensitization rates have a different dependence on GABA concentration than the channel-opening equilibria.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Acyclic noncompetitive antagonists of ionotropic gamma-aminobutyric acid (GABA) receptors, bearing an ester or ether linkage, were designed, synthesized, and assayed for their inhibition of the specific binding of [3H]4'-ethynyl-4-n-propylbicycloorthobenzoate (EBOB), a radiolabeled noncompetitive antagonist, to rat brain and housefly head membranes. 5-[4-(3,3-Dimethylbutoxycarbonyl)phenyl]-4-pentynoic acid (DBCPP), a butyl benzoate analogue, was found to competitively inhibit the binding of [3H]EBOB in rat brain membranes, with an IC50 of 88 nM. The potency conferred by the p-substituent decreased in the order C(triple bond)C(CH2)2COOH > C(triple bond)C(CH2)2COOCH3 > C(triple bond) CH > Br. Pentyl phenyl ethers were equally potent compared with butyl benzoates, while phenyl pentanoates and benzyl butyl ethers were less pont. These compounds were generally less active in housefly head membranes than in rat brain membranes. The introduction of an isopropyl group into the 1-position of the 3,3-dimethylbutyl group of a butyl benzoate and two benzyl butyl ethers caused an increase in potency in housefly GABA receptors, whereas this modification at the corresponding position of other compounds led to an unchanged or decreased potency. In the case of rat receptors, this modification resulted in a decrease in potency except for a phenyl pentanoate. To confirm that DBCPP interferes with GABA receptor function, we performed whole-cell patch clamp experiments with rat dorsal root ganglion neurons in the primary culture. Repeated co-applications of GABA and DBCPP suppressed GABA-induced whole-cell currents with an IC50 of 0.54 microM and a Hill coefficient of 0.7. These findings indicate that DBCPP and its derivatives inhibit ionotropic GABA receptors by binding to the EBOB site and that there might be structural difference in the noncompetitive antagonist-binding site between rat and housefly GABA receptors.  相似文献   

18.
The cyclin dependent kinase (cdk) inhibitor NU6027, 4-cyclohexylmethoxy-5-nitroso-pyrimidine-2,6-diamine (IC(50) vs cdk1/cyclinB1=2.9+/-0.1 microM and IC(50) vs cdk2/cyclinA3=2.2+/-0.6 microM), was used as the basis for the design of a series of 4-alkoxy-2,6-diamino-5-nitrosopyrimidine derivatives. The synthesis and evaluation of 21 compounds as potential inhibitors of cyclin-dependent kinases 1 and 2 is described and the structure-activity relationships relating to NU6027 have been probed. Simple alkoxy- or cycloalkoxy-groups at the O(4)-position were tolerated, with the 4-(2-methylbutoxy)-derivative (IC(50) vs cdk1/cyclinB1=12+/-2 microM and cdk2/cyclinA3=13+/-4 microM) retaining significant activity. Substitutions at the N(6) position were not tolerated. Replacement of the 5-nitroso substituent with ketone, oxime and semicarbazone groups essentially abolished activity. However, the derivative bearing an isosteric 5-formyl group, 2,6-diamino-4-cyclohexylmethoxy-pyrimidine-5-carbaldehyde, showed modest activity (IC(50) vs cdk1/cyclinB1=35+/-3 microM and cdk2/cyclinA3=43+/-3 microM). The X-ray crystal structure of the 5-formyl compound bound to cdk2 has been determined to 2.3A resolution. The intramolecular H-bond deduced from the structure with NU6027 bound to cdk2 is not evident in the structure with the corresponding formyl compound. Thus the parent compound, 4-cyclohexylmethoxy-5-nitrosopyrimidine-2,6-diamine (NU6027), remains the optimal basis for future structure-activity studies for cyclin-dependent kinase inhibitors in this series.  相似文献   

19.
Two quinolines identified as positive allosteric modulators of γ-aminobutyric acid (GABA)(A) receptors containing the α(2) subunit, 9-amino-2-cyclobutyl-5-(6-methoxy-2-methylpyridin-3-yl)-2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-one (4) and 9-amino-2-cyclobutyl-5-(2-methoxypyridin-3-yl)-2,3-dihydro-1H-pyrrolo[3,4-b]quinolin-1-one (5), were radiolabelled at the methoxy position with carbon-11 (half-life=20.4 min). These quinolines represent a new class of potential radiotracers for imaging the benzodiazepine site of GABA(A) receptors with positron emission tomography (PET). Both radiotracers were reliably isolated following reaction of their respective pyridinone/pyridinol tautomeric precursors with [(11)C]CH(3)I in clinically useful, formulated quantities (2.9% and 2.7% uncorrected radiochemical yield, respectively, relative to [(11)C]CO(2)) with high specific activities (>70 GBq μ mol(-1); >2 Ci μ mol(-1)) and high radiochemical purities (>95%). The radiosyntheses reported herein represent rare examples of selectively isolating radiolabelled compounds bearing [(11)C]2-methoxypyridine moieties. Although both radiotracers demonstrated promising imaging characteristics based on preliminary ex vivo biodistribution studies in conscious rodents, higher brain uptake was observed with [(11)C]5 and therefore this radiotracer was further evaluated. Carbon-11 labelled 5 readily penetrated the brain (>1 standard uptake value in cortical regions at 15 min post-injection of the radiotracer), had an appropriate regional brain distribution for GABA(A) receptors that appeared to be reversible, and did not show any appreciable radiometabolites in rat brain homogenates up to 15 min post-injection. Preadministration of flumazenil (1, 10 mg kg(-1)) or 5 (5 mg kg(-1)) effectively blocked >50% of [(11)C]5 binding to the GABA(A) receptor-rich regions, thereby suggesting that this radiotracer is worthy of further evaluation for imaging GABA(A) receptors. Additionally (R,S)-N-(1-(3-chloro-4-methoxyphenyl)ethyl)-3,3-diphenylpropan-1-amine, 6, an allosteric modulator of GABA(B) receptors, was efficiently labelled in one step using [(11)C]methyl iodide. Ex vivo biodistribution studies in conscious rats showed low brain uptake, therefore, efforts are underway to discover alternative radiotracers to image GABA(B). In conclusion, [(11)C]5 is worthy of further evaluation in higher species for imaging GABA(A) receptors in the central nervous system.  相似文献   

20.
Triple probe microdialysis was employed to investigate whether striatal NR2A and NR2B subunit containing NMDA receptors regulate the activity of striato-pallidal and striato-nigral projection neurons. Probes were implanted in the striatum, ipsilateral globus pallidus and substantia nigra reticulata. Intrastriatal perfusion with the NR2A subunit selective antagonist ( R )-[( S )-1-(4-bromo-phenyl)-ethylamino]-(2,3-dioxo-1,2,3,4-tetrahydroquinoxalin-5-yl)-methyl]-phosphonic acid (NVP-AAM077) reduced pallidal GABA and increased nigral glutamate (GLU) release whereas perfusion with the NR2B subunit selective antagonist ( R -( R *, S *)-α-(4-hydroxyphenyl)-β-methyl-4-(phenylmethyl)-1-piperidinepropanol (Ro 25-6981) reduced nigral GABA and elevated striatal and pallidal GLU release. To confirm that changes in GABA levels were because of blockade of (GLUergic-driven) tonic activity of striatofugal neurons, tetrodotoxin was perfused in the striatum. Tetrodotoxin reduced both pallidal and nigral GABA release without changing GLU levels. To investigate whether striatal NR2A and NR2B subunits were also involved in phasic activation of striatofugal neurons, NVP-AAM077 and Ro 25-6981 were challenged against a NMDA concentration able to evoke GABA release in the three areas. Both antagonists prevented the NMDA-induced striatal GABA release. NVP-AAM077 also prevented the NMDA-induced surge in GABA release in the globus pallidus, whereas Ro 25-6981 attenuated it in the substantia nigra. We conclude that striatal NMDA receptors containing NR2A and NR2B subunits preferentially regulate the striato-pallidal and striato-nigral projection neurons, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号