首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 516 毫秒
1.
Polyploidization, as a significant evolution force, has been considered to facilitate plant diversity. The expression levels of lncRNAs and how they control the expression of protein‐coding genes in allopolyploids remain largely unknown. In this study, lncRNA expression profiles were compared between Brassica hexaploid and its parents using a high‐throughput sequencing approach. A total of 2,725, 1,672, and 2,810 lncRNAs were discovered in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. It was also discovered that 725 lncRNAs were differentially expressed between Brassica hexaploid and its parents, and 379 lncRNAs were nonadditively expressed in this hexaploid. LncRNAs have multiple expression patterns between Brassica hexaploid and its parents and show paternal parent‐biased expression. These lncRNAs were found to implement regulatory functions directly in the long‐chain form, and acted as precursors or targets of miRNAs. According to the prediction of the targets of differentially expressed lncRNAs, 109 lncRNAs were annotated, and their target genes were involved in the metabolic process, pigmentation, reproduction, exposure to stimulus, biological regulation, and so on. Compared with the paternal parent, differentially expressed lncRNAs between Brassica hexaploid and its maternal parent participated in more regulation pathways. Additionally, 61 lncRNAs were identified as putative targets of known miRNAs, and 15 other lncRNAs worked as precursors of miRNAs. Some conservative motifs of lncRNAs from different groups were detected, which indicated that these motifs could be responsible for their regulatory roles. Our findings may provide a reference for the further study of the function and action mechanisms of lncRNAs during plant evolution.  相似文献   

2.
To develop doubled haploid (DH) mapping populations of hexaploid Brassica, 10 F1 hybrids derived from crosses between allohexaploid Brassica parents were evaluated in this study. The allohexaploid Brassica parents were selfed progenies of unique interspecific crosses between Brassica rapa (genome AA) × B. carinata (BBCC), B. nigra (BB) × B. napus (AACC), and a complex cross between B. juncea (AABB), B. napus and B. carinata, with relatively stable chromosome number (2n = 54). Hexaploid status and chromosome behavior during meiosis I in four promising F1 hybrids were assessed using microscopy and flow cytometry, and progeny were obtained following microspore culture. Hybrids H11-2 and H16-1 demonstrated higher amenability for embryo generation, plantlet regeneration, and frequency of production of DH microspore-derived progeny of hexaploid DNA content (6x) compared to hybrids H08-1 and H24-1. A total of 370 6x DH progeny were selected out of 693 plantlets from H11-2, 241/436 from H16-1, 23/54 from H08-1, and 21/56 from H24-1. DH progenies of hybrids H11-2 and H16-1 were then designated as promising mapping populations of a new hexaploid Brassica species.  相似文献   

3.
Polyploidy has played an important role in promoting plant evolution through genomic merging and doubling. We used high-throughput sequencing to compare miRNA expression profiles between Brassica hexaploid and its parents. A total of 613, 784 and 742 known miRNAs were identified in Brassica rapa, Brassica carinata, and Brassica hexaploid, respectively. We detected 618 miRNAs were differentially expressed (log2Ratio ≥ 1, P ≤ 0.05) between Brassica hexaploid and its parents, and 425 miRNAs were non-additively expressed in Brassica hexaploid, which suggest a trend of non-additive miRNA regulation following hybridization and polyploidization. Remarkably, majority of the non-additively expressed miRNAs in the Brassica hexaploid are repressed, and there was a bias toward repression of B. rapa miRNAs, which is consistent with the progenitor-biased gene repression in the synthetic allopolyploids. In addition, we identified 653 novel mature miRNAs in Brassica hexaploid and its parents. Finally, we found that almost all the non-additive accumulation of siRNA clusters exhibited a low-parent pattern in Brassica hexaploid. Non-additive small RNA regulation is involved in a range of biological pathways, probably providing a driving force for variation and adaptation in allopolyploids.  相似文献   

4.

Key message

Allohexaploid Brassica populations reveal ongoing segregation for fertility, while genotype influences fertility and meiotic stability.

Abstract

Creation of a new Brassica allohexaploid species is of interest for the development of a crop type with increased heterosis and adaptability. At present, no naturally occurring, meiotically stable Brassica allohexaploid exists, with little data available on chromosome behaviour and meiotic control in allohexaploid germplasm. In this study, 100 plants from the cross B. carinata?×?B. rapa (A2 allohexaploid population) and 69 plants from the cross (B. napus?×?B. carinata)?×?B. juncea (H2 allohexaploid population) were assessed for fertility and meiotic behaviour. Estimated pollen viability, self-pollinated seed set, number of seeds on the main shoot, number of pods on the main shoot, seeds per ten pods and plant height were measured for both the A2 and H2 populations and for a set of reference control cultivars. The H2 population had high segregation for pollen viability and meiotic stability, while the A2 population was characterised by low pollen fertility and a high level of chromosome loss. Both populations were taller, but had lower average fertility trait values than the control cultivar samples. The study also characterises fertility and meiotic chromosome behaviour in genotypes and progeny sets in heterozygous allotetraploid Brassica derived lines, and indicates that genotypes of the parents and H1 hybrids are affecting chromosome pairing and fertility phenotypes in the H2 population. The identification and characterisation of factors influencing stability in novel allohexaploid Brassica populations will assist in the development of this as a new crop species for food and agricultural benefit.
  相似文献   

5.
6.
7.
8.
Allopolyploidy plays an important role in plant evolution and confers obvious advantages on crop growth and breeding compared to low ploidy levels. The present investigation was aimed at synthesising the first known chromosomally stable hexaploid Brassica with the genome constitution AABBCC. More than 2,000 putative hexaploid plants were obtained through large-scale hybridisation from various combinations of crosses between different cultivars of Brassica carinata (BBCC) and B. rapa (AA). The majority of plants after two generations of selfing within selected hexaploid plants (H2) were aneuploid, and only 80 plants (4.6%) had the expected hexaploid chromosome number (2n = 54). The hexaploid ratio increased to an average of 23.0 and 26.3% in the H3 and H4 generations, respectively, and was accompanied by an increase in pollen fertility. The appearance of aneuploid plants in each generation could be detected having various chromosomal abnormalities at meiosis. The frequency of hexaploid plants varied significantly among different cultivar combinations, from 0 to 56% in the H4 generation, and it showed a positive correlation with pollen fertility. The frequency of SSR allelic fragments lost or novel alleles gained was significantly lower in H4 than in H2 and H3, which reflects increasing genome stability in H4. The A and C genomes were significantly less stable than the B genome, which may mainly result from frequent homoeologous pairing and rearrangements between the A and C genomes. Methods to establish a stable hexaploid Brassica crop by intercrossing these lines followed by intensive selection are also discussed.  相似文献   

9.
10.
Camellia reticulata is a well-known woody ornamental species endemic to Southwest China. It represents a polyploid complex with diploids, allotetraploids, and allohexaploids. The parentage of the allotetraploids and allohexaploids has been reported by genomic in situ hybridization, but the maternal parents still remain unknown. In this study, sequences of the chloroplast rpl16 intron of 105 cultivars of C. reticulata and 7 congeneric species were used to infer the maternal origin of the allopolyploids. The results showed that (1) the allotetraploids were derived from C. pitardii as the maternal parental species and the diploid C. reticulata as the paternal parental species; (2) the allohexaploid C. reticulata was derived from the allotetraploid C. reticulata as the maternal parent and C. saluenensis as the paternal parent; and (3) the C. reticulata cultivars were derived from hexaploid C. reticulata as the maternal parents. These results indicated that C. pitardii, the allotetraploid and allohexaploid C. reticulata may serve as good potential maternal parents for the cross breeding of Camellia.  相似文献   

11.
We introduce and review Brassica crop improvement via trigenomic bridges. Six economically important Brassica species share three major genomes (A, B, and C), which are arranged in diploid (AA, BB, and CC) and allotetraploid (AABB, AACC, and BBCC) species in the classical triangle of U. Trigenomic bridges are Brassica interspecific hybrid plants that contain the three genomes in various combinations, either triploid (ABC), unbalanced tetraploid (e.g., AABC), pentaploid (e.g., AABCC) or hexaploid (AABBCC). Through trigenomic bridges, Brassica breeders can access all the genetic resources in the triangle of U for genetic improvement of existing species and development of new agricultural species. Each of the three Brassica genomes occurs in several species, where they are distinguished as subgenomes with a tag to identify the species of origin. For example, the A subgenome in B. juncea (2n = AABB) is denoted as Aj and the A subgenome in B. napus (2n = AACC) as An. Trigenomic bridges have been used to increase genetic diversity in allopolyploid Brassica crop species, such as a new-type B. napus with subgenomes from B. rapa (Ar) and B. carinata (Cc). Recently, trigenomic bridges from several sources have been crossed together as the ‘founders’ of a potentially new allohexaploid Brassica species (AABBCC). During meiosis in a trigenomic bridge, crossovers are expected to form between homologous chromosomes of related subgenomes (for example Ar and An), but cross-overs may also occur between non-homologous chromosomes (for example between A and C genome chromosomes). Irregular meiosis is a common feature of new polyploids, and any new allotetraploid or allohexaploid Brassica genotypes derived from a trigenomic bridge must achieve meiotic stability through a process of diploidisation. New sequencing technologies, at the genomic and epigenomic level, may reveal the genetic and molecular basis of diploidization, and accelerate selection of stable allotetraploids or allohexaploids. Armed with new genetic resources from trigenomic bridges, Brassica breeders will be able to improve yield and broaden adaptation of Brassica crops to meet human demands for food and biofuel, particularly in the face of abiotic constraints caused by climate change.  相似文献   

12.

Background

Carotenoids are isoprenoid compounds synthesized by all photosynthetic organisms. Despite much research on carotenoid biosynthesis in the model plant Arabidopsis thaliana, there is a lack of information on the carotenoid pathway in Brassica rapa. To better understand its carotenoid biosynthetic pathway, we performed a systematic analysis of carotenoid biosynthetic genes at the genome level in B. rapa.

Results

We identified 67 carotenoid biosynthetic genes in B. rapa, which were orthologs of the 47 carotenoid genes in A. thaliana. A high level of synteny was observed for carotenoid biosynthetic genes between A. thaliana and B. rapa. Out of 47 carotenoid biosynthetic genes in A. thaliana, 46 were successfully mapped to the 10 B. rapa chromosomes, and most of the genes retained more than one copy in B. rapa. The gene expansion was caused by the whole-genome triplication (WGT) event experienced by Brassica species. An expression analysis of the carotenoid biosynthetic genes suggested that their expression levels differed in root, stem, leaf, flower, callus, and silique tissues. Additionally, the paralogs of each carotenoid biosynthetic gene, which were generated from the WGT in B. rapa, showed significantly different expression levels among tissues, suggesting differentiated functions for these multi-copy genes in the carotenoid pathway.

Conclusions

This first systematic study of carotenoid biosynthetic genes in B. rapa provides insights into the carotenoid metabolic mechanisms of Brassica crops. In addition, a better understanding of carotenoid biosynthetic genes in B. rapa will contribute to the development of conventional and transgenic B. rapa cultivars with enriched carotenoid levels in the future.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1655-5) contains supplementary material, which is available to authorized users.  相似文献   

13.

Background

Plant disease resistance (R) genes with the nucleotide binding site (NBS) play an important role in offering resistance to pathogens. The availability of complete genome sequences of Brassica oleracea and Brassica rapa provides an important opportunity for researchers to identify and characterize NBS-encoding R genes in Brassica species and to compare with analogues in Arabidopsis thaliana based on a comparative genomics approach. However, little is known about the evolutionary fate of NBS-encoding genes in the Brassica lineage after split from A. thaliana.

Results

Here we present genome-wide analysis of NBS-encoding genes in B. oleracea, B. rapa and A. thaliana. Through the employment of HMM search and manual curation, we identified 157, 206 and 167 NBS-encoding genes in B. oleracea, B. rapa and A. thaliana genomes, respectively. Phylogenetic analysis among 3 species classified NBS-encoding genes into 6 subgroups. Tandem duplication and whole genome triplication (WGT) analyses revealed that after WGT of the Brassica ancestor, NBS-encoding homologous gene pairs on triplicated regions in Brassica ancestor were deleted or lost quickly, but NBS-encoding genes in Brassica species experienced species-specific gene amplification by tandem duplication after divergence of B. rapa and B. oleracea. Expression profiling of NBS-encoding orthologous gene pairs indicated the differential expression pattern of retained orthologous gene copies in B. oleracea and B. rapa. Furthermore, evolutionary analysis of CNL type NBS-encoding orthologous gene pairs among 3 species suggested that orthologous genes in B. rapa species have undergone stronger negative selection than those in B .oleracea species. But for TNL type, there are no significant differences in the orthologous gene pairs between the two species.

Conclusion

This study is first identification and characterization of NBS-encoding genes in B. rapa and B. oleracea based on whole genome sequences. Through tandem duplication and whole genome triplication analysis in B. oleracea, B. rapa and A. thaliana genomes, our study provides insight into the evolutionary history of NBS-encoding genes after divergence of A. thaliana and the Brassica lineage. These results together with expression pattern analysis of NBS-encoding orthologous genes provide useful resource for functional characterization of these genes and genetic improvement of relevant crops.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-3) contains supplementary material, which is available to authorized users.  相似文献   

14.
The present study was carried out with the objective of evaluating genomic STMS markers developed earlier in Brassica napus, B. oleracea, B. rapa and B. nigra for their use in Brassica juncea and B. carinata. Ninety-six of the 100 STMS markers used under standardized annealing temperatures and gel concentrations produced clear reproducible amplification pattern. For majority of the markers 60 °C annealing temperature and 3.5% metaphor agarose gel were found suitable. High cross-transferability of STMS markers to related Brassica species including B. carinata (91.6%) and B. juncea (87.5%) suggested the possibility of utilizing these markers for genome analysis in the species where no such markers are available. The ‘B’ genome derived markers showed lower level of transferability to the ‘A’ and ‘C’ genome Brassica species. The potential of STMS markers to detect polymorphism among Brassica species and genera was 98.9%. The level of inter-specific polymorphism was much higher than the intea-specific polymorphism. The markers capable of revealing polymorphism among Brassica species and genera would be useful in Brassica introgression breeding programme. The polymorphic markers were found efficient in establishing the expected evolutionary relationships among the six different Brassica species and two related genera. Low level of intra-specific polymorphism revealed by these markers suggested use of a large set of such markers for various applications in Brassica genetics, genomics and breeding.  相似文献   

15.
16.
Li ZY  Ge XH 《Plant cell reports》2007,26(6):701-710
Researchers recognized early that chromosome behavior, as other morphological characters, is under genetic control and gave some cytogenetical examples such as the homoeologous chromosome pairing in wheat. In the intergeneric sexual hybrids between cultivated Brassica species and another crucifer Orychophragmus violaceus, the phenomenon of parental genome separation was found under genetic control during mitosis and meiosis. The cytogenetics of these hybrids was species-specific for Brassica parents. The different chromosome behavior of hybrids with three Brassica diploids (B. rapa, B. nigra and B. oleracea) might contribute to the different cytology of hybrids with three tetraploids (B. napus, B. juncea and B. carinata). The finding that genome-specific retention or loss of chromosomes in hybrids of O. violaceus with B. carinata and synthetic Brassica hexaploids (2n=54, AABBCC) is likely related to nucleolar dominance gives new insight into the molecular mechanisms regarding the cytology in these hybrids. It is proposed that the preferential expressions of genes for centromeric proteins from one parent (such as the well presented centromeric histone H3) are related with chromosome stability in wide hybrids and nucleolar dominance is beneficial to the production of centromere-specific proteins of the rRNAs-donor parent and to the stability of its chromosomes.  相似文献   

17.
18.
The tri-genomic hybrid (ABC, 2n=27) between Brassica carinata (BBCC, 2n=34) and B. rapa (AA, 2n=20) is a unique material for studying genome relationships among Brassica species and a valuable bridge for transferring desirable characteristics from one species to the other within the genus Brassica. The crossability between B. carinata and B. rapa was varied with the cultivar of B. rapa. Hybrid pollen mother cells (PMCs), confirmed by morphological observation and molecular marker assay, could be grouped into 20 classes on the basis of chromosome pairing configurations. More than 30% of the PMCs had nine or more bivalents. Genomic in situ hybridization confirmed that two of the bivalents most likely belonged to the B genome. Nearly one-half of the PMCs had trivalents (0–2) and quadrivalents (0–2), which revealed partial homology among the A, B, and C genomes and suggested that there is a good possibility to transfer genes by means of recombination among the three genomes. The advantages of using the tri-genomic hybrids as bridge material for breeding new types of B. napus are discussed.  相似文献   

19.
20.
Homoeologous regions of Brassica genomes were analyzed at the sequence level. These represent segments of the Brassica A genome as found in Brassica rapa and Brassica napus and the corresponding segments of the Brassica C genome as found in Brassica oleracea and B. napus. Analysis of synonymous base substitution rates within modeled genes revealed a relatively broad range of times (0.12 to 1.37 million years ago) since the divergence of orthologous genome segments as represented in B. napus and the diploid species. Similar, and consistent, ranges were also identified for single nucleotide polymorphism and insertion-deletion variation. Genes conserved across the Brassica genomes and the homoeologous segments of the genome of Arabidopsis thaliana showed almost perfect collinearity. Numerous examples of apparent transduplication of gene fragments, as previously reported in B. oleracea, were observed in B. rapa and B. napus, indicating that this phenomenon is widespread in Brassica species. In the majority of the regions studied, the C genome segments were expanded in size relative to their A genome counterparts. The considerable variation that we observed, even between the different versions of the same Brassica genome, for gene fragments and annotated putative genes suggest that the concept of the pan-genome might be particularly appropriate when considering Brassica genomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号