首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aims

The aims of this work were to characterize the soil bacterial communities in an arenized area in southern Brazil subjected to different management regimes through cultivation-dependent and cultivation-independent methods and to evaluate the potential of selected plant growth-promoting (PGP) bacteria to improve the growth of native Lupinus albescens plants.

Methods

Bulk soil samples from an arenized site and rhizospheric soil and roots of L. albescens grown in this arenized site as well as samples from soils of the same region outside of the arenized area and rhizospheric soil and roots of L. albescens grown in non-arenized sites were evaluated. Phosphate solubilization, indolic compound and siderophore production abilities of the isolates were screened and compared. Some isolates were selected for in vivo plant growth promotion in greenhouse experiment.

Results

The samples from the arenized area presented less microbial biomass and less diverse bacterial communities compared with those from non-arenized areas. The PGP characteristics produced by the bacterial isolates showed differences among arenized and non arenized areas. A growth chamber experiment with L. albescens showed that phosphate-insoluble conditions coupled with bacterial inoculation resulted in the best PGP effect.

Conclusions

Culture-dependent and culture-independent methods showed converging results regarding diversity indices and the rhizospheric environments increased bacterial diversity and biomass when compared to bulk soils. The PGP traits analyzed in this work were affected by environmental conditions.  相似文献   

2.

Background and Aims

This study was aimed at assessing the diversity of putatively diazotrophic rhizobacteria associated with sunflower (Helianthus annuus L.) cropped in the south of Brazil, and to examine key plant growth promotion (PGP) characteristics of the isolates for the purposes of increasing plant productivity.

Methods

299 strains were isolated from the roots and rhizosphere of sunflower cultivated in five different areas using N-free media. 16S rDNA PCR-RFLP and 16S rRNA partial sequencing were used for identification and the Shannon index was used to evaluate bacterial diversity. Production of siderophores and indolic compounds (ICs), as well phosphate solubilization activities of each isolate were also evaluated in vitro. On the basis of multiple PGP activities, eight isolates were selected and tested for their N-fixation ability, and their capacity as potential PGPR on sunflower plants was also assessed.

Results

All except three Gram-positive strains (phylum Actinobacteria) belonged to the Gram-negative Proteobacteria subgroups [Gamma (167), Beta (78), and Alpha (50)] and the family Flavobacteriaceae (1)]. Shannon indexes ranged from 0.96 to 2.13 between the five sampling sites. Enterobacter and Burkholderia were the predominant genera isolated from roots and rhizosphere, respectively. Producers of siderophores and ICs were widely found amongst the isolates, but only 19.8% of them solubilized phosphate. About 8% of the isolates exhibited all three PGP traits, and these mostly belonged to the genus Burkholderia. Four isolates were able to stimulate the growth of sunflower plants under gnotobiotic conditions.

Conclusions

Enterobacter and Burkholderia were the dominant rhizospheric bacterial genera associated with sunflower plants. Inoculation with isolates belonging to the genera Achromobacter, Chryseobacterium, Azospirillum, and Burkholderia had a stimulatory effect on plant growth.  相似文献   

3.

Background

The variability in the inflammatory burden of the lung in cystic fibrosis (CF) patients together with the variable effect of glucocorticoid treatment led us to hypothesize that glucocorticoid receptor (GR) gene polymorphisms may affect glucocorticoid sensitivity in CF and, consequently, may contribute to variations in the inflammatory response.

Methods

We evaluated the association between four GR gene polymorphisms, TthIII, ER22/23EK, N363S and BclI, and disease progression in a cohort of 255 young patients with CF. Genotypes were tested for association with changes in lung function tests, infection with Pseudomonas aeruginosa and nutritional status by multivariable analysis.

Results

A significant non-corrected for multiple tests association was found between BclI genotypes and decline in lung function measured as the forced expiratory volume in one second (FEV1) and the forced vital capacity (FVC). Deterioration in FEV1 and FVC was more pronounced in patients with the BclI GG genotype compared to the group of patients with BclI CG and CC genotypes (p = 0.02 and p = 0.04 respectively for the entire cohort and p = 0.01 and p = 0.02 respectively for F508del homozygous patients).

Conclusion

The BclI polymorphism may modulate the inflammatory burden in the CF lung and in this way influence progression of lung function.  相似文献   

4.

Key message

Transgenic Arabidopsis and lettuce plants overexpressing AtHSP17.8 showed ABA-hypersensitive but abiotic stress-resistant phenotypes. ABA treatment caused a dramatic induction of early ABA-responsive genes in AtHSP17.8 -overexpressing transgenic lettuce.

Abstract

Plant small heat shock proteins function as chaperones in protein folding. In addition, they are involved in responses to various abiotic stresses, such as dehydration, heat and high salinity in Arabidopsis. However, it remains elusive how they play a role in the abiotic stress responses at the molecular level. In this study, we provide evidence that Arabidopsis HSP17.8 (AtHSP17.8) positively regulates the abiotic stress responses by modulating abscisic acid (ABA) signaling in Arabidopsis, and also in lettuce, a heterologous plant when ectopically expressed. Overexpression of AtHSP17.8 in both Arabidopsis and lettuce leads to hypersensitivity to ABA and enhanced resistance to dehydration and high salinity stresses. Moreover, early ABA-responsive genes, ABI1, ABI5, NCED3, SNF4 and AREB2, were rapidly induced in AtHSP17.8-overexpressing transgenic Arabidopsis and lettuce. Based on these data, we propose that AtHSP17.8 plays a crucial role in abiotic stress responses by positively modulating ABA-mediated signaling in both Arabidopsis and lettuce. Moreover, our results suggest that stress-tolerant lettuce can be engineered using the genetic and molecular resources of Arabidopsis.  相似文献   

5.

Background and aims

Sorghum is the second most cultivated crop in Africa and is a staple food source in many African communities. Exploiting the associated plant growth-promoting bacteria (PGPB) has potential as an agricultural biotechnology strategy to enhance sorghum growth, yield and nutritional properties. Therefore this study aimed to evaluate factors that shape bacterial communities associated with sorghum farmed in South Africa, and to detect bacteria consistently associated with sorghum which may impart PGP activities.

Methods

Terminal-Restriction Fragment Length Polymorphism (T-RFLP) was used to assess factors that potentially shape rhizospheric (rhizosphere and rhizoplane) and endophytic (root, shoot, stem) bacterial communities associated with South African sorghum, and together with Denaturing Gradient Gel Electrophoresis (DGGE) to identify consistently sorghum-associated bacterial taxa.

Results

The sorghum rhizospheric communities were less variable than the endophytic ones. Geographical location was the main driver in describing bacterial community assemblages found in rhizospheric sorghum-linked niches, with total NO3-N, NH4-N, nitrogen, carbon, pH and, to a lesser extent, clay content identified as the main abiotic factors shaping sorghum-associated soil communities. Endophytic communities presented rather stochastic assemblages, with pH being the main variable explaining their structures. Despite community variations, specific bacterial taxa were consistently detected in sorghum-created rhizospheric and endophytic environments, irrespective of environmental factor effects.

Conclusions

Soil structure and composition, which are influenced by agricultural practices, played major roles in shaping sorghum-associated edaphic bacterial communities. In contrast, endophytic bacterial communities displayed more variation. Nevertheless, potentially agronomically relevant (cyano)bacterial taxa constantly associated with sorghum were identified which is suggestive of their deterministic recruitment.  相似文献   

6.

Aims

This work addresses the relevant effects that one single compound, used as model herbicide, provokes on the activity/survival of a suitable herbicide degrading model bacterium and on a plant that hosts this bacterium and its bacterial rhizospheric community.

Methods

The effects of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D), on Acacia caven hosting the 2,4-D degrading bacterium Cupriavidus pinatubonensis JMP134, and its rhizospheric microbiota, were simultaneously addressed in plant soil microcosms, and followed by culture dependent and independent procedures, herbicide removal tests, bioprotection assays and use of encapsulated bacterial cells.

Results

The herbicide provokes deleterious effects on the plant, which are significantly diminished by the presence of the plant associated C. pinatubonensis, especially with encapsulated cells. This improvement correlated with increased 2,4-D degradation rates. The herbicide significantly changes the structure of the A. caven bacterial rhizospheric community; and it also diminishes the preference of C. pinatubonensis for the A. caven rhizosphere compared with the surrounding bulk soil.

Conclusions

The addition of an herbicide to soil triggers a complex, although more or less predictable, suite of effects on rhizobacterial communities, herbicide degrading bacteria and their plant hosts that should be taken into account in fundamental studies and design of bio(phyto)remediation procedures.  相似文献   

7.

Background and aims

Iron is an essential nutrient for plant growth. Although abundant in soil, iron is poorly available. Therefore, plants have evolved mechanisms for iron mobilization and uptake from the rhizospheric environment. In this study, we examined the physiological responses to iron deficiency in Medicago truncatula plants exposed to volatile organic compounds (VOCs) produced by Arthrobacter agilis UMCV2.

Methods

The VOC profiles of the plant and bacterium were determined separately and during interaction assays using gas chromatography. M. truncatula plants exposed to A. agilis VOCs and pure dimethylhexadecylamine were transferred to conditions of iron deficiency, and parameters associated with iron nutritional status were measured.

Results

The relative abundance of the bacterial VOC dimethylhexadecylamine increased 12-fold when in co-cultures of A. agilis and M. truncatula, compared to axenic cultures. Plants exposed to bacterial VOCs or dimethylhexadecylamine exhibited a higher rhizosphere acidification capacity, enhanced ferric reductase activity, higher biomass generation, and elevated chlorophyll and iron content relative to controls.

Conclusions

The VOCs emitted by A. agilis UMCV2 induce iron acquisition mechanisms in vitro in the Strategy I plant M. truncatula. Dimethylhexadecylamine is the signal molecule responsible for producing the beneficial effects.  相似文献   

8.

Background

The causes of seborrheic dermatitis (SD) are complex and incompletely understood. Among the factors, Malassezia yeasts have been reported to play a major etiological role in SD. Many previous studies adopted conventional culture methods that were disadvantaged to detect Malassezia microflora in SD patients, resulting in a low detection rate for each species and high variance in types of microflora observed.

Objective

This study analyzed Malassezia microflora in SD patients by applying a transparent dressing to the lesional skin and using direct detection of fungal DNA using nested PCR.

Methods

We collected samples from the lesional skin of 146 SD patients in China and extracted fungal DNA directly from the lesional samples without culture. Specific primers for each Malassezia species were designed to amplify existing yeasts in each sample. Some samples were randomly selected to culture and identified by morphological and physiologic criteria.

Results

M. globosa and M. restricta were found in 87.0 and 81.5 % of seborrheic dermatitis patients, respectively, which together accounted for more than 50 % of Malassezia spp. recovered in these Chinese patients. The majority of SD patients (82.9 %) showed co-colonization of two or more Malassezia species.

Conclusion

M. globosa and M. restricta predominated in Malassezia colonization in Chinese SD patients. Compared with conventional culture, non-culture-based methods may more accurately reflect Malassezia microflora constitution.  相似文献   

9.

Background

Therapeutic vaccination directed to induce an anti-tumoral T-cell response is a field of extensive investigation in the treatment of melanoma. However, many vaccination trials in melanoma failed to demonstrate a correlation between the vaccine-specific immune response and therapy outcome. This has been mainly attributed to immune escape by antigen loss, rendering us in the need of new vaccination targets.

Patients and methods

This phase-II trial investigated a peptide vaccination against survivin, an oncogenic inhibitor-of-apoptosis protein crucial for the survival of tumor cells, in HLA-A1/-A2/-B35-positive patients with treatment-refractory stage-IV metastatic melanoma. The study endpoints were survivin-specific T-cell reactivity (SSTR), safety, response, and survival (OS).

Results

Sixty-one patients (ITT) received vaccination therapy using three different regimens. 55 patients (PP) were evaluable for response and survival, and 41/55 for SSTR. Patients achieving progression arrest (CR?+?PR?+?SD) more often showed SSTRs than patients with disease progression (p?=?0.0008). Patients presenting SSTRs revealed a prolonged OS (median 19.6 vs. 8.6?months; p?=?0.0077); multivariate analysis demonstrated SSTR as an independent predictor of survival (p?=?0.013). The induction of SSTRs was associated with gender (female vs. male; p?=?0.014) and disease stage (M1a/b vs. M1c; p?=?0.010), but not with patient age, HLA type, performance status, or vaccination regimen.

Conclusion

Survivin-specific T-cell reactivities strongly correlate with tumor response and patient survival, indicating that vaccination with survivin-derived peptides is a promising treatment strategy in melanoma.  相似文献   

10.

Key Message

A host-selective, proteinaceous maize toxin was identified from the culture filtrate of the maize pathogen Cochliobolus heterostrophus. A dominant gene for toxin susceptibility was identified on maize chromosome 4.

Abstract

A toxic activity was identified from the culture filtrate (CF) of the fungus Cochliobolus heterostrophus, causal agent of the maize disease southern leaf blight (SLB) with differential toxicity on maize lines. Two independent mapping populations; a 113-line recombinant inbred line population and a 258-line association population, were used to map loci associated with sensitivity to the CF at the seedling stage. A major QTL on chromosome 4 was identified at the same locus using both populations. Mapping in the association population defined a 400 kb region that contained the sensitivity locus. By comparing CF-sensitivity of the parents of the RIL population with that of the F1 progeny, we determined that the sensitivity allele was dominant. No relationship was observed between CF-sensitivity in seedlings and SLB susceptibility in mature plants; however, a significant correlation (??0.58) was observed between SLB susceptibility and CF-sensitivity in seedlings. The activity of the CF was light-dependent and was sensitive to pronase, indicating that the toxin was proteinaceous.
  相似文献   

11.

Background

Cryptococcosis is a potential fatal disease, especially in immunocompromised patients. In China, the profile of cryptococcosis is unclear. Therefore, we summarize the epidemiology and therapy of cryptococcosis in china.

Methods

All cases reports about cryptococcosis in China were collected from CBMdisk database (China Biology and Medicine data disc) with key words of cryptococcosis, or cryptococcal infection, or cryptococcus, and case. The features of the cryptococcosis were retrospectively analyzed.

Results

There were 1,032 reports about cryptococcosis, including 8,769 cases. Among them, there were 16% patient with AIDS/HIV, and 17% ones without underlying diseases. There were 2,371 cases of CNS infection. Among them of 2,068 cases, the treatment protocols and outcome were clearly described. The percentages of patients who received intrathecal treatment of amphotericin B(AmB), AmB?+?5-FC(5-fluorocytosine), AmB?+?FCZ(fluconazole), and AmB?+?5-FU?+?FCZ in each medication group were 10, 43, 53, and 33%, respectively. The mortalities were significantly lower in the AmB, Amb?+?5-FC, AmB?+?FCZ intrathecal treatment groups compared with their non-intrathecal treatment controls (6% vs. 23%, 25% vs. 35%, 20% vs. 30%, respectively, P?P?>?0.05).

Conclusion

The Chinese cryptococcosis had its own special clinical features, such as more patients without identifiable underlying diseases. Intrathecal injection of amphotericin B was effective treatment method for cryptococcal CNS infection in China.  相似文献   

12.

Aims

Typha angustifolia is a heavy metal tolerant plant that grows in a uranium mine tailings highly contaminated with iron. In this study three iron oxidizing microbes (FeOBs) isolated from Typha rhizoplane were investigated for their role in plant growth promotion (PGP). Their effect on iron nutrition in Typha under iron replete and excess condition was also evaluated.

Methods

The PGP activities of the FeOBs were studied by measuring their influence on plant growth. To investigate the mechanism of growth promotion their ability to solubilize phosphate, and to produce Indole acetic acid and siderophores were studied. The influence of the FeOBs on root to shoot partitioning of iron was tested by measuring total iron content in roots and shoots treated with microbes.

Results

The FeOBs were named as Paenibacillus cookii JGR8, (MTCC12002), Pseudomonas jaduguda JGR2 (LMG25820) and Bacillus megaterium JGR9 (MTCC12001). The siderophore producers, influenced iron accumulation in the plant root. Additionally P. pseudoalcaligenes JGR2 increased shoot iron content overcoming the root- shoot barrier that allows Typha to exclude metals from its shoot. Among the PGP mechanisms tested, ability to solubilize phosphate appeared to be most significant for increasing the plant biomass.

Conclusion

FeOBs that produce siderophore increased iron content in plant and therefore can be of immense biotechnological importance. However Biomass increase was directly correlated with increased phosphate acquisition and not with enhanced iron accumulation in Typha.  相似文献   

13.

Objectives

To explore Candida guilliermondii for the production of long-chain dicarboxylic acids (DCA), we performed metabolic pathway engineering aiming to prevent DCA consumption during β-oxidation, but also to increase its production via the ω-oxidation pathway.

Results

We identified the major β- and ω-oxidation pathway genes in C. guilliermondii and performed first steps in the strain improvement. A double pox disruption mutant was created that slowed growth with oleic acid but showed accelerated DCA degradation. Increase in DCA production was achieved by homologous overexpression of a plasmid borne cytochrome P450 monooxygenase gene.

Conclusion

C. guilliermondii is a promising biocatalyst for DCA production but further insight into its fatty acid metabolism is necessary.
  相似文献   

14.

Background and aims

Lately sweet sorghum (S) has attracted great interest as an alternative feedstock for biofuel production due to its high yielding potential and better adaptation to drought than maize (M). However, little is known about the response of newly developed sweet sorghum genotypes to water deficits, especially at the root level and its water uptake patterns. The objective of this study was to compare the water uptake capacity, growth and developmental characteristics at the root and canopy levels of a sweet sorghum hybrid (Sorghum bicolor cv. Sucro 506) with those of maize (Zea mays cv. PR32F73) at two water regimes.

Methods

The trial was setup in a total of 20 rhizotrons (1?m3), where calibrated soil moisture probes were installed for monitoring and adjusting the soil moisture content to 25% (well-watered, W) and 12% (drought stress, D).

Results

DS was able to sustain its physiological activity close to that of WS plants, while maize was not. The biomass production potential of DS was reduced about 38%, while in maize the reduction was 47%. The water use efficiency (WUE), however, was increased by 20% in sweet sorghum and reduced in 5% in maize. Moreover, in contrast to maize the root length density and water uptake capacity of DS was enhanced. Root water uptake efficiency in DM was sustained close to its potential, but not in sweet sorghum.

Conclusions

In summary, the better adaptation to drought of sweet sorghum is explained by increased WUE, sustained physiological activity and enlarged root system. It is also associated with a reduced water uptake efficiency compared to its control but maintained compared to maize.  相似文献   

15.

Background

Chronic lung infection with the bacterium Pseudomonas aeruginosa is one of the hallmarks of cystic fibrosis (CF) and is associated with worsening lung function, increased hospitalisation and reduced life expectancy. A virulent clonal strain of P. aeruginosa (Australian epidemic strain I; AES-I) has been found to be widespread in CF patients in eastern Australia.

Methods

Suppression subtractive hybridization (SSH) was employed to identify genetic sequences that are present in the AES-I strain but absent from the sequenced reference strain PAO1. We used PCR to evaluate the distribution of several of the AES-I loci amongst a collection of 188 P. aeruginosa isolates which was comprised of 35 AES-I isolates (as determined by PFGE), 78 non-AES-I CF isolates including other epidemic CF strains as well as 69 P. aeruginosa isolates from other clinical and environmental sources.

Results

We have identified a unique AES-I genetic locus that is present in all 35 AES-I isolates tested and not present in any of the other 153 P. aeruginosa strains examined. We have used this unique AES-I locus to develop a diagnostic PCR and a real-time PCR assay to detect the presence of P. aeruginosa and AES-I in patient sputum samples.

Conclusions

We have developed diagnostic PCR assays that are 100% sensitive and 100% specific for the P. aeruginosa strain AES-I. We have also shown that Whatman FTA® Elute cards may be used with PCR-based assays to rapidly detect the presence of P. aeruginosa strains in CF sputum.  相似文献   

16.

Aims

The purpose of this study was to investigate plant-growth promoting traits in native and arsenic (As) highly-resistant bacterial strains isolated from the rhizosphere of soybean (Glycine max) plants grown in an Argentinean agricultural field.

Methods

Determination of MICs (Minimum inhibitory concentration) was carried out on solid media supplemented with arsenite (As 3+) or arsenate (As 5+). Morphological, cultural, physiological, biochemical and molecular characterization, and in vitro determination of plant growth promoting (PGP) properties of As resistant isolates were carried out. Arsenic in soil samples was determined by ICP-OES while residual arsenic on post-removal culture medium and accumulation in cells were estimated by GF-AAS after wet acid digestion.

Results

Isolated strains included γ-proteobacteria such as Enterobacter sp. and Pseudomonas sp., and actinobacteria as Rhodococcus sp. All bacterial strains grew in presence of very high arsenite -over 24?mM- and arsenate –over 400?mM- concentrations. Pseudomonas sp. strains presented simultaneously several in vitro PGP traits, although Rhodococcus erythropolis AW3 did not display PGP traits. However, R. erythropolis AW3 was the most As resistant strain and removed and accumulated the greatest amounts of the metalloid.

Conclusion

The presence of As resistant and plant-growth promoting bacterial strains in the rhizosphere of Glycine max, in arsenic containing agricultural soil, suggest that they could potentially play an important role in plant-growth promotion in stressed conditions. These strains were able to remove and accumulate As from liquid media, thus they could be beneficial for sustainable crop production.  相似文献   

17.
Screening promoters for Anthurium transformation using transient expression   总被引:1,自引:0,他引:1  

Key message

There are multiple publications on Anthurium transformation, yet a commercial product has not been achieved. This may be due to use of non-optimum promoters here we address this problem.

Abstract

Different promoters and tissue types were evaluated for transient β-glucuronidase (GUS) expression in Anthurium andraeanum Hort. ‘Marian Seefurth’ following microprojectile bombardment. Plasmids containing the Ubiquitin 2, Actin 1, Cytochrome C1 from rice, Ubiquitin 1 from maize and 35S promoter from Cauliflower Mosaic Virus fused to a GUS reporter gene were bombarded into in vitro grown anthurium lamina, somatic embryos and roots. The number of GUS foci and the intensity of GUS expression were evaluated for each construct. Ubiquitin promoters from rice and maize resulted in the highest number of expressing cells in all tissues examined. Due to the slow growth of anthurium plants, development of transgenic anthurium plants takes years. This research has rapidly identified multiple promoters that express in various anthurium tissues facilitating the development of transformation vectors for the expression of desirable traits in anthurium plants.  相似文献   

18.

Key message

Three regions with quantitative resistance to downy mildew of non-host and wild lettuce species, Lactuca saligna , disintegrate into seventeen sub-QTLs with plant-stage-dependent effects, reducing or even promoting the infection.

Abstract

Previous studies on the genetic dissection of the complete resistance of wild lettuce, Lactuca saligna, to downy mildew revealed 15 introgression regions that conferred plant stage dependent quantitative resistances (QTLs). Three backcross inbred lines (BILs), carrying an individual 30–50 cM long introgression segment from L. saligna in a cultivated lettuce, L. sativa, background, reduced infection by 60–70 % at young plant stage and by 30–50 % at adult plant stage in field situations. We studied these three quantitative resistances in order to narrow down their mapping interval and determine their number of loci, either single or multiple. We performed recombinant screenings and developed near isogenic lines (NILs) with smaller overlapping L. saligna introgressions (substitution mapping). In segregating introgression line populations, recombination was suppressed up to 17-fold compared to the original L. saligna × L. sativa F 2 population. Recombination suppression depended on the chromosome region and was stronger suppressed at the smallest introgression lengths. Disease evaluation of the NILs revealed that the resistance of all three BILs was not explained by a single locus but by multiple sub-QTLs. The 17 L. saligna-derived sub-QTLs had a smaller and plant stage dependent resistance effect, some segments reducing; others even promoting downy mildew infection. Implications for lettuce breeding are outlined.  相似文献   

19.

Background and aims

In Malawi, strategies are being sought to boost maize production through improvements in soil fertility. This study assessed the impact of intercropping maize (Zea mays) with pigeon pea (Cajanus cajan) in Lixisols of Malawi on yield, biological N fixation, soil aggregation, and P forms within soil aggregates.

Methods

Maize and pigeon pea were grown intercropped in pots, with varying degrees of root interaction in order to understand the relative importance of biochemical versus physical rhizospheric interactions. Following harvest, soils were separated into aggregate fractions using wet-sieving, and the nutrient content of all fractions was assessed.

Results

The proportion of macroaggregates and microaggregates increased by 52 and 111%, respectively, in the intercropping treatment compared to sole maize, which significantly increased organic P storage in the microaggregates of intercropped compared to sole maize (84 versus 29 mg P kg?1, respectively). Biologically fixed N increased from 89% in the sole pigeon pea to 96% in the intercropped system.

Conclusions

Intercropping maize with pigeon pea can have a significant and positive impact on soil structure as well as nutrient storage in these high P-sorbing soils. This is caused primarily by physical root contact and to a lesser degree by biochemical activities.
  相似文献   

20.

Background and aims

Many plant growth-promoting endophytes (PGPE) possessing 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity can reduce the level of stress ethylene and assist their host plants cope with various biotic and abiotic stresses. However, information about the endophytic bacteria colonizing in the coastal halophytes is still very scarce. This study aims at isolating efficient ACC deaminase-producing plant growth-promoting (PGP) bacterial strains from the inner tissues of a traditional Chinese folk medicine Limonium sinense (Girard) Kuntze, a halophyte which has high economic and medicinal values grown in the coastal saline soils. Their PGP activity and effects on host seed germination and seedling growth under salinity stress were also evaluated.

Methods

A total of 126 isolates were obtained from the surface sterilized roots, stems and leaves of L. sinense (Girard) Kuntze. They were initially selected for their ability to produce ACC deaminase as well as other PGP properties such as production of indole-3-acetic acid (IAA), N2-fixation, and phosphate-solubilizing activities and subsequently identified by the 16S rRNA gene sequencing. For selected strains, seed germination, seedling growth, and flavonoids production in axenically growth L. sinense (Girard) Kuntze seedlings at different NaCl concentrations (0–500 mM) were quantified.

Results

Thirteen isolates possessing ACC deaminase activity were obtained. The 16S rRNA gene sequencing analysis showed them to belong to eight genera: Bacillus, Pseudomonas, Klebsiella, Serratia, Arthrobacter, Streptomyces, Isoptericola, and Microbacterium. Inoculation with four of the selected ACC deaminase-producing strains not only stimulated the growth of the host plant but also influenced the flavonoids accumulation. All four strains could colonize and can be re-isolated from the host plant interior tissues.

Conclusions

These results demonstrate that ACC deaminase-producing habitat-adapted symbiotic bacteria isolated from halophyte could enhance plant growth under saline stress conditions and the PGPE strains could be appropriate as bioinoculants to enhance soil fertility and protect the plants against salt stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号