首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The high incidence of thromboembolic complications of mechanical heart valves (MHV) limits their success as permanent implants. The thrombogenicity of all MHV is primarily due to platelet activation by contact with foreign surfaces and by nonphysiological flow patterns. The latter include elevated flow stresses and regions of recirculation of blood that are induced by valve design characteristics. A numerical simulation of unsteady turbulent flow through a bileaflet MHV was conducted, using the Wilcox k-omega turbulence model for internal low-Reynolds-number flows, and compared to quantitative flow visualization performed in a pulse duplicator system using Digital Particle Image Velocimetry (DPIV). The wake of the valve leaflet during the deceleration phase revealed an intricate pattern of interacting shed vortices. Particle paths showed that platelets that were exposed to the highest flow stresses around the leaflets were entrapped within the shed vortices. Potentially activated, such platelets may tend to aggregate and form free emboli. Once formed, such free emboli would be convected downstream by the shed vortices, increasing the risk of systemic emboli.  相似文献   

2.
In order to specify the tectal projection to the bulbar/spinal regions, the antidromic responses of the physiologically identified tectal neurons as well as the gross antidromic field responses in the optic tectum to electrical stimuli applied to the caudal medulla were examined in the paralyzed common toad, Bufo bufo. The antidromic field potential was recorded in the optic tectum in response to electrical stimuli applied to the ventral paramedian portion of the contralateral caudal medulla (where the crossed tecto-spinal pathway of Rubinson (1968) and Lázár (1969) runs), but generally not when they were applied to various parts of the ipsilateral caudal medulla. The antidromic field potential was largest at the superficial part of Layer 6 or at the border between Layers 6 and 7 of the optic tectum, indicating that neurons in these layers project to the contralateral caudal medulla. Mapping experiments of the antidromic field potential over the optic tectum showed that the antidromic field potential was recorded mainly in the lateral part of it, indicating that this part of the optic tectum is the main source of projection neurons to the contralateral caudal medulla. Various classes of tectal neurons as well as retinal ganglion neurons were identified from the characteristics of the response properties to moving visual stimuli and the properties of the receptive fields. Of these, the Class T1, T2, T3, T4, T5(1), T5(2), T5(3), and T5(4) tectal neurons were activated antidromically by stimuli applied to the contralateral caudal medulla. Only a limited proportion of the Class T5(1) neurons was activated antidromically by stimuli applied to the ipsilateral caudal medulla. On the other hand, the Class T7 and T8 neurons, as well as the Class R2, R3, and R4 retinal neurons, were not activated antidromically by stimuli applied to the caudal medulla of either side. These results suggest a possibility that these tectal neurons which project to the medullary regions form the substrate of the sensorimotor interfacing and contribute to the initiation or coordination of the visually guided behavior, such as prey-catching.  相似文献   

3.
Human undulatory underwater swimming (UUS) is an underwater propelling technique in competitive swimming and its propulsive mechanism is poorly understood. The purpose of this study was to visualize the three-dimensional (3D) flow field in the wake region during human UUS in a water flume. A national level male swimmer performed 41 UUS trials in a water flume. A motion capture system and stereo particle image velocimetry (PIV) equipment were used to investigate the 3D coordinates of the swimmer and 3D flow fields in the wake region. After one kick cycle was divided into eight phases, we conducted coordinate transformations and phase averaging method to construct quasi 3D flow fields. At the end of the downward kick, the lower limbs external rotations of the lower limbs were observed, and the feet approached towards each other. A strong downstream flow, i.e. a jet was observed in the wake region during the downward kick, and the paired vortex structure was accompanied by a jet. In the vortex structure, a cluster of vortices and a jet were generated in the wake during the downward kick, and the vortices were subsequently shed from the feet by the rotated leg motion. This suggested that the swimmer gained a thrust by creating vortices around the foot during the downward kick, which collided to form a jet. This paper describes, illustrates, and explains the propulsive mechanism of human UUS.  相似文献   

4.
Recent observations have indicated that the earliest lesions of atherosclerosis frequently take the form of longitudinal and helical ridges in arteries of man. Since longitudinal vortices are expected to be present in the troughs between the longitudinal ridges, an analysis was carried out to investigate the three-dimensional flow field and the trasport of lipoproteins and oxygen molecules to arterial walls in the presence of such vortices. The calculations revealed that local hypoxia and lipoprotein accumulation may occur at the ridges, leading to subsequent intimal thickening and ridge growth. Higher shear stresses, calculated in the troughs between ridges, may also partially damage the endothelium and lead to intimal thickening and subsequent merging of the ridges. Meaningful measurements are needed in vivo to determine the strength of the vortices, their time-varying behavior, and the actual transverse variations in shear stress, oxygen transport, and lipoprotein accumulation from trough to ridge regions, in order to appraise the present findings and to learn more about the observed progressive thickening and widening of ridges with increasing degrees of intimal thickening and atherosclerosis.  相似文献   

5.
A novel method of producing controlled vortices was used to reduce both concentration polarization and membrane fouling during microfiltration of Saccharomyces cerevisiae broth suspensions. The method involves flow around a curved channel at a sufficient rate so as to produce centrifugal instabilities (called Dean vortices). These vortices depolarize the build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up of suspended particles such as yeast cells at the membrane-solution interface and allow for increased membrane permeation rates. Various operating conditions under which such vortices effectively reduced cake build-up during microfiltration of 0 to 0.55 dry wt% yeast broth were investigated. Flux improvements of over 60% for 0.25 dry wt% yeast broth for flow with over that without Dean vortices were observed. This beneficial effect increased with increasing retentate flow rate and increasing transmembrane pressure and decreased with increasing concentration of suspended matter. Similar behavior was observed whether the cells were viable of killed. the improvement in flux in the presence over that in the absence of vortices correlated well with centrifugal force or azimuthal velocity squared. The relative cake resistances increased with reservoir yeast concentration. These values with vortices increased from 62% to 75% of that without vortices with increasing yeast concentration. The ratio of the cake thicknesses in the limiting case (at high feed concentration) was 3.25. These results suggest that self-cleaning spiral vortices could be effective in maintaining good and steady microfiltration performance with cell suspensions other than those tested. (c) 1995 John Wiley & Sons, Inc.  相似文献   

6.
On the paths of fluid particles in an axisymmetrical aneurysm   总被引:1,自引:0,他引:1  
The aim of this study is the characterization of the pulsatile flow field by demonstration of the paths of single particles in a model of an axisymmetric aneurysm. The detailed analysis of the flow field can give additional information on the flow pattern and the time of transition of blood particles in the segment. The basis of the calculations is the system of the Navier-Stokes equations for incompressible Newtonian fluid flow. To solve these equations numerically the finite element method was used. The trajectory equations for a fluid particle were solved by use of a predictor-corrector procedure. The results of the computer simulation demonstrate the development, shift and disappearance of vortices in the excavation and give references to zones of stasis. This behavior can be an important factor in thrombogenesis.  相似文献   

7.
The present study concerns the simulation and analysis of the flow field in the upper human respiratory system in order to gain an improved understanding of the complex flow field with respect to the process affecting drug delivery for medical treatment of the human air system. For this purpose, large eddy simulation (LES) is chosen because of its powerful performance in the transitional range of laminar and turbulent flow fields. The average gas velocity in a constricted tube is compared with experimental data (Ahmed and Giddens, 1983) and numerical data from Reynolds-averaged Navier-Stokes (RANS) equations coupled with low Reynolds number (LRN) κ-ω model (Zhang and Kleinstreuer, 2003) and LRN shear-stress transport κ-ω model (Jayaraju et al., 2007), for model validation. The present study emphasizes on the instantaneous flow field, where the simulations capture different scales of secondary vortices in different flow zones including recirculation zones, the laryngeal jet zone, the mixing zone, and the wall shear layer. It is observed that the laryngeal jet tail breaks up, and the unsteady motion of laryngeal jet is coupled with the unsteady distribution of secondary vortices in the jet boundary. The present results show that it is essential to study the unsteady flow field since it strongly affects the particle flow in the human upper respiratory system associated with drug delivery for medical treatment.  相似文献   

8.
The highly specialized coronulid barnacle Xenobalanus globicipitis attaches exclusively on cetaceans worldwide, but little is known about the factors that drive the microhabitat patterns on its hosts. We investigate this issue based on data on occurrence, abundance, distribution, orientation, and size of X. globicipitis collected from 242 striped dolphins (Stenella coeruleoalba) that were stranded along the Mediterranean coast of Spain. Barnacles exclusively infested the fins, particularly along the trailing edge. Occurrence, abundance, and density of X. globicipitis were significantly higher, and barnacles were significantly larger, on the caudal fin than on the flippers and dorsal fin. Barnacles were found more frequently and in greater numbers on the dorsal rather than ventral side of the caudal fin and on the central third of dorsal and ventral fluke surfaces. Nearly all examined individuals attached with their cirral fan oriented opposite to the fluke edge. We suggest that X. globicipitis may chemically recognize dolphins as a substratum, but fins, particularly the flukes, are passively selected because of creation of vortices that increase contact of cyprids with skin and early survival of these larvae at the corresponding sites. Cyprids could actively select the trailing edge and orient with the cirri facing the main direction of flow. Attachment on the dorsal side of the flukes is likely associated with asymmetrical oscillation of the caudal fin, and the main presence on the central segment of the flukes could be related to suitable water flow conditions generated by fluke performance for both settlement and nutrient filtration.  相似文献   

9.
Based on the principle of ultrasonic Doppler flowmetry, a power ratio was derived from independent forward and reverse flow Doppler shift signals to measure a ratio of the volume of vortices to the total vessel volume in poststenotic separated flow. The ratio was also proportional to the ratio of the cross-sectional areas of vortices to the vessel lumen. In vitro pulsatile flow experiments were performed to test the methodology and to study flow separation and vortex shedding downstream from model stenoses. The averaged flow cross-sectional area ratio linearly correlated (r = 0.91) with the actual area reduction of the stenosis.  相似文献   

10.
Much effort has been undertaken for the estimation of propulsive force of swimmers in the front crawl. Estimation is typically based on steady flow theory: the so-called quasi-steady analysis. Flow fields around a swimmer, however, are extremely unsteady because the change direction of hand produces unsteady vortex motions. To evaluate the force correctly, it is necessary to know the unsteady properties determined from the vortex dynamics because that unsteadiness is known to make the force greater. Unsteady flow measurements were made for this study using a sophisticated technique called particle image velocimetry (PIV) in several horizontal planes for subjects swimming in a flume. Using that method, a 100 time-sequential flow fields are obtainable simultaneously. Each flow field was calculated from two particle images using the cross-correlation method. The intensity of vortices and their locations were identified. A strong vortex was generated near the hand and then shed by directional change of the hand in the transition phase from in-sweep to out-sweep. When the vortex was shed, a new vortex rotating in the opposite direction around the hand was created. The pair of vortices induced the velocity component in the direction opposite to the swimming. Results of this study show that the momentum change attributable to the increase in this velocity component is the origin of thrust force by the hand.  相似文献   

11.
A continuous viral inactivation (CVI) chamber has been designed to operate with acceptable residence time distribution (RTD) characteristics. However, altering the CVI's geometry and operation to accommodate the scale was not obvious. In this work, we elucidate the influence of Dean vortices and leverage the transition into the weak turbulent regime to establish relationships between input variables and process outputs. This study was targeted to understand and quantify the impact of viscosity, Dean number, internal diameter, and path length on the RTD. When the Dean number exceeds 70, radial mixing generated by the Dean vortices began to consistently alter the axial dispersive effects experienced by the pulse injection. Increasing to a Dean number of >100, the axial dispersive effects were dominated by the Dean vortices which allowed the calculation of the minimum and maximum residence time to be generated. This work provides a method to calculate operational solutions for a tubular incubation reactor in terms of path length, internal diameter, flow rate, and target minimum and maximum residence time specifications that assures both viral residence times while also establishing criteria to maximize product quality during continuous operation.  相似文献   

12.
A numerical simulation of steady flow fields in a bypass tube.   总被引:6,自引:0,他引:6  
Steady flow in a complete by-pass tube was simulated numerically. The study was to consider a complete flow field, which included both the by-pass and the host tubes. The changes of the hemodynamics were investigated with three parameters: the inlet flow Reynolds number (Re), anastomotic angle (alpha) and the position of the occlusion in the host tube. The baseline flow field was set up with Re=200, alpha=45 degrees and the centered position of occlusion. The parametric study was then conducted on combination of Re=100, 200, 400, alpha=35 degrees, 45 degrees, 60 degrees, 75 degrees, 90 degrees and three occlusion positions: left, center and right. It was found that in the baseline case, large slow/recirculation flows could be seen in the host tube both upstream and downstream of the occlusion. The separation points were on the opposite walls to the junctions. Recirculation zones were also found near the toe and in the proximal outer wall of the by-pass tube. Their sizes were about one diameter of the tube or smaller. In some cases, pairing vortices could be seen in the host tube upstream of the occlusion. The shear rate distribution associated with the flow fields was presented. The flow pattern obtained was agreeable to those observed experimentally by other investigators. The difference of the flow fields between a complete bypass and simple anastomosis was discussed. The present numerical code provides a preliminary simulation/design tool for bypass graft flows.  相似文献   

13.
A comparative morphometric study was performed with MRI brain scans of term- and preterm-born infants. The structural characteristics of the brain were analyzed using conventional morphometric indices, and a novel quantitative parameter, the corpus callosum coefficient (kCC), was introduced based on patterns of the prenatal cortex ontogeny. All these quantitative indices reflected anatomical features of the preterm brain. It was found that reduced kCC values in preterm infants were associated with an altered proportion between the rostral and caudal segments of the corpus callosum. The threshold kCC value was established that allowed significant discrimination between the brains of full-term and preterm infants.  相似文献   

14.
There exists evidence that some fast-swimming shark species may have the ability to bristle their scales during fast swimming. Experimental work using a water tunnel facility has been performed to investigate the flow field over and within a bristled shark skin model submerged within a boundary layer to deduce the possible boundary layer control mechanisms being used by these fast-swimming sharks. Fluorescent dye flow visualization provides evidence of the formation of embedded cavity vortices within the scales. Digital particle image velocimetry (DPIV) data, used to evaluate the cavity vortex formation and boundary layer characteristics close to the surface, indicate increased momentum in the slip layer forming above the scales. This increase in flow velocity close to the shark's skin is indicative of boundary layer control mechanisms leading to separation control and possibly transition delay for the bristled shark skin microgeometry.  相似文献   

15.
Hans Rähr 《Zoomorphology》1981,97(3):297-308
Summary The ultrastructure of the blood vessels in the caudal region of Branchiostoma is described in specimens injected with indian ink. None of the vessels have endothelial cells delimiting the luminal surface. The vessels are delimited either by dense connective tissue or by the characteristic basement lamella underneath the basal lamina of the myocoelic epithelium. It is proposed that the main blood flow in the caudal region follows different pathways depending on the activity of the animal. During swimming the muscle activity of the caudal muscles may have the effect that more blood flows from the aorta to the myoseptal plexi and is drained to the caudal vessel. In the resting animal it is possible that the blood flow through the myosepta is insignificant, and that the caudal blood flow is more or less restricted to the direct connections between the aorta and the caudal vessel: the dorsoventral anastomosis and the segmental connecting vessels.Supported by a grant from the Danish Natural Science Research Council  相似文献   

16.
Markus Eymann 《Hydrobiologia》1991,215(3):223-229
Flow patterns around structurally different cocoons and pupae of five species ofSimulium Latreille are described. Three features of the flow pattern common to all cocoons are; 1) a solenoidal vortex around the cocoon, 2) upward flow anterior (downstream) to the cocoon, and 3) one or two pairs of spiral-shaped vortices, which either touch or envelop the fill filaments of the pupa. The solenoidal vortex and the upward-spiralling, downstream vortices are common features of flow patterns around most bluff bodies submerged in a boundary layer. The proximity of the vortices to the fill filaments of all pupae suggests that these vortices are associated with gaseous exchange at the gill filaments.  相似文献   

17.
Mechanized production and delivery of biological pesticides presents challenges because the biological agents must remain viable during these processes. This study evaluates the effect of flow through an abrupt contraction, where flow characteristics similar to that found within bioprocesses and spray equipment are developed, on damage to a benchmark biological pest control agent, entomopathogenic nematodes (EPNs). An opposed-pistons, contraction flow device generated volumetric flow rates ranging between 8.26 cm(3)/s and 41.3 cm(3)/s. Four EPN species were evaluated: Heterorhabditis bacteriophora, Heterorhabditis megidis, Steinernema carpocapsae, and Steinernema glaseri. Damage was quantified by counting living and dead EPNs. Optical and cold field emission scanning electron microscope (CFE-SEM) images provided qualitative information to describe how the damage occurred. The experimental flow field was completely described using FLUENT, a computational fluid dynamics program. Local flow parameters computed in FLUENT were compared to EPN damage. The type and extent of damage varied between EPN species. Damaged Heterorhabditis spp. generally remained whole with an internal rupture located near the center of the body, while Steinernema spp. most often broke into several pieces. The fast-transient stress field generated at the entrance to the contraction caused a momentary tensile loading and then relaxation that damaged the EPNs. At high flow rates, the tensile stresses became large enough to cause failure of the EPN structural membrane. The relative elasticity of the EPN structural membrane may explain the differences in damage observed between the species. It is speculated that the internal rupture of the Heterorhabditis spp. occurred during the processes of stretching and relaxing at the contraction entrance. Appreciable damage was observed at lower average energy dissipation rates for H. bacteriophora (1.23E + 8 W/m(3)), H. megidis (1.72E + 8 W/m(3)), and S. glaseri (2.89E + 8 W/m(3)) compared to S. carpocapsae (3.70E + 8 W/m(3)). Energy dissipation rates within an equipment component should be kept below 1E + 8 W/m(3) to avoid hydrodynamic damage to EPNs. The relationship between average energy dissipation and EPN damage provides important information for future simulation efforts of actual spray equipment components.  相似文献   

18.
The high incidence of thromboembolic complications of mechanical heart valves (MHV), primarily due to platelet activation by contact with foreign surfaces and by non-physiological flow patterns past the valve, still limits their success as permanent implants. The latter include elevated shear and turbulent stresses and shed vortices formed in the wake of the valve's leaflets during the deceleration phase, potentially entrapping activated and aggregated platelets. It is hypothesized that these flow patterns induce the formation of free emboli which are the source of cerebrovascular microemboli associated with MHV. Implicit to this hypothesis is that free emboli formation will be affected by the implantation technique employed and the valve orientation, as those will alter the flow characteristics past the valve and the interaction of the platelets with the flow. In this study, numerical simulations of turbulent pulsatile flow past a St. Jude Medical bi-leaflet MHV were conducted. Platelet shear histories were calculated along pertinent turbulent platelet trajectories, and the effect of a misaligned valve on platelet activation was quantified and compared to that of an aligned valve. It demonstrated that the combination of a tilted valve and subannularly sutured pledgets had an explicit detrimental effect on platelet activation, with the following entrapment of the platelets within the shed vortices of the wake leading to a significant increase of the thromboembolic potential of the valve. This numerical model depicted a viable course for free emboli formation, and indicated how the implantation technique may enhance the risk of cardioembolism.  相似文献   

19.
The manufacture of plasma‐derived therapeutics includes dedicated viral inactivation steps to minimize the risk of infection. Traditional viral inactivation methods are effective for the removal and inactivation of enveloped viruses, but less effective against small nonenveloped viruses. UV‐C irradiation has been demonstrated to be an effective means of inactivating such viruses. The UVivatec lab system consists of a spiral tube around an UV‐C irradiation source. Flow of a solution through the chamber generates and ensures controlled mixing and uniform exposure to irradiation. A detailed assessment of the effect of flow rate, alternate cross sectional design and scale up of the irradiation chamber on Dean vortices was performed using the smoothed particle hydrodynamics method. The aim was to provide a basis for setting flow rate limits and using a laboratory scale apparatus to model viral inactivation in larger manufacturing scale equipment. The effect of flow rate related changes on the fluence rate was also investigated through chemical actinometry studies. The data were consistent with the simulations indicating that Dean vortices were present at low flow rates, but dissipated at higher flow rates through the spiral chamber. Importantly, this work also allowed a correlation between the small system and large scale system to be established. This will greatly facilitate process development and viral validation studies. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29: 359–367, 2013  相似文献   

20.
The aim of this work is to evaluate the haemodynamic characteristics of maternal and foetal vessels during normal pregnancy in queens, using colour Doppler and pulsed wave Doppler ultrasonography, in order to obtain information about maternal and foetal circulation. The blood waveforms of the uteroplacental arteries, aorta, caudal cava vein and umbilical cord of the fetuses were recorded weekly in seven healthy pregnant queens. Also, the measurements of peak systolic, end diastolic velocities, resistance and pulsatility indices were carried out. Uteroplacental blood flow was biphasic while the ones of the umbilical artery and aorta were first systolic and then diastolic. The caudal cava vein showed a typical waveform of venous vessels. During gestation the EDV and PSV of foetal vessels increased ( < 0.05) while the PI and RI of all vessels examined decreased ( < 0.05) except for the IP of the aorta. The Doppler ultrasonography, also in queens, can be used to evaluate the characteristics of maternal and foetal vessel flow and their progressive changes during pregnancy. This study can be considered the basis for further contribution in diagnosing and monitoring high-risk pregnancies in Veterinary Medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号