首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.
2.

Background

p16INK4a and p21WAF1 are two independent cyclin-dependent kinase inhibitors encoded by the CDKN2A and CDKN1A genes, respectively. p16INK4a and p21WAF1 are similarly involved in various anti-cancer processes, including the regulation of the critical G1 to S phase transition of the cell cycle, senescence and apoptosis. Therefore, we sought to elucidate the molecular mechanisms underlying the link between these two important tumor suppressor proteins.

Methodology/Principal Findings

We have shown here that the p16INK4a protein positively controls the expression of p21WAF1 in both human and mouse cells. p16INK4a stabilizes the CDKN1A mRNA through negative regulation of the mRNA decay-promoting AUF1 protein. Immunoprecipitation of AUF1-associated RNAs followed by quantitative RT-PCR indicated that endogenous AUF1 binds to the CDKN1A mRNA in a p16INK4A-dependent manner. Furthermore, while AUF1 down-regulation increased the expression level of the CDKN1A mRNA, the concurrent knockdown of AUF1 and CDKN2A, using specific silencing RNAs, restored the normal expression of the gene. Moreover, we used EGFP reporter fused to the CDKN2A AU-rich element (ARE) to demonstrate that p16INK4A regulation of the CDKN1A mRNA is AUF1- and ARE-dependent. Furthermore, ectopic expression of p16INK4A in p16INK4A-deficient breast epithelial MCF-10A cells significantly increased the level of p21WAF1, with no effect on cell proliferation. In addition, we have shown direct correlation between p16INK4a and p21WAF1 levels in various cancer cell lines.

Conclusion/Significance

These findings show that p16INK4a stabilizes the CDKN1A mRNA in an AUF1-dependent manner, and further confirm the presence of a direct link between the 2 important cancer-related pathways, pRB/p16INK4A and p14ARF/p53/p21WAF1.  相似文献   

3.
4.
Liu M  Yang L  Zhang L  Liu B  Merling R  Xia Z  Giam CZ 《Journal of virology》2008,82(17):8442-8455
Infection by the human T-cell leukemia virus type 1 (HTLV-1) is thought to cause dysregulated T-cell proliferation, which in turn leads to adult T-cell leukemia/lymphoma. Early cellular changes after HTLV-1 infection have been difficult to study due to the poorly infectious nature of HTLV-1 and the need for cell-to-cell contact for HTLV-1 transmission. Using a series of reporter systems, we show that HeLa cells cease proliferation within one or two division cycles after infection by HTLV-1 or transduction of the HTLV-1 tax gene. HTLV-1-infected HeLa cells, like their tax-transduced counterparts, expressed high levels of p21CIP1/WAF1 and p27KIP1, developed mitotic abnormalities, and became arrested in G1 in senescence. In contrast, cells of a human osteosarcoma lineage (HOS) continued to divide after HTLV-1 infection or Tax expression, albeit at a reduced growth rate and with mitotic aberrations. Unique to HOS cells is the dramatic reduction of p21CIP1/WAF1 and p27KIP1 expression, which is in part associated with the constitutive activation of the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway. The loss of p21CIP1/WAF1 and p27KIP1 in HOS cells apparently allows HTLV-1- and Tax-induced G1 arrest to be bypassed. Finally, HTLV-1 infection and Tax expression also cause human SupT1 T cells to arrest in the G1 phase of the cell cycle. These results suggest that productive HTLV-1 infection ordinarily leads to Tax-mediated G1 arrest. However, T cells containing somatic mutations that inactivate p21CIP1/WAF1 and p27KIP1 may continue to proliferate after HTLV-1 infection and Tax expression. These infected cells can expand clonally, accumulate additional chromosomal abnormalities, and progress to cancer.  相似文献   

5.

Background

The cyclin-dependent kinase inhibitors p15INK4b and p57KIP2 are important regulators of the cell cycle, and their abnormal expression has been detected in various tumors. However, little is known about the role of p15INK4b and p57KIP2 in the pathogenesis of vulvar carcinoma, and the prognostic impact is still unknown. In our current study, we examined the expression of p15INK4b and p57KIP2 in a large series of vulvar squamous cell carcinomas to elucidate the prognostic impact.

Methods

Expression of p15INK4b and p57KIP2 were examined in 297 vulvar squamous cell carcinomas using immunohistochemistry. Both uni- and multivariate analysis of prognostic factors were performed, and correlations with clinicopathologic parameters were examined.

Results

Compared to the high levels of p15INK4b and p57KIP2 in normal vulvar squamous epithelium, low levels of p15INK4b and p57KIP2 were found in 82% and 44% of vulvar carcinomas, respectively. Low levels of p15INK4b and p57KIP2 correlated significantly with malignant features, including large tumor diameter (p = 0.03 and p = 0.001, respectively) and increased invasiveness (p = 0.003 and p = 0.04, respectively). Although p15INK4b and p57KIP2 levels could not be identified as prognostic markers, combined analysis of p14ARF/p15INK4b/p16INK4a showed that patients whose tumors expressed low levels of two or three of these INK4 proteins had a worse prognosis than those with only low levels of one or no protein (univariate analysis p = 0.02). The independent prognostic significance of these INK4 proteins was confirmed by multivariate analysis (p = 0.008).

Conclusions

We show for the first time that p15INK4b and p57KIP2 may be involved in the progression of vulvar carcinomas and the combined p14ARF/p15INK4b/p16INK4a status was a statistically independent prognostic factor.  相似文献   

6.
Opioid growth factor (OGF) is an endogenous opioid peptide ([Met5]enkephalin) that interacts with the OGF receptor (OGFr) and serves as a tonically active negative growth factor in cell proliferation of normal cells. To clarify the mechanism by which OGF inhibits cell replication in normal cells, we investigated the effect of the OGF–OGFr axis on cell cycle activity in human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (NHEKs). OGF markedly depressed cell proliferation of both cell lines by up to 40% of sterile water controls. Peptide treatment induced cyclin-dependent kinase inhibitor (CKI) p16INK4a protein expression and p21WAF1/CIP1 protein expression in HUVECs and NHEKs, but had no effect on p15, p18, p19, or p27 protein expression in either cell type. Inhibition of either p16INK4a or p21WAF1/CIP1 activation by specific siRNAs blocked OGF inhibitory action. Human dermal fibroblasts and mesenchymal stem cells also showed a similar dependence of OGF action on p16INK4a and p21WAF1/CIP1. Collectively, these results indicate that both p16INK4a and p21WAF1/CIP1 are required for the OGF–OGFr axis to inhibit cell proliferation in normal cells.  相似文献   

7.
8.
9.
p16INK4a and p21WAF1, two major cyclin-dependent kinase inhibitors, are the products of two tumor suppressor genes that play important roles in various cellular metabolic pathways. p21WAF1 is up-regulated in response to different DNA damaging agents. While the activation of p21WAF1 is p53-dependent following γ-rays, the effect of ultraviolet (UV) light on p21WAF1 protein level is still unclear. In the present report, we show that the level of the p21WAF1 protein augments in response to low UVC fluences in different mammalian cells. This up-regulation is mediated through the stabilization of p21WAF1 mRNA in a p16INK4a-dependent manner in both human and mouse cells. Furthermore, using p16-siRNA treated human skin fibroblast; we have shown that p16 controls the UV-dependent cytoplasmic accumulation of the mRNA binding HuR protein. In addition, HuR immunoprecipitations showed that UV-dependent binding of HuR to p21 mRNA is p16-related. This suggests that p16 induces p21 by enabling the relocalization of HuR from the nucleus to the cytoplasm. Accordingly, we have also shown that p16 is necessary for efficient UV-dependent p53 up-regulation, which also requires HuR. These results indicate that, in addition to its role in cell proliferation, p16INK4a is also an important regulator of the cellular response to UV damage.  相似文献   

10.
We previously demonstrated that Bmi-1 extended the in vitro life span of normal human oral keratinocytes (NHOK). We now report that the prolonged life span of NHOK by Bmi-1 is, in part, due to inhibition of the TGF-β signaling pathway. Serial subculture of NHOK resulted in replicative senescence and terminal differentiation and activation of TGF-β signaling pathway. This was accompanied with enhanced intracellular and secreted TGF-β1 levels, phosphorylation of Smad2/3, and increased expression of p15INK4B and p57KIP2. An ectopic expression of Bmi-1 in NHOK (HOK/Bmi-1) decreased the level of intracellular and secreted TGF-β1 induced dephosphorylation of Smad2/3, and diminished the level of p15INK4B and p57KIP2. Moreover, Bmi-1 expression led to the inhibition of TGF-β-responsive promoter activity in a dose-specific manner. Knockdown of Bmi-1 in rapidly proliferating HOK/Bmi-1 and cancer cells increased the level of phosphorylated Smad2/3, p15INK4B, and p57KIP2. In addition, an exposure of senescent NHOK to TGF-β receptor I kinase inhibitor or anti-TGF-β antibody resulted in enhanced replicative potential of cells. Taken together, these data suggest that Bmi-1 suppresses senescence of cells by inhibiting the TGF-β signaling pathway in NHOK.  相似文献   

11.
12.
13.
Wei W  Herbig U  Wei S  Dutriaux A  Sedivy JM 《EMBO reports》2003,4(11):1061-1066
Current models envision replicative senescence to be under dual control by the p53 and retinoblastoma (RB) tumour-suppressor pathways. The role of the p16INK4a–RB pathway is controversial, and the function of RB in human cells has not been tested directly. We used targeted homologous recombination to knock out one copy of RB in presenescent human fibroblasts. During entry into senescence, RB+/− cells underwent spontaneous loss of heterozygosity and the resultant RB−/− clones bypassed senescence. The extended lifespan phase was eventually terminated by a crisis-like state. The same phenotype was documented for p21 CIP1/WAF1 and p53 heterozygous cells, indicating that loss of function of all three genes results in failure to establish senescence. By contrast, the abolition of p16 function by the expression of a p16-insensitive cyclin-dependent kinase 4 protein or siRNA-mediated knockdown provided only minimal lifespan extension that was terminated by senescence. We propose that p53, p21 and RB act in a linear genetic pathway to regulate cell entry into replicative senescence.  相似文献   

14.
15.
We demonstrated that administration of indoxyl sulfate, a uremic toxin, promotes aortic calcification in hypertensive rats. This study aimed to clarify if indoxyl sulfate could contribute to cell senescence in the aorta of hypertensive rats. The rat groups consisted of (1) Dahl salt-resistant normotensive rats (DN), (2) Dahl salt-resistant normotensive indoxyl sulfate-administered rats (DN + IS), (3) Dahl salt-sensitive hypertensive rats (DH), and (4) Dahl salt-sensitive hypertensive indoxyl sulfate-administered rats (DH + IS). After 32 weeks, their arcuate aortas were excised for histological and immunohistochemical analysis. Cell senescence was evaluated by immunohistochemistry of senescence-associated β-galactosidase (SA-β-gal), and senescence-related proteins such as p16INK4a, p21WAF1/CIP1, p53 and retinoblastoma protein (Rb). Both DH and DH + IS rats showed significantly higher systolic blood pressure than DN and DN + IS rats, respectively. Serum indoxyl sulfate levels were significantly higher in DN + IS and DH + IS rats than in DN and DH rats, respectively. In aorta, DH rats showed significantly increased aortic calcification and wall thickness, and increased expression of SA-β-gal, p16INK4a, p21WAF1/CIP1, p53 and Rb in the calcification area of arcuate aorta as compared with DN rats. More notably, DH + IS rats showed significantly increased aortic calcification and wall thickness, and significantly increased expression of SA-β-gal, p16INK4a, p21WAF1/CIP1, p53 and Rb in the cells embedded in the calcification area as compared with DH rats. In conclusion, indoxyl sulfate promotes cell senescence with aortic calcification and expression of senescence-related proteins in hypertensive rats.  相似文献   

16.
17.
18.
19.

Information regarding cellular anti-senescence attributes of probiotic bacteria vis-à-vis modulation of senescence-associated secretory phenotype (SASP) and mTOR signaling is very limited. The present study assessed anti-senescence potential of secretory metabolites of probiotic Lactobacillus fermentum (Lact. fermentum) using H2O2-induced model of senescence in 3T3-L1 preadipocytes. Application of H2O2-induced cellular senescence characterized by increased cell size and SA-β-gal activity, activation of SASP and reactive oxygen species (ROS), DNA damage response and induction of cell cycle inhibitors (p53/p21WAF1/p16INK4a). Further, a robust stimulation of the PI3K/Akt/mTOR pathway and AMPK signaling was also observed in H2O2-treated cells. However, exposure of cells to cell-free supernatant of Lact. fermentum significantly attenuated phosphorylation of PI3K/Akt/mTOR pathway and alleviated senescence markers p53, p21WAF1, SA-β-gal, p38MAPK, iNOS, cox-2, ROS, NF-κB, and DNA damage response. These results provide evidence that secretory metabolites of Lact. fermentum can mitigate the development as well as severity of stress-induced senescence thereby indicating its utility for use as anti-aging or age-delaying agent.

  相似文献   

20.
Kuo YL  Giam CZ 《The EMBO journal》2006,25(8):1741-1752
The human T-lymphotropic virus type 1 (HTLV-1) Tax binds the anaphase promoting complex (APC) and activates it ahead of schedule. Here, we show that APC activation by Tax induces rapid senescence (tax-IRS) independently of p53 and pRB. In response to tax, cyclin A, cyclin B1, securin, and Skp2 becomes polyubiquitinated and degraded starting in S phase. This is followed by a surge in p21(CIP1/WAF1) and p27(KIP1) in mid to late S and G2/M leading to a permanent G1 arrest. Tax-positive HTLV-1-transformed T-cell lines express elevated levels of p21(CIP1/WAF1), but low levels of p27(KIP1). Finally, Tax can be stably expressed in p27(KIP1)-null NIH3T3 cells. These results indicate that APC activation by Tax causes inactivation of SCF(Skp2) and stabilization of p21(CIP1/WAF1) and p27(KIP1). The build-up of p21(CIP1/WAF1) and especially p27(KIP1) commits cells to senescence. Evading tax-IRS through a loss of p27(KIP1) function is likely to be critical for cell transformation by Tax and development of adult T-cell leukemia after HTLV-1 infection. Finally, activation of APC ahead of schedule may be exploited to arrest cancer cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号