首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Escherichia coli thioesterase I/protease I/lysophospholipase L(1) (TAP) possesses multifunctional enzyme with thioesterase, esterase, arylesterase, protease, and lysophospholipase activities. Leu109, located at the substrate-binding tunnel, when substituted with proline (Pro) in TAP, shifted the substrate-preference from medium-to-long acyl chains to shorter acyl chains of triglyceride and p-nitrophenyl ester, and increased the preference for aromatic-amino acid-derived esters. In the three-dimensional TAP structures, the only noticeable alteration of backbone and side chain conformation was located at the downstream Pro110-Ala123 region rather than at Pro109 itself. The residue Pro110, adjacent to Leu109 or Pro109, was found to contribute to the substrate preference of TAP enzymes for esters containing acyl groups with pi bond(s) or aromatic group(s). Some of the interactions between the enzyme protein and the substrate may be contributed by an attractive force between the Pro110 C-H donor and the substrate pi-acceptor.  相似文献   

2.
Escherichia coli thioesterase I (TAP) is a multifunctional enzyme possessing activities of thioesterase, esterase, arylesterase, protease, and lysophospholipase. In particular, TAP has stereoselectivity for amino acid derivative substrates, hence it is useful for the kinetic resolution of racemic mixtures of industrial chemicals. In the present work, the crystal structure of native TAP was determined at 1.9A, revealing a minimal SGNH-hydrolase fold. The structure of TAP in complex with a diethyl phosphono moiety (DEP) identified its catalytic triad, Ser10-Asp154-His157, and oxyanion hole, Ser10-Gly44-Asn73. The oxyanion hole of TAP consists of three residues each separated from the other by more than 3.5A, implying that all of them are highly polarized when substrate bound. The catalytic (His)C(epsilon1)-H...O=C hydrogen bond usually plays a role in the catalytic mechanisms of most serine hydrolases, however, there were none present in SGNH-hydrolases. We propose that the existence of the highly polarized tri-residue-constituted oxyanion hole compensates for the lack of a (His)C(epsilon1)-H...O=C hydrogen bond. This suggests that members of the SGNH-hydrolase family may employ a unique catalytic mechanism. In addition, most SGNH-hydrolases have low sequence identities and presently there is no clear criterion to define consensus sequence blocks. Through comparison of TAP and the three SGNH-hydrolase structures currently known, we have identified a unique hydrogen bond network which stabilizes the catalytic center: a newly discovered structural feature of SGNH-hydrolases. We have defined these consensus sequence blocks providing a basis for the sub-classification of SGNH-hydrolases.  相似文献   

3.
Lo YC  Lin SC  Shaw JF  Liaw YC 《Biochemistry》2005,44(6):1971-1979
Escherichia coli thioesterase I/protease I/lysophospholipase L(1) (TAP) is a multifunctional lysophospholipase and acyl-CoA thioesterase with a SGNH-hydrolase fold. The relationship between TAP's structure and its versatile substrate specificity, however, is unclear. Here, we present the crystal structure of TAP in complex with octanoic acid (TAP-OCA; OCA, a free fatty acid with eight carbon atoms, C(8)). A structural comparison of native TAP with TAP-OCA reveals a remarkable conformational change in loop(75)(-)(80), called "switch loop movement", upon OCA binding to the substrate-binding crevice of TAP. OCA binding to the substrate-binding crevice results in a continuous hydrophobic surface, which triggers switch loop movement. The switch loop movement is acyl chain length dependent, with an effect of stabilizing the Michaelis complex (MC) of TAP during catalysis, and is essential for TAP's substrate preference. The finding of a sulfate ion binding site in the TAP structures, together with previous enzyme kinetic analyses, leads us to postulate that a putative CoA binding site is essential for efficient catalysis of thioesters in TAP. We also present the crystal structure of L109P-OCA (TAP's L109P mutant in complex with OCA), in which Leu109 mutated to Pro109 abolishes switch loop movement. This result strengthens our hypothesis that the switch loop movement is induced by hydrophobic interactions.  相似文献   

4.
Medium-chain fatty acids (C6–C10) have attracted much attention recently for their unique properties compared to their long-chain counterparts, including low melting points and relatively higher carbon conversion yield. Thioesterase enzymes, which can catalyze the hydrolysis of acyl-ACP (acyl carrier protein) to release free fatty acids (FAs), regulate both overall FA yields and acyl chain length distributions in bacterial and yeast fermentation cultures. These enzymes typically prefer longer chain substrates. Herein, seeking to increase bacterial production of MCFAs, we conducted structure-guided mutational screening of multiple residues in the substrate-binding pocket of the E. coli thioesterase enzyme ‘TesA. Confirming our hypothesis that enhancing substrate selectivity for medium-chain acyl substrates would promote overall MCFA production, we found that replacement of residues lining the bottom of the pocket with more hydrophobic residues strongly promoted the C8 substrate selectivity of ‘TesA. Specifically, two rounds of saturation mutagenesis led to the identification of the ‘TesARD−2 variant that exhibited a 133-fold increase in selectivity for the C8-ACP substrate as compared to C16-ACP substrate. Moreover, the recombinant expression of this variant in an E. coli strain with a blocked β-oxidation pathway led to a 1030% increase in the in vivo octanoic acid (C8) production titer. When this strain was fermented in a 5-L fed-batch bioreactor, it produced 2.7 g/L of free C8 (45%, molar fraction) and 7.9 g/L of total free FAs, which is the highest-to-date free C8 titer to date reported using the E. coli type II fatty acid synthetic pathway. Thus, reshaping the substrate binding pocket of a bacterial thioesterase enzyme by manipulating the hydrophobicity of multiple residues altered the substrate selectivity and therefore fatty acid product distributions in cells. Our study demonstrates the relevance of this strategy for increasing titers of industrially attractive MCFAs as fermentation products.  相似文献   

5.
Acylprotein thioesterase 1 (APT1), also known as lysophospholipase 1, is an important enzyme responsible for depalmitoylation of palmitoyl proteins. To clarify the substrate selectivity and the intracellular function of APT1, we performed kinetic analyses and competition assays using a recombinant human APT1 (hAPT1) and investigated the subcellular localization. For this purpose, an assay for thioesterase activity against a synthetic palmitoyl peptide using liquid chromatography/mass spectrometry was established. The thioesterase activity of hAPT1 was most active at neutral pH, and did not require Ca2+ for its maximum activity. The KM values for thioesterase and lysophospholipase (against lysophosphatidylcholine) activities were 3.49 and 27.3 μM, and the Vmax values were 27.3 and 1.62 μmol/min/mg, respectively. Thus, hAPT1 revealed much higher thioesterase activity than lysophospholipase activity. One activity was competitively inhibited by another substrate in the presence of both substrates. Immunocytochemical and Western blot analyses revealed that endogenous and overexpressed hAPT1 were mainly localized in the cytosol, while some signals were detected in the plasma membrane, the nuclear membrane and ER in HEK293 cells. These results suggest that eliminating palmitoylated proteins and lysophospholipids from cytosol is one of the functions of hAPT1.  相似文献   

6.
With the high number of patients infected by tuberculosis and the sharp increase of drug-resistant tuberculosis cases, developing new drugs to fight this disease has become increasingly urgent. In this context, analogs of the naturally occurring enolphosphates Cyclipostins and Cyclophostin (CyC analogs) offer new therapeutic opportunities. The CyC analogs display potent activity both in vitro and in infected macrophages against several pathogenic mycobacteria including Mycobacterium tuberculosis and Mycobacterium abscessus. Interestingly, these CyC inhibitors target several enzymes with active-site serine or cysteine residues that play key roles in mycobacterial lipid and cell wall metabolism. Among them, TesA, a putative thioesterase involved in the synthesis of phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs), has been identified. These two lipids (PDIM and PGL) are non-covalently bound to the outer cell wall in several human pathogenic mycobacteria and are important virulence factors. Herein, we used biochemical and structural approaches to validate TesA as an effective pharmacological target of the CyC analogs. We confirmed both thioesterase and esterase activities of TesA, and showed that the most active inhibitor CyC17 binds covalently to the catalytic Ser104 residue leading to a total loss of enzyme activity. These data were supported by the X-ray structure, obtained at a 2.6-Å resolution, of a complex in which CyC17 is bound to TesA. Our study provides evidence that CyC17 inhibits the activity of TesA, thus paving the way to a new strategy for impairing the PDIM and PGL biosynthesis, potentially decreasing the virulence of associated mycobacterial species.  相似文献   

7.
Escherichia coli is used as a model organism for elucidation of menaquinone biosynthesis, for which a hydrolytic step from 1,4-dihydroxy-2-naphthoyl-coenzyme A (DHNA-CoA) to 1,4-dihydroxy-2-naphthoate is still unaccounted for. Recently, a hotdog fold thioesterase has been shown to catalyze this conversion in phylloquinone biosynthesis, suggesting that its closest homolog, YbgC in Escherichia coli, may be the DHNA-CoA thioesterase in menaquinone biosynthesis. However, this possibility is excluded by the involvement of YbgC in the Tol-Pal system and its complete lack of hydrolytic activity toward DHNA-CoA. To identify the hydrolytic enzyme, we have performed an activity-based screen of all nine Escherichia coli hotdog fold thioesterases and found that YdiI possesses a high level of hydrolytic activity toward DHNA-CoA, with high substrate specificity, and that another thioesterase, EntH, from siderophore biosynthesis exhibits a moderate, much lower DHNA-CoA thioesterase activity. Deletion of the ydiI gene from the bacterial genome results in a significant decrease in menaquinone production, which is little affected in ΔybgC and ΔentH mutants. These results support the notion that YdiI is the DHNA-CoA thioesterase involved in the biosynthesis of menaquinone in the model bacterium.  相似文献   

8.
Park YJ  Yoon SJ  Lee HB 《Journal of bacteriology》2008,190(24):8086-8095
A novel thermostable arylesterase, a 35-kDa monomeric enzyme, was purified from the thermoacidophilic archaeon Sulfolobus solfataricus P1. The optimum temperature and pH were 94°C and 7.0, respectively. The enzyme displayed remarkable thermostability: it retained 52% of its activity after 50 h of incubation at 90°C. In addition, the purified enzyme showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme has broad substrate specificity besides showing an arylesterase activity toward aromatic esters: it exhibits not only carboxylesterase activity toward tributyrin and p-nitrophenyl esters containing unsubstituted fatty acids from butyrate (C4) to palmitate (C16), but also paraoxonase activity toward organophosphates such as p-nitrophenylphosphate, paraoxon, and methylparaoxon. The kcat/Km ratios of the enzyme for phenyl acetate and paraoxon, the two most preferable substrates among all tested, were 30.6 and 119.4 s−1·μM−1, respectively. The arylesterase gene consists of 918 bp corresponding to 306 amino acid residues. The deduced amino acid sequence shares 34% identity with that of arylesterase from Acinetobacter sp. strain ADP1. Furthermore, we successfully expressed active recombinant S. solfataricus arylesterase in Escherichia coli. Together, our results show that the enzyme is a serine esterase belonging to the A-esterases and contains a catalytic triad composed of Ser156, Asp251, and His281 in the active site.  相似文献   

9.
Short-chain fatty acid (SCFA) biosynthesis is pertinent to production of biofuels, industrial compounds, and pharmaceuticals from renewable resources. To expand on Escherichia coli SCFA products, we previously implemented a coenzyme A (CoA)-dependent pathway that condenses acetyl-CoA to a diverse group of short-chain fatty acyl-CoAs. To increase product titers and reduce premature pathway termination products, we conducted in vivo and in vitro analyses to understand and improve the specificity of the acyl-CoA thioesterase enzyme, which releases fatty acids from CoA. A total of 62 putative bacterial thioesterases, including 23 from the cow rumen microbiome, were inserted into a pathway that condenses acetyl-CoA to an acyl-CoA molecule derived from exogenously provided propionic or isobutyric acid. Functional screening revealed thioesterases that increase production of saturated (valerate), unsaturated (trans-2-pentenoate), and branched (4-methylvalerate) SCFAs compared to overexpression of E. coli thioesterase tesB or native expression of endogenous thioesterases. To determine if altered thioesterase acyl-CoA substrate specificity caused the increase in product titers, six of the most promising enzymes were analyzed in vitro. Biochemical assays revealed that the most productive thioesterases rely on promiscuous activity but have greater specificity for product-associated acyl-CoAs than for precursor acyl-CoAs. In this study, we introduce novel thioesterases with improved specificity for saturated, branched, and unsaturated short-chain acyl-CoAs, thereby expanding the diversity of potential fatty acid products while increasing titers of current products. The growing uncertainty associated with protein database annotations denotes this study as a model for isolating functional biochemical pathway enzymes in situations where experimental evidence of enzyme function is absent.  相似文献   

10.
11.
Pseudomonas aeruginosa PD100 capable of producing an extracellular protease was isolated from the soil collected from local area (garbage site) from Shivage market in Pune, India. The purified protease showed a single band on native and SDS-PAGE with a molecular weight of 36 kDa on SDS-PAGE. The optimum pH value and temperature range were found to be 8 and 55–60 °C, respectively. The enzyme exhibited broad range of substrate specificity with higher activity for collagen. The enzyme was inhibited with low concentration of Ag2+, Ni2+, and Cu2+. β-Mercaptoethanol was able to inactivate the enzyme at 2.5 mM, suggesting that disulfide bond(s) play a critical role in the enzyme activity. Studies with inhibitors showed that different classes of protease inhibitors, known to inhibit specific proteases, could not inhibit the activity of this protease. Amino acid modification studies data and pKa values showed that Cys, His and Trp were involved in the protease activity. P. aeruginosa PD100 produces one form of protease with some different properties as compared to other reported proteases from P. aeruginosa strains. With respect to properties of the purified protease such as pH optimum, temperature stability with capability to degrade different proteins, high stability in the presences of detergents and chemicals, and metal ions independency, suggesting that it has great potential for different applications.  相似文献   

12.
The function of Semliki Forest Virus nsP2 protease was investigated by site-directed mutagenesis. Mutations were introduced in its protease domain, Pro39, and the mutated proteins were expressed in Escherichia coli, purified and their activity in vitro was compared to that of the wild type Pro39. Mutations M781T, A662T and G577R, found in temperature-sensitive virus strains, rendered the enzyme temperature-sensitive in vitro as well. Five conserved residues were required for the proteolytic activity of Pro39. Changes affecting Cys478, His548, and Trp549 resulted in complete inactivation of the enzyme, whereas the replacements N600D and N605D significantly impaired its activity. The importance of Trp549 for the proteolytic cleavage specificity is discussed and a new structural motif involved in substrate recognition by cysteine proteases is proposed.  相似文献   

13.
The ability to examine real-time reaction kinetics for multimeric enzymes in their native state may offer unique insights into understanding the catalytic mechanism and its interplay with three-dimensional structure. In this study, we have used a time-resolved electrospray mass spectrometry approach to probe the kinetic mechanism of 4-hydroxybenzoyl-coenzyme A (4-HBA-CoA) thioesterase from Arthrobacter sp. strain SU in the millisecond time domain. Intact tetrameric complexes of 4-HBA-CoA thioesterase with up to four natural substrate (4-HBA-CoA) molecules bound were detected at times as early as 6 ms using an online rapid-mixing device directly coupled to an electrospray ionization time-of-flight mass spectrometer. Species corresponding to the formation of a folded tetramer of the thioesterase at charge states 16+, 17+, 18+, and 19+ around m/z 3800 were observed and assigned as individual tetramers of thioesterase and noncovalent complexes of the tetramers with up to four substrate and/or product molecules. Real-time evaluation of the reaction kinetics was accomplished by monitoring change in peak intensity corresponding to the substrate and product complexes of the tetrameric protein. The mass spectral data suggest that product 4-HBA is released from the active site of the enzyme prior to the release of product CoA following catalytic turnover. This study demonstrates the utility of this technique to provide additional molecular details for an understanding of the individual enzyme states during the thioesterase catalysis and ability to observe real-time interactions between enzyme and substrates and/or products in the millisecond time range.  相似文献   

14.
PaaI thioesterases are members of the TE13 thioesterase family that catalyze the hydrolysis of thioester bonds between coenzyme A and phenylacetyl-CoA. In this study we characterize the PaaI thioesterase from Streptococcus pneumoniae (SpPaaI), including structural analysis based on crystal diffraction data to 1.8-Å resolution, to reveal two double hotdog domains arranged in a back to back configuration. Consistent with the crystallography data, both size exclusion chromatography and small angle x-ray scattering data support a tetrameric arrangement of thioesterase domains in solution. Assessment of SpPaaI activity against a range of acyl-CoA substrates showed activity for both phenylacetyl-CoA and medium-chain fatty-acyl CoA substrates. Mutagenesis of putative active site residues reveals Asn37, Asp52, and Thr68 are important for catalysis, and size exclusion chromatography analysis and x-ray crystallography confirm that these mutants retain the same tertiary and quaternary structures, establishing that the reduced activity is not a result of structural perturbations. Interestingly, the structure of SpPaaI in the presence of CoA provides a structural basis for the observed substrate specificity, accommodating a 10-carbon fatty acid chain, and a large conformational change of up to 38 Å in the N terminus, and a loop region involving Tyr38-Tyr39. This is the first time PaaI thioesterases have displayed a dual specificity for medium-chain acyl-CoAs substrates and phenylacetyl-CoA substrates, and we provide a structural basis for this specificity, highlighting a novel induced fit mechanism that is likely to be conserved within members of this enzyme family.  相似文献   

15.
Biocalorimetry has proved to be an efficient tool for studying the energetics involved in several biochemical reactions. In this study, biocalorimetry was employed to simultaneously analyze biokinetics and bioenergetics involved during cultivation of a salt tolerant Pseudomonas aeruginosa for the production of alkaline protease. Batch experiments were performed in a bench scale biocalorimeter for alkaline protease production by P. aeruginosa using optimized process conditions. Tessier’s double substrate growth model was found to provide a good fit for the growth of P. aeruginosa in the biocalorimeter, and the biokinetic parameters were estimated. The heat flow profile resulting from metabolic activity of P. aeruginosa was shown to accurately depict both the kinetics of cell growth and protease production. Biokinetic and bioenergetic analysis on the growth of P. aeruginosa revealed that peptone is preferentially used as the substrate for its intracellular activities and glycerol acts as an energy source for its growth metabolism.  相似文献   

16.
Bacteria produce a range of proteolytic enzymes. In an attempt to detect and identify bacteria on the basis of their protease activity, a panel of protease substrates was investigated. Peptides conjugated to the fluorophore 7-amino-4-methylcoumarin (AMC) are well-established substrates for measuring protease activity. Although peptide-AMC substrates are generally not specific for a single protease, a unique pattern can be achieved for both highly specific enzymes and those with a broader substrate range by comparing different peptide substrates. The panel of 7 peptide-AMC substrates chosen exhibited a unique pattern for nine microbial proteases. The selected peptides were used to determine protease activity in cultured strains of Pseudomonas aeruginosa and Staphylococcus aureus. A signal pattern obtained with peptides with arginine, lysine, and tyrosine in the P1 position characterized the bacterial protease activities in these samples. The kinetic parameters for the three best substrates for the P. aeruginosa sample were calculated. Further information about substrate specificity was gained by the selective use of protease inhibitors. The results presented show that peptide-AMC substrates provide a simple and sensitive tool to characterize protease activity in microbiological samples and that they have the potential to identify and distinguish different bacterial species.  相似文献   

17.
We deduced the amino acid sequence of Escherichia coli lysophospholipase L(1) by determining the nucleotide sequence of the pldC gene encoding this enzyme. The translated protein was found to contain 208 amino acid residues with a hydrophobic leader sequence of 26 amino acid residues. The molecular weight of the purified enzyme (20,500) was in good agreement with the predicted size (20,399) of the processed protein. A search involving a data bank showed that the nucleotide sequence of the pldC gene was identical to those of the apeA and tesA genes encoding protease I and thioesterase I, respectively. Consistent with the identity of the pldC gene with these two genes, the enzyme purified from E. coli overexpressing the pldC gene showed both protease I and thioesterase I activities.  相似文献   

18.
It was shown recently that recombinant Escherichia coli, defective in the β-oxidation cycle and harboring a medium-chain-length (MCL) poly(3-hydroxyalkanoate) (PHA) polymerase-encoding gene of Pseudomonas, is able to produce MCL PHA from fatty acids but not from sugars or gluconate (S. Langenbach, B. H. A. Rehm, and A. Steinbüchel, FEMS Microbiol. Lett. 150:303–309, 1997; Q. Ren, Ph.D. thesis, ETH Zürich, Zürich, Switzerland, 1997). In this study, we report the formation of MCL PHA from gluconate by recombinant E. coli. By introduction of genes coding for an MCL PHA polymerase and the cytosolic thioesterase I (′thioesterase I) into E. coli JMU193, we were able to engineer a pathway for the synthesis of MCL PHA from gluconate. We used two expression systems, i.e., the bad promoter and alk promoter, for the ′thioesterase I- and PHA polymerase-encoding genes, respectively, which enabled us to modulate their expression independently over a range of inducer concentrations, which resulted in a maximum MCL PHA accumulation of 2.3% of cell dry weight from gluconate. We found that the amount of PHA and the ′thioesterase I activity are directly correlated. Moreover, the polymer accumulated in the recombinant E. coli consisted mainly of 3-hydroxyoctanoate monomers. On the basis of our data, we propose an MCL PHA biosynthesis pathway scheme for recombinant E. coli JMU193, harboring PHA polymerase and ′thioesterase I, when grown on gluconate, which involves both de novo fatty acid synthesis and β-oxidation.  相似文献   

19.
The diaminopimelic acid pathway of lysine biosynthesis has been suggested to provide attractive targets for the development of novel antibacterial drugs. Here we report the characterization of two enzymes from this pathway in the human pathogen Pseudomonas aeruginosa, utilizing structural biology, biochemistry and genetics. We show that tetrahydrodipicolinate N-succinyltransferase (DapD) from P. aeruginosa is specific for the L-stereoisomer of the amino substrate L-2-aminopimelate, and its D-enantiomer acts as a weak inhibitor. The crystal structures of this enzyme with L-2-aminopimelate and D-2-aminopimelate, respectively, reveal that both compounds bind at the same site of the enzyme. Comparison of the binding interactions of these ligands in the enzyme active site suggests misalignment of the amino group of D-2-aminopimelate for nucleophilic attack on the succinate moiety of the co-substrate succinyl-CoA as the structural basis of specificity and inhibition. P. aeruginosa mutants where the dapA gene had been deleted were viable and able to grow in a mouse lung infection model, suggesting that DapA is not an optimal target for drug development against this organism. Structure-based sequence alignments, based on the DapA crystal structure determined to 1.6 Å resolution revealed the presence of two homologues, PA0223 and PA4188, in P. aeruginosa that could substitute for DapA in the P. aeruginosa PAO1ΔdapA mutant. In vitro experiments using recombinant PA0223 protein could however not detect any DapA activity.  相似文献   

20.
A transacylase that converts 1-palmitoyl lysophosphatidylcholine to dipalmitoyl phosphatidylcholine was demonstrated in the rat gastric mucosa. This enzyme required neither ATP or CoA nor bile salt and detergent for its activity. The enzyme preparation also exhibited powerful lysophospholipase activity. The transacylase and lysophospholipase were both located in the cytosol fraction, and their activities remained associated at a constant ratio throughout the purification steps, including the isoelectrofocusing procedure. They responded similarly with respect to the addition of metal ions, bile salt, detergent, and heat treatment. Both enzyme activities also exhibited similar apparent Km values for lysophosphatidylcholine. These observations suggest that both the lysophospholipase and transacylase activities may reside in the same enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号