首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Ceutorhynchus scrobicollis is a root-crown mining weevil proposed for release as biological control agent of Alliaria petiolata (Brassicaceae, Thlaspideae), a European biennial herb, currently invading temperate North America. Using a combination of laboratory, common garden and fieldwork we studied biology, ecology and host range of C. scrobicollis, a univoltine species that oviposits and develops in A. petiolata rosettes in fall and spring. Individual C. scrobicollis can be long-lived (>2 years) and females show a second oviposition period. Weevils did not attack any of 31 test plant species outside the Brassicaceae. Within the Brassicaceae, five species allowed complete larval development under no-choice conditions. In subsequent choice tests, three of these five species (Nasturtium officinale, Peltaria alliacea and Thlaspi arvense; which are of European origin) were attacked. North American Rorippa sinuata was the only native species to be attacked by C. scrobicollis and only under no-choice conditions. Results of subsequent impact experiments showed that C. scrobicollis attack changed plant architecture but had no effect on overall plant vigour and reproductive output of R. sinuata, suggesting lack of impact on demography or population dynamics. A petition for field release of C. scrobicollis in North America has been submitted.  相似文献   

2.
Experimental studies can be useful tools to test plant responses to herbivory and to quantify the impact of potential biological control agents prior to their release. We evaluated the per-capita effect of Ceutorhynchus alliariae and C. roberti, two stem-boring weevils currently being investigated as potential biological control agents for garlic mustard, Alliaria petiolata, in North America. Weevils were released at three different densities in individual and mixed-species treatments onto potted plants of A. petiolata. Damage by C. roberti alone and by both weevils combined caused an increase in the numbers of inflorescences produced per plant. Although plants could compensate for low levels of damage, moderate to high levels of damage by both C. alliariae and C. roberti, individually and in combination, caused a decrease in plant height and a reduction in seed output per plant. The damage inflicted by both weevil species is similar so the overall impact of both species combined can be predicted by summing the impact of each species alone. Provided they are sufficiently host specific, both weevils could be released as biocontrol agents. Because reduced seed production is necessary to suppress A. petiolata populations, both species have the potential to contribute to control of A. petiolata in North America.  相似文献   

3.
Russian knapweed, Acroptilon repens, is one of the most serious exotic invaders of temperate grasslands in North America. Here we present results from a field experiment in which we quantified the impact of two potential biological control agents, the gall wasp Aulacidea acroptilonica V.Bel. (Hymenoptera, Cynipidae) and the gall midge Jaapiella ivannikovi Fedotova (Diptera, Cecidomyiidae), on A. repens under field conditions in the plant’s native range in Uzbekistan. Attack by A. acroptilonica reduced shoot length by 21%, above-ground biomass by 25% and seed output by 75%, while attack by J. ivannikovi reduced shoot length by 12%, above-ground biomass by 24%, and seed output by 92%. The results of these field experiments are likely to accurately reflect the potential of these two gall formers to reduce above-ground biomass and sexual reproduction of A. repens shoots, since the shoots were part of a clonal network. Despite this, the attacked shoots were not able to compensate for the reallocation of plant resources to gall formation. Moreover, the mean number of galls per shoot obtained in the experiments was within the range of observed gall incidences in the native range. The impact of these two gall-forming insects on Russian knapweed in North America will depend on the population size the species reach and on the timing of attack. The highest impact is likely to occur when the insects attack shoots that have not yet started producing flower-buds.  相似文献   

4.
In weed biological control, insect damage to target weeds can be simulated in invaded habitats to study potential responses of the plant to introduced natural enemies. In the present study, we investigated the impact of two levels of manual flower-shoot damage (shoots cut at tip or base) on Alliaria petiolata (garlic mustard) survival, size, and reproduction. Experiments were conducted in 2002 and 2003 using invasive field populations of A. petiolata under naturally varying plant densities. Plant survival was recorded, and size and reproduction parameters were measured. Manual flower-shoot damage had a significant effect on plant survival. In both years, fewer plants survived in the basal-cut treatment than in either the control (un-cut) or tip-cut treatment. Plant size and reproductive output were likewise reduced in the basal-cut treatment. In both years, total seed production was significantly lower in the basal-cut treatment than either the control or tip-cut treatment. When combined, increased mortality and reduced seed production of basal-cut plants greatly reduced the contribution these plants made to the seed bank. Plant density did not affect reproduction or plant size. The impacts of cutting were consistent across years and sites with distinct biotic and abiotic conditions, and A. petiolata densities. We anticipate that herbivore damage to A. petiolata populations by introduced biological control agents will likewise remain consistent under varying biotic and abiotic conditions if the agents are equally adapted to these.  相似文献   

5.
Phragmites australis is a cosmopolitan clonal grass valued for its support of diversity-rich communities in its native range and feared for its devastating effects on native diversity where the species is introduced. Lack of successful control in North America resulted in the initiation of a biological control program. We used a combination of field surveys and common garden experiments in Europe to study life history and ecology of a chloropid fly, Platycephala planifrons, to assess its potential as a biological control agent. The fly is widely distributed (in non-flooded sites) throughout Eurasia but attack rates are generally low (mean 5–10%; max. 29%). Adults emerge in late June and may live for several months. Females lay eggs at the base of Ph. australis shoots. First instar larvae of this stem-feeding fly overwinter in dormant below-ground shoots of Ph. australis and rapidly complete development in early spring. Larval feeding destroys the growing meristem of the shoot causing premature wilting and 60–70% reductions in shoot biomass production. Early season attack and considerable impact suggest that Pl. planifrons could be a potent biocontrol agent, if it can escape suppression by natural enemies in the introduced range. However, the generally low attack rates in its native range and its dependence on dry sites appear to make the species a “second-choice” candidate for potential release in North America.  相似文献   

6.
Ceutorhynchus assimilis has been selected as a potential biological control agent of Lepidium draba, which is a Eurasian invasive weed in North America. Preliminary studies indicated specificity of this weevil collected in southern France on L. draba. This result was in discord with the pest status of C. assimilis found in the literature. Host-specificity tests based both on field and laboratory experiments showed heterogeneity in the host spectrum of the weevils reared from different host-plants as determined by larval development. However, no distinguishable morphological differences could be visually detected between the populations feeding on different host-plants. All sampled populations of weevils were polyphagous as adults. Weevils reared from L. draba were specific to this plant for their complete larval development. Conversely, populations living on other wild and cultivated Brassicaceae species were not able to use L. draba as a host plant. Such differentiation is further highlighted by other biological aspects such as plant infestation rates, sex-ratio, duration of larval development, and differences in the timing of their life cycles. These results demonstrate that C. assimilis, an insect species formerly considered as a pest of Brassicaceae, is characterized by its host-range variability, with one population being potentially useful in the biological control of L. draba. Moreover, this example points to the need to test multiple populations of biological control agents in assessing risk.  相似文献   

7.
We assessed the effect of two biological control agents, the mirid Eccritotarsus catarinensis (Carvalho) and the weevil Neochetina eichhorniae (Warner), singly or in combination, on the competitive ability of their host plant, water hyacinth, Eichhornia crassipes (Mart.) Solms-Laub., grown in a screen house, in competition with another aquatic plant (Pistia stratiotes L.). Water hyacinth plant growth characteristics measured included fresh weight, leaf and petiole lengths, number of inflorescences produced, and new shoots. Without herbivory, water hyacinth was 18 times more competitive than water lettuce (across all experimental combinations of initial plant densities), as estimated from fresh weights. Both insect species, singly or in combination, reduced water hyacinth plant growth characteristics. E. catarinensis alone was less damaging than the weevil and under normal conditions, i.e., floating water hyacinth, is not expected to increase control of water hyacinth beyond that of the weevil. When combined with the weevil, half the inoculum of weevils and half the inoculum of mirids produced the same growth reduction as the full inoculum of the weevil. Under conditions where the weevils are not effective because water hyacinths are seasonally rooted in mud, the mirid, which lives entirely on leaves, should become a useful additional biological control agent. Handling Editor: John Scott.  相似文献   

8.
Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross (Polygonaceae), is an annual vine from Asia that has invaded the eastern US where it can form dense monocultures and outcompete other vegetation in a variety of habitats. The host-specific Asian weevil Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) was first released in the US in 2004 as part of a classical biological control program. The weevil was intensively monitored in three release arrays over 4 years, and field cages at each site were used to determine the number of generations produced. The weevil established at all three sites and produced three to four generations before entering a reproductive diapause in late summer. Weevils dispersed at an average rate of 1.5–2.9 m wk−1 through the 50 m diameter arrays, which had fairly contiguous mile-a-minute cover. Weevils dispersing in the broader, more variable landscape located both large monocultures and small isolated patches of mile-a-minute 600–760 m from the release within 14 months. Weevil density ranged from fewer than 10 to nearly 200 weevils m−2 mile-a-minute weed. Mile-a-minute cover decreased at the site with the highest weevil density. The production of P. perfoliata seed clusters decreased with increasing weevil populations at two sites, and seedling production declined over time at two sites by 75% and 87%. The ability of the weevil to establish, produce multiple generations per season, disperse to new patches, and likelihood of having an impact on plants in the field suggests that R. latipes has the potential to be a successful biological control agent.  相似文献   

9.
研究表型可塑性和遗传变异在植物表型分化中的相对作用,有助于预测全球环境变化下的植物群落组成和生态系统功能的变化。芦苇(Phragmites australis)是全球性广布的草本植物,种内变异丰富,在我国西北和东部均存在多个分化稳定的生态型,但中国芦苇在更大尺度上的表型研究还非常匮乏。将位于黄河上游的宁夏平原和黄河下游的黄河三角洲作为研究区域,通过野外调查和同质种植园实验对芦苇自然种群的植物功能性状变异进行观测。结果表明,无论在野外还是同质种植园,黄河三角洲芦苇的基径、叶长和叶宽均显著大于宁夏平原芦苇,说明两个地区的芦苇种群之间存在着受遗传决定的表型分化,这可能与两个地区间的降水等气候差异有关。在野外,宁夏芦苇的株高和叶厚显著大于黄河三角洲芦苇,但在同质园中差异消失或相反,说明株高、叶厚受环境影响较大,表型可塑性也是芦苇适应环境变化的重要机制。在同质种植园中,宁夏平原芦苇的叶片氮磷含量较低,但株数却显著多于黄河三角洲芦苇,反映了不同地区芦苇之间存在不同的适应策略,宁夏平原芦苇更偏向于高扩散率的杂草策略,而黄河三角洲芦苇更偏向于竞争策略。此外,宁夏平原芦苇的株高、叶长两个性状以及基径-比叶面积相关性在野外和同质园两个环境中存在一致性,表明了性状变异和权衡策略的遗传稳定性。综上,位于黄河上下游的芦苇种群间存在着适应性分化,这是表型可塑性和遗传变异共同作用的结果,不同来源芦苇对全球变化下的多重环境因子的响应还需要进一步研究。  相似文献   

10.
Management of invasive plants with biological control rests on the assumption of herbivores as structuring forces of plant community composition, but only 30% of programs achieve substantial plant suppression. Control is often caused by a few successful agents, and improvements in the ability to select the most promising species would greatly improve weed biocontrol programs. We evaluated impact of different larval stages and larval densities of the stem boring noctuid Archanara geminipuncta on height and biomass production of Phragmites australis in the field and in a common garden in the native European range. In the field, stem biomass was reduced 21.5–64.5% by A. geminipuncta attack with the largest reduction due to early larval feeding. In the common garden, P. australis performance declined linearly (stem height 40%, biomass 50%; and percentage of flowering stems 90%) as attack rates increased. Significant field and common garden impact and the large Eurasian distribution indicate great potential of A. geminipuncta for biocontrol of introduced P. australis in North America if host specificity tests produce favorable results. If approved for release, we anticipate that A. geminipuncta could establish throughout the range of introduced P. australis in North America. We also anticipate that this moth will build high populations with significant impact on height, aboveground biomass, and clonal expansion of P. australis. This attack is expected to reduce competitive ability of P. australis, favoring native wetland species and preventing further negative ecological impacts associated with the current spread of introduced P. australis in North America.  相似文献   

11.
Many Cola plant species are endemic to West and Central Africa. Cola acuminata and Cola nitida are used as masticatory when fresh, while the dried nuts are used for beverages and pharmaceutical purposes in Europe and North America. Garcinia kola seeds, that serve as a substitute for the true kola nuts, are used in African traditional medicine for the treatment of various diseases, including colic, headache and liver cirrhosis. Seeds extracts of G. kola are also known for their anti-inflammatory, antimicrobial and antiviral properties. To gain information on the chemical properties of the kolas, we have isolated and analyzed cell wall polysaccharides, arabinogalactan-proteins and phenolic substances from the seeds of the three kola species. The sugar composition of cell wall material of C. acuminata, C. nitida and G. kola revealed that Gal (up to 30%), Ara, GalA and Glc as the predominant monosaccharides, representing approximately 90% by mol of the total hydrolysable sugar present in this material. In Ammonium oxalate cell wall fraction, GalA was found to be the major sugar present in all kola species. In the alkali-soluble fraction, there were significant differences in the level of Glc and Gal. The level of Glc was high in C. acuminata and C. nitida while the level of Gal and Xyl were high in C. nitida and G. cola. Isolation and quantification of arabinogalactan-proteins demonstrate that G. kola seeds contained four to eight times more of these proteoglycans than the seeds of the other two species. Finally, analysis of soluble phenolic substances shows that caffeine and catechin were largely represented in C. acumina and C. nitida seeds, with caffeine accounting for 50% of all soluble phenolics. These findings indicate that the three Kola seeds are highly enriched in pectins and proteoglycans and that C. acuminata and C. nitida can be used as a possible source of caffeine and catechin.  相似文献   

12.
中国产的Clavicorona pyxidata与北美的种样本间配对实验结果显示该种在不同的地理分布区内的种群之间完全性亲和或具有相同的交配型等位基因,表明中国产与北美产的该形态学种同属于一个生物种。日本产的标本与C. pyxidata在子实体外部形态及孢子尺度上有差异,虽然在日本被鉴定为该种。日本产的菌株与C. pyxidata菌株间配对实验证明二者之间完全不亲和,即属于不同的生物种。生殖隔离拌随着形态学变异。  相似文献   

13.
Mecinus janthinus Germar is a European stem-mining weevil that has been established in North America as a biological control agent against the invasive European weeds Linaria vulgaris P. Mill. and Linaria dalmatica (L.) P. Mill. (Scrophulariaceae). Establishment success and impact of the weevil have varied widely among sites. We investigated the hypothesis that some of this variation may be due to a lack of sufficient time for M. janthinus to develop to the adult (overwintering) stage in less favorable climates. Development time of M. janthinus was measured in L. vulgaris and L. dalmatica at four constant temperatures, and logistic regression was used to derive a model for the effect of temperature on development. Development rates were simulated using historic climate data for a site in central Alberta (where establishment was marginal on L. vulgaris) and one in southern British Columbia (where outbreaks occurred, resulting in heavy damage to L. dalmatica). The model showed that, on average, the British Columbia site had 50 more days available for the weevil to lay eggs that could reach the adult stage in time for overwintering than did the Alberta site. This may explain the more rapid population buildup at the British Columbia site. This model could be used to predict the climatic suitability of other areas for establishment of M. janthinus. An unexplained result was the very low survival rate of eggs laid in L. dalmatica under the same experimental conditions.  相似文献   

14.
Native to Asia, mile-a-minute Persicaria perfoliata, is an invasive weed in North America, and the weevil Rhinoncomimus latipes is a host-specific insect agent which occurs widely in China. We conducted a common garden experiment to compare P. perfoliata plant responses of native and invasive populations to herbivory by the weevils from different origins. We found weevils from Hunan, Hubei and Heilongjiang Provinces had strong, moderate and weak ability to suppress host plant, respectively. Weevils from Hunan and Hubei Provinces had stronger impact on the growth of both native and invasive plant populations than the weevil from Heilongjiang Province. The losses in seed output of invasive plants were also significantly greater than natives in the weevil treatments. Our results suggested that the weevil population from Hunan Province may be the most suitable for the control of mile-a-minute, while the population from Heilongjiang Province may be the least suitable due to climate matching.  相似文献   

15.
Fopius arisanus (Sonan) and Diachasmimorpha tryoni (Cameron) are two important solitary endoparasitoids of tephritid fruit flies. The former species attacks host eggs while the latter attacks host larvae, and both species emerge as adults from the host puparium. This study investigated intrinsic competition between these two parasitoids, as well as aspects of intraspecific competition within each species in the Mediterranean fruit fly, Ceratitis capitata (Wiedemann). Parasitization by F. arisanus resulted in direct mortality of host eggs and prolonged development of host eggs and larvae. Superparasitism by F. arisanus was uncommon when mean parasitism per host patch was <50%, but increased with rising rates of parasitism. Superparasitism by D. tryoni was more common. In superparasitized hosts, supernumerary individuals of F. arisanus were killed through physiological suppression, while supernumerary larvae of D. tryoni were killed mainly through physical attack. In multiparasitized hosts, dissections showed that 81.6% of D. tryoni eggs in the presence of F. arisanus larvae died within 3 days, indicating physiological inhibition of egg hatch. Rearing results further showed that F. arisanus won almost all competitions against D. tryoni. The ratio of D. tryoni stings to ovipositions was lower in hosts not previously parasitized by F. arisanus than in parasitized hosts, suggesting that D. tryoni can discriminate against parasitized hosts. The mechanism that F. arisanus employs to eliminate D. tryoni is similar to that it uses against all other larval fruit fly parasitoids so far reported. The results are discussed in relation to the competitive superiority of early acting species in fruit fly parasitoids, and to a possible competitive-mediated mechanism underlying host shift by D. tryoni to attack non-target flies following the successful introduction of F. arisanus in Hawaii.  相似文献   

16.
Two experiments (winter and summer) were conducted in outdoor tanks using addition-series methods to evaluate the impact of specialized feeding by two biological control agents,Hydrellia pakistanaeDeonier andBagous hydrillaeO'Brien, on competitive interactions between hydrilla [Hydrilla verticillata(L.f.) Royle] and vallisneria (Vallisneria americanaMichx). Competitive abilities of each plant species were determined using the reciprocal-yield model of mean plant weight. In the absence of the biocontrol agents, intraspecific competition from hydrilla on itself was 8.3 times stronger than interspecific competition from vallisneria.Hydrellia pakistanaeinterfered with hydrilla canopy formation by removing as much as 80% of the plant biomass in the top 30 cm of the water column. Damage byH. pakistanaealso caused a 43% reduction in hydrilla tuber production during the winter experiment. Similarly,B. hydrillaecaused up to a 48% reduction in hydrilla plant weight in the summer experiment. Neither insect species damaged vallisneria. As a result, there were significant shifts in the competitive balance between hydrilla and vallisneria due to selective insect feedings. In the presence ofH. pakistanae, hydrilla intraspecific competition was nearly equal to interspecific competition from vallisneria, indicating that hydrilla had lost its competitive edge over vallisneria.Bagous hydrillaealso produced similar, but smaller, shifts in the relative competitive abilities of hydrilla and vallisneria. These results indicate that biological control agents can disrupt the competitive balance between plant species in favor of native species, thus adding another element to the weed biological control strategies.  相似文献   

17.
Native snakeweeds, especially Gutierrezia sarothrae (Pursh) Britton and Rusby and Gutierrezia microcephala (DC.) A. Gray, are among the most widespread and damaging weeds of rangelands in the western United States and northern Mexico. The genus long ago spread to southern South America, where further speciation occurred. We have found several species of insects in Argentina that damage other species of snakeweeds there and are possible candidates for biological control in North America. The first of these, the root-boring weevil, Heilipodus ventralis (Hustache), was tested in Argentina and then sent to the USDA-ARS Insect Quarantine Facility at Temple, Texas, for host specificity testing on North American plants. We tested H. ventralis on 40 species of the family Asteraceae, in 19 tests of five types, using 686 adults and 365 larvae. Host specificity increased from adult feeding, to ovipositional selection, to larval development. At Temple, adults fed mostly on 6 species of the closely related genera Grindelia, Gutierrezia, and Gymnosperma, but with substantial feeding on four other genera of the two preferred subtribes Solidagininae and Machaerantherinae and on Baccharis in the tribe Baccharidinae, with lesser feeding on the subtribe Asterinae, all in the tribe Astereae, and on 1 species in the tribe Anthemideae. Females oviposited primarily on the same 6 species but very little on plants outside the 2 preferred subtribes. Larvae developed only on 9 of the 29 U.S. plant species tested, 6 within the two preferred subtribes and on Brickellia and Aster in other tribes. Only 5 species of three genera appear to be potential true hosts of H. ventralis in North America, on which all stages of the life cycle, adult feeding, oviposition, and larval development, can take place; these are Gymnosperma glutinosum (Spreng.) Less., Gutierrezia grandis Blake, Gut. microcephala, Gut. sarothrae, and Grindelia lanceolata Nutt. None of these genera contain species of economic or notable ecological value; the few rare species appear to be protected by habitat isolation from attack by H. ventralis. H. ventralis, therefore, appears sufficiently host specific for field release in North America. This is the first introduced biocontrol agent to be approved for release in a continental area to control a native weed.  相似文献   

18.
Abstract.  1. This study explored interactions of two spatially and temporally separated weevils and their impact on Alliaria petiolata (garlic mustard) survival, growth, and reproduction at different herbivore densities.
2. The root-mining weevil Ceutorhynchus scrobicollis attacks A. petiolata rosettes from October to April, and larvae complete development in May. The shoot-mining weevil Ceutorhynchus alliariae attacks bolting plants in April/May with larvae completing development in June–July. Priority effects were expected, with early attack of C. scrobicollis affecting the later attacking C. alliariae , mediated through changes in plant growth or chemistry.
3. Attack by C. scrobicollis significantly increased plant mortality and changed plant architecture, while C. alliariae only significantly reduced plant height. Attack by C. scrobicollis also increased nitrogen content of stems.
4. Root feeding by C. scrobicollis affected the feeding niche of C. alliariae , but increased stem nitrogen content did not result in increased stem miner survival. While reduced height and stem diameters as a result of C. scrobicollis attack reduced C. alliariae attack at the stem level, attack at plant level and recruitment was unaffected.
5. Weevil density had no effect on plant performance, most likely due to strong intraspecific competition, and there were no synergistic effects between the two herbivores.
6. Overall, attack by C. scrobicollis was more detrimental to A. petiolata growth, seed output, and survival than attack by C. alliariae . Consequently, C. scrobicollis has been prioritised as a potential biocontrol agent for control of A. petiolata in North America.  相似文献   

19.
查美琴  成向荣  虞木奎  韩有志  汪成  江斌 《生态学报》2021,41(21):8556-8567
了解林木功能性状在不同培育模式下的变异和关联,对揭示林木生态适应性及其生态功能具有重要意义。选取了亚热带地区两种常见人工林树种杉木、大叶榉幼苗为研究对象,设置4种不同栽培模式的盆栽试验:单一杉木(4C),单一大叶榉(4Z)和杉木、大榉树3种混栽模式(1C3Z、2C2Z、3C1Z),研究不同混交比例对其叶、茎、根功能性状的影响。结果表明:(1)杉木总叶面积、叶干物质含量、净光合速率、蒸腾速率和气孔导度在混栽模式下显著减小,而比叶面积显著增大;根长和比根长在不同处理间无显著差异;叶、茎、根生物量和单株总生物量在混栽模式下显著低于4C处理,不同混栽模式之间差异不显著。(2)大叶榉单叶面积在3C1Z处理下最高,总叶面积随大叶榉在树种组成中所占比例的降低而逐渐增大,比叶面积在不同处理间无显著差异,叶干物质含量、净光合速率、蒸腾速率和气孔导度均在2C2Z处理下最大,而瞬时水分利用效率在2C2Z处理下最小;根长在3C1Z处理下显著增大,比根长在不同处理间无显著差异;叶、茎、根生物量和单株总生物量随大叶榉在树种组成中所占比例的降低而逐渐增大。综合来看,杉木和大叶榉混合处理中杉木种间竞争大于种内竞争,而大叶榉相反;随杉木在混栽处理中比例减少,其主要通过增加比叶面积,提高净光合速率,减少茎生物量积累来适应种间竞争关系;而大叶榉随其在混栽处理中比例的减少,显著增加叶面积和根长来提高资源利用率,减少地下资源分配,提高地上茎生物量积累。因此,树种混交比例将显著影响林木功能性状及其生物量积累,选择适宜混交比例对混交林可持续经营具有重要意义。  相似文献   

20.
Summary The falcifolia (fal) syndrome is a malformation characterized by shoot sectors with sickle-shaped leaves, which appears in hybrids between Oenothera suaveolens and O. lamarckiana and shows a non-chromosomal inheritance of a previously undescribed type. The determinants, their location in the cell, and the mechanism of their expression are unknown. The defect is the result of a cross in which mixing of two different cytoplasms occurs, without the usual predominantly maternal inheritance. F1 progeny of reciprocal crosses show a quantitative difference in the frequency and degree of expression of the fal character. When the F1 progeny are backcrossed to the parents, the percentage of fal is high in crosses to O. suaveolens and low in those to O. lamarckiana. This manner of transmission is observed regardless of whether the hybrid is used as seed or pollen parent or shows a normal or fal phenotype. F2 generations from F1 plants having either a normal or a fal phenotype always include a certain percentage of fal plants, although the latter generally produce a higher percentage of fal progeny. If a second backcross is carried out, plants that produce normal progeny on self-pollination behave differently from those that produce some fal off-spring when selfed. The latter are similar to the F1 with regard to the transmission of the fal trait. Plants of the F1B1 yielding normal progeny upon selfing produce normal progeny in the F1B2 if the parent to which they are backcrossed is the same as in the first backcross; if the parents of the first and second backcross differ, a high percentage of fal offspring is obtained. Again, whether the hybrid is used as seed or pollen parent is not relevant. Exceptions to this behaviour have been observed only rarely in that the character of the penultimate cross is retained. There is some evidence of somatic segregation of the fal determinants, since sister plants may react differently; this suggestion is supported by comparing the progenies of different branches of a self-pollinated fal plant of the F1 generation.Abbreviations F1, F2, F3, F4 First through fourth filial generation, obtained by self-pollination - F1B1 First backcross generation, i.e. the F1 was backcrossed to one of the original parents - F1B2 Second backcross generation, i.e. the F1B1 was backcrossed to one of the original parents - F1B3 Third backcross generation, i.e. the F1B2 was backcrossed to one of the original parents - (F1B1)D1 Descendants obtained by self-pollination of a F1B1 plant; further generations obtained by self-pollination are designated as D2, D3, D4 - (F1B1)D1B1 Descendant or generation obtained by a backcross of the D1 of an F1B1. Backcrosses of the D2 and D3 are designated mutatis mutandis - (F1B1)D1B2 Generation obtained by a backcross of the (F1B1)D1B1  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号