首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
The total number of nuclear pore complexes/nucleus was determined at intervals through the first cycle of synchronous growth in the yeast, Saccharomyces cerevisiae, using electron micrographs of freeze-fracture replicas of nuclei. Nuclear pore number increased in early G0 phase, attaining a plateau by late G0 which was maintained throughout the S phase. This was followed by a second increase at the time of nuclear division. The significance of these changes in relation to other events of the cell cycle is discussed.  相似文献   

2.
The mixotrophic dinoflagellate Dinophysis acuminata is a widely distributed diarrhetic shellfish poisoning (DSP) producer. Toxin variability of Dinophysis spp. has been well studied, but little is known of the manner in which toxin production is regulated throughout the cell cycle in these species, in part due to their mixotrophic characteristics. Therefore, an experiment was conducted to investigate cell cycle regulation of growth, photosynthetic efficiency, and toxin production in D. acuminata. First, a three-step synchronization approach, termed “starvation-feeding-dark”, was used to achieve a high degree of synchrony of Dinophysis cells by starving the cells for 2 weeks, feeding them once, and then placing them in darkness for 58 h. The synchronized cells started DNA synthesis (S phase) 10 h after being released into the light, initiated G2 growth stage eight hours later, and completed mitosis (M phase) 2 h before lights were turned on. The toxin content of three dominant toxins, okadaic acid (OA), dinophysistoxin-1 (DTX1) and pectenotoxin-2 (PTX2), followed a common pattern of increasing in G1 phase, decreasing on entry into the S phase, then increasing again in S phase and decreasing in M phase during the diel cell cycle. Specific toxin production rates were positive throughout the G1 and S phases, but negative during the transition from G1 to S phase and late in M phase, the latter reflecting cell division. All toxins were initially induced by the light and positively correlated with the percentage of cells in S phase, indicating that biosynthesis of Dinophysis toxins might be under circadian regulation and be most active during DNA synthesis.  相似文献   

3.
A cell surface macromolecular component from quiescent BALB/c 3T3 mouse cells (designated fibroblast growth regulatory factor, FGRF) inhibits DNA synthesis and cell division in growing 3T3 cells. Addition of FGRF to synchronized populations of growing 3T3 cells in the late G1 or early S phase did not inhibit DNA synthesis in the immediate S phase. However, a significant inhibition was observed in the S phase of the next round of cell cycle. Cells exposed to the regulatory factor in late S/early G2 or early G1 showed reduced DNA synthesis in the upcoming S phase; the late S/early G2 cells were more sensitive to inhibition than the cells in the G1. Further, the regulatory factor delayed the progression of G0/G1-arrested cells into the next S phase. These results suggest that the physiological effect of FGRF is to arrest cells in early G1, thus preventing their entry into a new round of cell cycle. In contrast to untransformed 3T3 cells, mouse cells transformed by SV40 were not subjected to growth-arrest by the regulatory factor, although the transformed cells contain active FGRF that inhibits DNA synthesis in growing 3T3 cells.  相似文献   

4.
The replication of the 2 μm DNA of Saccharomyces cerevisiae has been examined in cell division cycle (cdc) mutants. The 2 μm DNA does not replicate at the restrictive temperature in cells bearing the cdc28, cdc4, and cdc7 mutations which prevent passage of cells from the G1 phase into S phase. Plasmid replication also is prevented in a mating-type cells by α factor, a mating hormone which prevents cells from completing an event early in G1 phase. The 2 μm DNA ceases replication at 36 °C in a mutant harboring the cdc8 mutation, a defect in the elongation reactions of nuclear DNA replication. Plasmid replication continues at the restrictive temperature for approximately one generation in a cdc13 mutant defective in nuclear division. These results show that 2 μm DNA replication is controlled by the same genes that control the initiation and completion of nuclear DNA replication.  相似文献   

5.
Summary To investigate whether the nuclear division cycle could be related to cycle-specific changes in repair of ionizing radiation damage, we have determined the survival curves after -irradiation of samples taken frequently from synchronously dividing cultures of Saccharomyces cerevisiae cells. Survival was low in G1 and increased during S, reaching a maximum around the end of the S phase, which was maintained in G2. The shape of the survival curves for samples taken from later stages revealed a rapid cycle-specific drop in the radioresistance of individual cells. A simple model was formulated on the assumption that survival is greatly enhanced by the action of an enzymatic repair mechanism which requires duplicated but unsegregated DNA as a substrate. By taking into account the measurable age heterogeneity of samples taken from the synchronous cultures, this model was shown to fit the survival data closely. For an individual cell, the increasing survival during the S phase is thus attributable to a rising fraction of duplicated genome, whereas the rapid decrease in radioresistance at a later stage in the cell cycle may be interpreted as due to the final physical separation of sister chromatids. The start of the latter event was timed to the stage in mitosis when the nucleus begins to move towards the neck of the bud. The data are consistent with the hypothesis that the high radioresistance of cells in late S and G2 is due to the repair of double-stranded DNA breaks by a process involving recombination between sister chromatids.  相似文献   

6.
At the latest stages of their cell cycle, cells carry out crucial processes for the correct segregation of their genetic and cytoplasmic material. In this work, we provide evidence demonstrating that the cell cycle arrest of some MEN (mitosis exit network) mutants in the anaphase-telophase transition is bypassed. In addition, the ability of cdc15 diploid mutant strains to develop non-septated chains of cells, supported by nuclear division, is shown. This phenotype is also displayed by haploid cdc15 mutant strains when cell lysis is prevented by osmotic protection, and shared by other MEN mutants. By contrast, anaphase-telophase arrest is strictly observed in double MEN-FEAR (fourteen early anaphase release) mutants. In this context, the overexpression of a FEAR component, SPO12, in a MEN mutant background enhances the ability of MEN mutants to bypass cell cycle arrest. Taken together, these data suggest a critical role of Cdc15 and other MEN proteins in cytokinesis, allowing a new model for their cellular function to be proposed.  相似文献   

7.
It is widely accepted that MAPK activation in budding and fission yeasts is often associated with negative effects on cell cycle progression, resulting in delay or arrest at a specific stage in the cell cycle, thereby enabling cells to adapt to changing environmental conditions. For instance, activation of the Cell Wall Integrity (CWI) pathway in the budding yeast Saccharomyces cerevisiae signals an increase in CDK inhibitory phosphorylation, which leads cells to remain in the G2 phase. Here we characterized the CWI pathway of Ustilago maydis, a fungus evolutionarily distant from budding and fission yeasts, and show that activation of the CWI pathway forces cells to escape from G2 phase. In spite of these disparate cell cycle responses in S. cerevisiae and U. maydis, the CWI pathway in both organisms appears to respond to the same class cell wall stressors. To understand the basis of such a difference, we studied the mechanism behind the U. maydis response. We found that activation of CWI pathway in U. maydis results in a decrease in CDK inhibitory phosphorylation, which depends on the mitotic phosphatase Cdc25. Moreover, in response to activation of the CWI pathway, Cdc25 accumulates in the nucleus, providing a likely explanation for the increase in the unphosphorylated form of CDK. We also found that the extended N-terminal domain of Cdc25, which is dispensable under normal growth conditions, is required for this G2 escape as well as for resistance to cell wall stressors. We propose that the process of cell cycle adaptation to cell stress evolved differently in these two divergent organisms so that each can move towards a cell cycle phase most appropriate for responding to the environmental signals encountered.  相似文献   

8.
We have recently reported that protein kinase CK2 phosphortylates both in vivo and in vitro residue serine-46 of the cell cycle regulating protein Cdc28 of budding yeast Saccharomyces cerevisiae, confirming a previous observation that the same site is phosphorylated in Cdc2/Cdk1, the human homolog of Cdc28. In addition, S. cerevisiae in which serine-46 of Cdc28 has been mutated to alanine show a decrease of 33% in both cell volume and protein content, providing the genetic evidence that CK2 is involved in the regulation of budding yeast cell division cycle, and suggesting that this regulation may be brought about in G1 phase of the mammalian cell cycle. Here, we extended this observation reporting that the mutation of serine-46 of Cdc28 to glutamic acid doubles, at least in vitro, the H1-kinase activity of the Cdc28/cyclin A complex. Since this mutation has only little effects on the cell size of the cells, we hypothesize multiple roles of yeast CK2 in regulating the G1 transition in budding yeast.  相似文献   

9.
We have recently established a cell-free system from human cells that initiates semi-conservative DNA replication in nuclei isolated from cells which are synchronised in late G1 phase of the cell division cycle. We now investigate origin specificity of initiation using this system. New DNA replication foci are established upon incubation of late G1 phase nuclei in a cytosolic extract from proliferating human cells. The intranuclear sites of replication foci initiated in vitro coincide with the sites of earliest replicating DNA sequences, where DNA replication had been initiated in these nuclei in vivo upon entry into S phase of the previous cell cycle. In contrast, intranuclear sites that replicate later in S phase in vivo do not initiate in vitro. DNA replication initiates in this cell-free system site-specifically at the lamin B2 DNA replication origin, which is also activated in vivo upon release of mimosine-arrested late G1 phase cells into early S phase. In contrast, in the later replicating ribosomal DNA locus (rDNA) we neither detected replicating rDNA in the human in vitro initiation system nor upon entry of intact mimosine-arrested cells into S phase in vivo. As a control, replicating rDNA was detected in vivo after progression into mid S phase. These data indicate that early origin activity is faithfully recapitulated in the in vitro system and that late origins are not activated under these conditions, suggesting that early and late origins may be subject to different mechanisms of control.  相似文献   

10.
DBcAMP reversibly arrests cultivated Cloudman melanoma cells in the late S and G2 phases of the cell cycle. This is supported by the measurement of DNA synthesis by autoradiography and measurement of cellular DNA by two methods--the diphenylamine reaction and microspectrophotometry of Feulgen stained cells. We also present evidence that (1) cell division is prevented if DBcAMP is added as late in the cycle as early S phase. (2) The inhibition of cell division does not appear to be caused by products of tyrosine oxidation. (3) The increase in cell size that occurs in the presence of DBcAMP reflects continued synthesis of protein in the absence of cell division.  相似文献   

11.
Cell Wall Assembly in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3       下载免费PDF全文
An extracellular matrix composed of a layered meshwork of β-glucans, chitin, and mannoproteins encapsulates cells of the yeast Saccharomyces cerevisiae. This organelle determines cellular morphology and plays a critical role in maintaining cell integrity during cell growth and division, under stress conditions, upon cell fusion in mating, and in the durable ascospore cell wall. Here we assess recent progress in understanding the molecular biology and biochemistry of cell wall synthesis and its remodeling in S. cerevisiae. We then review the regulatory dynamics of cell wall assembly, an area where functional genomics offers new insights into the integration of cell wall growth and morphogenesis with a polarized secretory system that is under cell cycle and cell type program controls.  相似文献   

12.
Cell cycle is the central process that regulates growth and division in all eukaryotes. Based on the environmental condition sensed, the cell lies in a resting phase G0 or proceeds through the cyclic cell division process (G1??S??G2??M). These series of events and phase transitions are governed mainly by the highly conserved Cyclin dependent kinases (Cdks) and its positive and negative regulators. The cell cycle regulation of fission yeast Schizosaccharomyces pombe is modeled in this study. The study exploits a detailed molecular interaction map compiled based on the published model and experimental data. There are accumulating evidences about the prominent regulatory role of specific phosphatases in cell cycle regulations. The current study emphasizes the possible role of multiple phosphatases that governs the cell cycle regulation in fission yeast S. pombe. The ability of the model to reproduce the reported regulatory profile for the wild-type and various mutants was verified though simulations.  相似文献   

13.
Without ribosome biogenesis, translation of mRNA into protein ceases and cellular growth stops. We asked whether ribosome biogenesis is cell cycle regulated in the yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe, and we determined that it is not regulated in the same manner as in metazoan cells. We therefore turned our attention to cellular sensors that relay cell size information via ribosome biogenesis. Our results indicate that the small subunit (SSU) processome, a complex consisting of 40 proteins and the U3 small nucleolar RNA necessary for ribosome biogenesis, is not mitotically regulated. Furthermore, Nan1/Utp17, an SSU processome protein, does not provide a link between ribosome biogenesis and cell growth. However, when individual SSU processome proteins are depleted, cells arrest in the G1 phase of the cell cycle. This arrest was further supported by the lack of staining for proteins expressed in post-G1. Similarly, synchronized cells depleted of SSU processome proteins did not enter G2. This suggests that when ribosomes are no longer made, the cells stall in the G1. Therefore, yeast cells must grow to a critical size, which is dependent upon having a sufficient number of ribosomes during the G1 phase of the cell cycle, before cell division can occur.  相似文献   

14.
When chromosomal DNA is damaged, progression through the cell cycle is halted to provide the cells with time to repair the genetic material before it is distributed between the mother and daughter cells. In Saccharomyces cerevisiae, this cell cycle arrest occurs at the G2/M transition. However, it is also necessary to restrain exit from mitosis by maintaining Bfa1-Bub2, the inhibitor of the Mitotic Exit Network (MEN), in an active state. While the role of Bfa1 and Bub2 in the inhibition of mitotic exit when the spindle is not properly aligned and the spindle position checkpoint is activated has been extensively studied, the mechanism by which these proteins prevent MEN function after DNA damage is still unclear. Here, we propose that the inhibition of the MEN is specifically required when telomeres are damaged but it is not necessary to face all types of chromosomal DNA damage, which is in agreement with previous data in mammals suggesting the existence of a putative telomere-specific DNA damage response that inhibits mitotic exit. Furthermore, we demonstrate that the mechanism of MEN inhibition when telomeres are damaged relies on the Rad53-dependent inhibition of Bfa1 phosphorylation by the Polo-like kinase Cdc5, establishing a new key role of this kinase in regulating cell cycle progression.  相似文献   

15.
Calmodulin levels are elevated twofold at late G1 and/or early S phases during the growth cycle of CHO-K1 cells. These levels are maintained throughout the remainder of the cell cycle until cytokinesis. The G1 daughter cells then contain half the intracellular calmodulin level found prior to cell division. Elevation of calmodulin at the G1-S boundary is independent of the length of G1, and the increase in calmodulin appears to be related to progression into S phase. The importance of calmodulin for G1-S progression is suggested by the ability of the anticalmodulin drug W13 to elicit specific and reversible progression delays into and through S phase.  相似文献   

16.
The orderly progression through the cell division cycle is of paramount importance to all organisms, as improper progression through the cycle could result in defects with grave consequences. Previously, our lab has shown that model eukaryotes such as Saccharomyces cerevisiae, Caenorhabditis elegans, and Danio rerio all retain high viability after prolonged arrest in a state of anoxia-induced suspended animation, implying that in such a state, progression through the cell division cycle is reversibly arrested in an orderly manner. Here, we show that S. cerevisiae (both wild-type and several cold-sensitive strains) and C. elegans embryos exhibit a dramatic decrease in viability that is associated with dysregulation of the cell cycle when exposed to low temperatures. Further, we find that when the yeast or worms are first transitioned into a state of anoxia-induced suspended animation before cold exposure, the associated cold-induced viability defects are largely abrogated. We present evidence that by imposing an anoxia-induced reversible arrest of the cell cycle, the cells are prevented from engaging in aberrant cell cycle events in the cold, thus allowing the organisms to avoid the lethality that would have occurred in a cold, oxygenated environment.  相似文献   

17.
For S. pombe cells mutations in the wee1 regulatory gene have been shown previously to allow cells to be smaller than normal at cell division, to endow the cell with a significantly long G1 cell cycle interval, and to alter the timing in the cell cycle of certain mutationally-defined cell cycle steps in G2. We show here that situations which lengthen S phase in proliferating wee1 mutant cells 'suppress' to varying degrees these wee1-mediated cell cycle alterations. Conditions chosen to protract S phase were use of cdc22.M45 mutant cells at semipermissive temperatures, and the presence of sub-arresting concentrations of the S phase inhibitors hydroxyurea or deoxyadenosine. Proliferation in the presence of each of these inhibitors was shown directly to result in protracted S phase. Residual cell division measurements were used to measure the cell cycle timing of G1 and G2 cell-cycle steps. The indirect suppression of the wee1 phenotype shown here can be understood in terms of the proposed role of the wee1+ gene product in coordinating cell division with cellular growth.  相似文献   

18.
Temperature-sensitive cell division “start” mutants cdc28, cdc36, cdc37, and cdc39 of the yeast Saccharomyces cerevisiae arrested cell division in the G1 phase of the cell cycle in glucose medium. I report here that cdc28, cdc36, and cdc39 mutants were suppressed when grown in carbon catabolite-derepressing medium.  相似文献   

19.
The mammary cancer cell line CAMA-1 synchronized at the G1/S boundary by thymidine block or at the G1/M boundary by nocodazole was used to evaluate 1) the sensitivity of a specific cell cycle phase or phases to 17 beta-estradiol (E2), 2) the effect of E2 on cell cycle kinetics, and 3) the resultant E2 effect on cell proliferation. In synchronized G1/S cells, E2-induced 3H-thymidine uptake, which indicated a newly formed S population, was observed only when E2 was added during, but not after, thymidine synchronization. Synchronized G2/M cells, enriched by Percoll gradient centrifugation to approximately 90% mitotic cells, responded to E2 added immediately following selection; the total E2-treated population traversed the cycle faster and reached S phase approximately 4 hr earlier than cells not exposed to E2. When E2 was added during the last hour of synchronization (ie, at late G2 or G2/M), or for 1 hr during mitotic cell enrichment, a mixed response occurred: a small portion had an accelerated G1 exit, while the majority of cells behaved the same as controls not incubated with E2. When E2 addition was delayed until 2 hr, 7 hr, or 12 hr following cell selection, to allow many early G1 phase cells to miss E2 exposure, the response to E2 was again mixed. When E2 was added during the 16 hr of nocodazole synchronization, when cells were largely at S or possibly at early G2, it inhibited entry into S phase. The E2-induced increase or decrease of S phase cells in the nocodazole experiments also showed corresponding changes in mitotic index and cell number. These results showed that the early G1 phase and possibly the G2/M phase are sensitive to E2 stimulation, late G1, G1/S, or G2 are refractory; the E2 stimualtion of cell proliferation is due primarily to an increased proportion of G1 cells that traverse the cell cycle and a shortened G1 period, E2 does not facilitate faster cell division; and estrogen-induced cell proliferation or G1/S transition occurs only when very early G1 phase cells are exposed to estrogen. These results are consistent with the constant transition probability hypothesis, that is, E2 alters the probability of cells entering into DNA synthesis without significantly affecting the duration of other cell cycle phases. Results from this study provide new information for further studies aimed at elucidating E2-modulated G1 events related to tumor growth.  相似文献   

20.
Chinese hamster ovary (CHO) cells in vitro were treated with HgCl2 at various stages in the cell cycle and the effects of this chemical on cell survival, DNA replication, and cell division were observed. In terms of survival the early G1 cells were the most sensitive to treatment, followed by late G1 and early S, while mid S and late S-G2 treated cells were the least sensitive. Treatment with HgCl2 also resulted in reduced rates of DNA replication and delays in cell division. The early G1 treated cells showed substantially reduced rates of DNA replication followed by 4--5 h division delay. The early S and late S-G2 treated cells had some reduction in their rates of DNA replication followed by corresponding division delay of 2.5 h in the early S treated cells and 1 h in the late S-G2 treated cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号