首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Muscle activation as well as changes in peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) following high-intensity interval exercise (HIIE) were examined in young healthy men (n  = 8; age, 21.9±2.2 yrs; VO2peak, 53.1±6.4 ml/min/kg; peak work rate, 317±23.5 watts). On each of 3 visits HIIE was performed on a cycle ergometer at a target intensity of 73, 100, or 133% of peak work rate. Muscle biopsies were taken at rest and three hours after each exercise condition. Total work was not different between conditions (∼730 kJ) while average power output (73%, 237±21; 100%, 323±26; 133%, 384±35 watts) and EMG derived muscle activation (73%, 1262±605; 100%, 2089±737; 133%, 3029±1206 total integrated EMG per interval) increased in an intensity dependent fashion. PGC-1α mRNA was elevated after all three conditions (p<0.05), with a greater increase observed following the 100% condition (∼9 fold, p<0.05) compared to both the 73 and 133% conditions (∼4 fold). When expressed relative to muscle activation, the increase in PGC-1α mRNA for the 133% condition was less than that for the 73 and 100% conditions (p<0.05). SIRT1 mRNA was also elevated after all three conditions (∼1.4 fold, p<0.05), with no difference between conditions. These findings suggest that intensity-dependent increases in PGC-1α mRNA following submaximal exercise are largely due to increases in muscle recruitment. As well, the blunted response of PGC-1α mRNA expression following supramaximal exercise may indicate that signalling mediated activation of PGC-1α may also be blunted. We also indentify that increases in PDK4, SIRT1, and RIP140 mRNA following acute exercise are dissociated from exercise intensity and muscle activation, while increases in EGR1 are augmented with supramaximal HIIE (p<0.05).  相似文献   

3.

Background

Since activation of the PI3K/(protein kinase B; PKB/akt) pathway has been shown to alter muscle mass and growth, the aim of this study was to determine whether resistance exercise increased insulin like growth factor (IGF) I/phosphoinositide 3-kinase (PI3K) signalling and whether altering PI(3,4,5)P3 metabolism genetically would increase load induced muscle growth.

Methodology/Principal Findings

Acute and chronic resistance exercise in wild type and muscle specific PTEN knockout mice were used to address the role of PI(3,4,5)P3 regulation in the development of skeletal muscle hypertrophy. Acute resistance exercise did not increase either IGF-1 receptor phosphorylation or IRS1/2 associated p85. Since insulin/IGF signalling to PI3K was unchanged, we next sought to determine whether inactivation of PTEN played a role in load-induced muscle growth. Muscle specific knockout of PTEN resulted in small but significant increases in heart (PTEN+/+  = 5.00±0.02 mg/g, PTEN−/−  = 5.50±0.09 mg/g), and TA (PTEN+/+  = 1.74±0.04 mg/g, PTEN−/−  = 1.89 ±0.03) muscle mass, while the GTN, SOL, EDL and PLN remain unchanged. Following ablation, hypertrophy of the PLN, SOL or EDL muscles was similar between PTEN−/− and PTEN+/+ animals. Even though there were some changes in overload-induced PKB and S6K1 phosphorylation, 1 hr following acute resistance exercise there was no difference in the phosphorylation state of S6K1 Thr389 between genotypes.

Conclusions/Significance

These data suggest that physiological loading does not lead to the enhanced activation of the PI3K/PKB/mTORC1 axis and that neither PI3K activation nor PTEN, and by extension PI(3,4,5)P3 levels, play a significant role in adult skeletal muscle growth.  相似文献   

4.
The extent of skeletal muscle hypertrophy in response to resistance training is highly variable in humans. The main objective of this study was to explain the nature of this variability. More specifically, we focused on the myogenic stem cell population, the satellite cell (SC) as a potential mediator of hypertrophy. Twenty-three males (aged 18–35 yrs) participated in 16 wk of progressive, whole body resistance training, resulting in changes of 7.9±1.6% (range of −1.9–24.7%) and 21.0±4.0% (range of −7.0 to 51.7%) in quadriceps volume and myofibre cross-sectional area (CSA), respectively. The SC response to a single bout of resistance exercise (80% 1RM), analyzed via immunofluorescent staining resulted in an expansion of type II fibre associated SC 72 h following exercise (pre: 11.3±0.9; 72 h: 14.8±1.4 SC/type II fibre; p<0.05). Training resulted in an expansion of the SC pool associated with type I (pre: 10.7±1.1; post: 12.1±1.2 SC/type I fibre; p<0.05) and type II fibres (pre: 11.3±0.9; post: 13.0±1.2 SC/type II fibre; p<0.05). Analysis of individual SC responses revealed a correlation between the relative change in type I associated SC 24 to 72 hours following an acute bout of resistance exercise and the percentage increase in quadriceps lean tissue mass assessed by MRI (r2 = 0.566, p = 0.012) and the relative change in type II associated SC following 16 weeks of resistance training and the percentage increase in quadriceps lean tissue mass assessed by MRI (r2 = 0.493, p = 0.027). Our results suggest that the SC response to resistance exercise is related to the extent of muscular hypertrophy induced by training.  相似文献   

5.

Objective

Myostatin and insulin-like growth factor 1 (IGF-1) are serum markers for muscle growth and regeneration. However, their value in the clinical monitoring of Pompe disease – a muscle glycogen storage disease – is not known. In order to evaluate their possible utility for disease monitoring, we assessed the levels of these serum markers in Pompe disease patients receiving enzyme replacement therapy (ERT).

Design

A case-control study that included 10 patients with Pompe disease and 10 gender- and age-matched non-Pompe disease control subjects was performed in a referral medical center. Average follow-up duration after ERT for Pompe disease patients was 11.7 months (range: 6–23 months). Measurements of serum myostatin, IGF-1, and creatine kinase levels were obtained, and examinations of muscle pathology were undertaken before and after ERT in the patient group.

Results

Compared with control subjects, Pompe disease patients prior to undergoing ERT had significantly lower serum IGF-1 levels (98.6 ng/ml vs. 307.9 ng/ml, p = 0.010) and lower myostatin levels that bordered on significance (1.38 ng/ml vs. 3.32 ng/ml, p = 0.075). After ERT, respective myostatin and IGF-1 levels in Pompe disease patients increased significantly by 129% (from 1.38 ng/ml to 3.16 ng/ml, p = 0.047) and 74% (from 98.6 ng/ml to 171.1 ng/ml, p = 0.013); these values fall within age-matched normal ranges. In contrast, myostatin and IGF-1 serum markers did not increase in age-matched controls. Follistatin, a control marker unrelated to muscle, increased in both Pompe disease patients and control subjects. At the same time, the percentage of muscle fibers containing intracytoplasmic vacuoles decreased from 80.0±26.4% to 31.6±45.3%.

Conclusion

The increase in myostatin and IGF-1 levels in Pompe disease patients may reflect muscle regeneration after ERT. The role of these molecules as potential therapeutic biomarkers in Pompe disease and other neuromuscular diseases warrants further study.  相似文献   

6.

Purpose

Transforming growth factor (TGF) -β1 signaling is involved in cancer-cell metastasis. We investigated whether single nucleotide polymorphisms (SNPs) at TGFβ1 were associated with overall survival (OS) and distant metastasis-free survival (DMFS) in patients with non-small cell lung cancer (NSCLC) treated with definitive radiotherapy, with or without chemotherapy.

Methods

We genotyped TGFβ1 SNPs at rs1800469 (C–509T), rs1800471 (G915C), and rs1982073 (T+29C) by polymerase chain reaction-restriction fragment length polymorphism in blood samples from 205 NSCLC patients who had had definitive radiotherapy at one institution in November 1998–January 2005. We also tested whether the TGF-β1 rs1982073 (T+29C) SNP affected the migration and invasion of A549 and PC9 lung cancer cells.

Results

Median follow-up time for all patients was 17 months (range, 1–97 months; 39 months for patients alive at the time of analysis). Multivariate analysis showed that the TGFβ1 rs1800469 CT/CC genotype was associated with poor OS (hazard ratio [HR] = 1.463 [95% confidence interval {CI} = 1.012–2.114], P = 0.043) and shorter DMFS (HR = 1.601 [95% CI = 1.042–2.459], P = 0.032) and that the TGFβ1 rs1982073 CT/CC genotype predicted poor DMFS (HR = 1.589 [95% CI = 1.009–2.502], P = 0.046) and poor brain MFS (HR = 2.567 [95% CI = 1.155–5.702], P = 0.021) after adjustment for age, sex, race, performance status, smoking status, tumor histology and volume, stage, receipt of concurrent radiochemotherapy, number of chemotherapy cycles, and radiation dose. Transfection with TGFβ1+29C (vs. +29T) stimulated the migration and invasion of A549 and PC9 cells, suggesting that TGFβ1+29C may be linked with increased metastatic potential.

Conclusions

TGFβ1 genotypes at rs1800469 and rs1982073 could be useful for predicting DMFS among patients with NSCLC treated with definitive radiation therapy. These findings require validation in larger prospective trials and thorough mechanistic studies.  相似文献   

7.

Background

We aimed to determine the effect of resistance exercise intensity (% 1 repetition maximum—1RM) and volume on muscle protein synthesis, anabolic signaling, and myogenic gene expression.

Methodology/Principal Findings

Fifteen men (21±1 years; BMI = 24.1±0.8 kg/m2) performed 4 sets of unilateral leg extension exercise at different exercise loads and/or volumes: 90% of repetition maximum (1RM) until volitional failure (90FAIL), 30% 1RM work-matched to 90%FAIL (30WM), or 30% 1RM performed until volitional failure (30FAIL). Infusion of [ring-13C6] phenylalanine with biopsies was used to measure rates of mixed (MIX), myofibrillar (MYO), and sarcoplasmic (SARC) protein synthesis at rest, and 4 h and 24 h after exercise. Exercise at 30WM induced a significant increase above rest in MIX (121%) and MYO (87%) protein synthesis at 4 h post-exercise and but at 24 h in the MIX only. The increase in the rate of protein synthesis in MIX and MYO at 4 h post-exercise with 90FAIL and 30FAIL was greater than 30WM, with no difference between these conditions; however, MYO remained elevated (199%) above rest at 24 h only in 30FAIL. There was a significant increase in AktSer473 at 24h in all conditions (P = 0.023) and mTORSer2448 phosphorylation at 4 h post-exercise (P = 0.025). Phosporylation of Erk1/2Tyr202/204, p70S6KThr389, and 4E-BP1Thr37/46 increased significantly (P<0.05) only in the 30FAIL condition at 4 h post-exercise, whereas, 4E-BP1Thr37/46 phosphorylation was greater 24 h after exercise than at rest in both 90FAIL (237%) and 30FAIL (312%) conditions. Pax7 mRNA expression increased at 24 h post-exercise (P = 0.02) regardless of condition. The mRNA expression of MyoD and myogenin were consistently elevated in the 30FAIL condition.

Conclusions/Significance

These results suggest that low-load high volume resistance exercise is more effective in inducing acute muscle anabolism than high-load low volume or work matched resistance exercise modes.  相似文献   

8.
We investigated whether a training protocol that involved 3 min of intense intermittent exercise per week — within a total training time commitment of 30 min including warm up and cool down — could increase skeletal muscle oxidative capacity and markers of health status. Overweight/obese but otherwise healthy men and women (n = 7 each; age  = 29±9 y; BMI  = 29.8±2.7 kg/m2) performed 18 training sessions over 6 wk on a cycle ergometer. Each session began with a 2 min warm-up at 50 W, followed by 3×20 s “all-out” sprints against 5.0% body mass (mean power output: ∼450–500 W) interspersed with 2 min of recovery at 50 W, followed by a 3 min cool-down at 50 W. Peak oxygen uptake increased by 12% after training (32.6±4.5 vs. 29.1±4.2 ml/kg/min) and resting mean arterial pressure decreased by 7% (78±10 vs. 83±10 mmHg), with no difference between groups (both p<0.01, main effects for time). Skeletal muscle biopsy samples obtained before and 72 h after training revealed increased maximal activity of citrate synthase and protein content of cytochrome oxidase 4 (p<0.01, main effect), while the maximal activity of β-hydroxy acyl CoA dehydrogenase increased in men only (p<0.05). Continuous glucose monitoring measured under standard dietary conditions before and 48–72 h following training revealed lower 24 h average blood glucose concentration in men following training (5.4±0.6 vs. 5.9±0.5 mmol/L, p<0.05), but not women (5.5±0.4 vs. 5.5±0.6 mmol/L). This was associated with a greater increase in GLUT4 protein content in men compared to women (138% vs. 23%, p<0.05). Short-term interval training using a 10 min protocol that involved only 1 min of hard exercise, 3x/wk, stimulated physiological changes linked to improved health in overweight adults. Despite the small sample size, potential sex-specific adaptations were apparent that warrant further investigation.  相似文献   

9.
Latent TGFβ binding proteins (LTBPs) regulate the extracellular availability of latent TGFβ. LTBP4 was identified as a genetic modifier of muscular dystrophy in mice and humans. An in-frame insertion polymorphism in the murine Ltbp4 gene associates with partial protection against muscular dystrophy. In humans, nonsynonymous single nucleotide polymorphisms in LTBP4 associate with prolonged ambulation in Duchenne muscular dystrophy. To better understand LTBP4 and its role in modifying muscular dystrophy, we created transgenic mice overexpressing the protective murine allele of LTBP4 specifically in mature myofibers using the human skeletal actin promoter. Overexpression of LTBP4 protein was associated with increased muscle mass and proportionally increased strength compared to age-matched controls. In order to assess the effects of LTBP4 in muscular dystrophy, LTBP4 overexpressing mice were bred to mdx mice, a model of Duchenne muscular dystrophy. In this model, increased LTBP4 led to greater muscle mass with proportionally increased strength, and decreased fibrosis. The increase in muscle mass and reduction in fibrosis were similar to what occurs when myostatin, a related TGFβ family member and negative regulator of muscle mass, was deleted in mdx mice. Supporting this, we found that myostatin forms a complex with LTBP4 and that overexpression of LTBP4 led to a decrease in myostatin levels. LTBP4 also interacted with TGFβ and GDF11, a protein highly related to myostatin. These data identify LTBP4 as a multi-TGFβ family ligand binding protein with the capacity to modify muscle disease through overexpression.  相似文献   

10.
Obesity is a widespread problem across the leisure population of horses and ponies in industrialised nations. Skeletal muscle is a major contributor to whole body resting energy requirements and communicates with other tissues through the secretion of myokines into the circulation. Myostatin, a myokine and negative regulator of skeletal muscle mass, has been implicated in obesity development in other species. This study evaluated gene and protein expression of myostatin and its receptor, ActRIIB in adipose tissues and skeletal muscles and serum myostatin concentrations in six lean and six obese animals to explore putative associations between these factors and obesity in horses and ponies. Myostatin mRNA expression was increased while ActRIIB mRNA was decreased in skeletal muscles of obese animals but these differences were absent at the protein level. Myostatin mRNA was increased in crest fat of obese animals but neither myostatin nor ActRIIB proteins were detected in this tissue. Mean circulating myostatin concentrations were significantly higher in obese than in lean groups; 4.98 ng/ml (±2.71) and 9.00 ng/ml (±2.04) for the lean and obese groups, respectively. In addition, there was a significant positive association between these levels and myostatin gene expression in skeletal muscles (average R2 = 0.58; p<0.05). Together, these results provide further basis for the speculation that myostatin and its receptor may play a role in obesity in horses and ponies.  相似文献   

11.

Objective

The purpose of this research was to determine if the adaptations to high intensity interval training (HIT) are mitigated when both intensity and training volume (i.e. exercise energy expenditure) are reduced.

Methods

19 overweight/obese, sedentary males (Age: 22.7±3.9 yrs, Body Mass Index: 31.4±2.6 kg/m2, Waist Circumference: 106.5±6.6 cm) performed 9 sessions of interval training using a 1-min on, 1-min off protocol on a cycle ergometer over three weeks at either 70% (LO) or 100% (HI) peak work rate.

Results

Cytochrome oxidase I protein content, cytochrome oxidase IV protein content, and citrate synthase maximal activity all demonstrated similar increases between groups with a significant effect of training for each. β-hydroxyacyl-CoA dehydrogenase maximal activity tended to increase with training but did not reach statistical significance (p = 0.07). Peroxisome proliferator-activated receptor gamma coactivator-1α and silent mating type information regulator 2 homolog 1 protein contents also increased significantly (p = 0.047), while AMP-activated protein kinase protein content decreased following the intervention (p = 0.019). VO2peak increased by 11.0±7.4% and 27.7±4.4% in the LO and HI groups respectively with significant effects of both training (p<0.001) and interaction (p = 0.027). Exercise performance improved by 8.6±7.6% in the LO group and 14.1±4.3% in the HI group with a significant effect of training and a significant difference in the improvement between groups. There were no differences in perceived enjoyment or self-efficacy between groups despite significantly lower affect scores during training in the HI group.

Conclusions

While improvements in aerobic capacity and exercise performance were different between groups, changes in oxidative capacity were similar despite reductions in both training intensity and volume.  相似文献   

12.
13.
NADPH oxidase 4 (Nox4) is reported to be the major source of reactive oxygen species (ROS) in the kidneys during the early stages of diabetic nephropathy. It has been shown to mediate TGFβ1-induced differentiation of cardiac fibroblasts into myofibroblasts. Despite TGFβ1 being recognised as a mediator of renal fibrosis and functional decline role in diabetic nephropathy, the renal interaction between Nox 4 and TGFβ1 is not well characterised. The aim of this study was to investigate the role of Nox4 inhibition on TGFβ1-induced fibrotic responses in proximal tubular cells and in a mouse model of diabetic nephropathy. Immortalised human proximal tubular cells (HK2) were incubated with TGFβ1 ± plumbagin (an inhibitor of Nox4) or specific Nox4 siRNA. Collagen IV and fibronectin mRNA and protein expression were measured. Streptozotocin (STZ) induced diabetic C57BL/6J mice were administered plumbagin (2 mg/kg/day) or vehicle (DMSO; 50 µl/mouse) for 24 weeks. Metabolic, physiological and histological markers of nephropathy were determined. TGFβ1 increased Nox4 mRNA expression and plumbagin and Nox4 siRNA significantly inhibited TGF-β1 induced fibronectin and collagen IV expression in human HK2 cells. STZ-induced diabetic C57BL/6J mice developed physiological features of diabetic nephropathy at 24 weeks, which were reversed with concomitant plumbagin treatment. Histologically, plumbagin ameliorated diabetes induced upregulation of extracellular matrix protein expression compared to control. This study demonstrates that plumbagin ameliorates the development of diabetic nephropathy through pathways that include Nox4 signalling.  相似文献   

14.
Tissue glucocorticoid levels in the liver and adipose tissue are regulated by regeneration of inactive glucocorticoid by 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and inactivation by 5α- and 5β-reductases. A low carbohydrate diet increases hepatic 11β-HSD1 and reduces glucocorticoid metabolism during weight loss in obese humans. We hypothesized that similar variations in macronutrient proportions regulate glucocorticoid metabolism in obese rats. Male Lister Hooded rats were fed an obesity-inducing ad libitum ‘Western’ diet (37% fat, n = 36) for 22 weeks, then randomised to continue this diet (n = 12) or to switch to either a low carbohydrate (n = 12) or a moderate carbohydrate (n = 12) diet for the final 8 weeks. A parallel lean control group were fed an ad libitum control diet (10% fat, n = 12) throughout. The low and moderate carbohydrate diets decreased hepatic 11β-HSD1 mRNA compared with the Western diet (both 0.7±0.0 vs 0.9±0.1 AU; p<0.01), but did not alter 11β-HSD1 in adipose tissue. 5α-Reductase mRNA was increased on the low carbohydrate compared with the moderate carbohydrate diet. Compared with lean controls, the Western diet decreased 11β-HSD1 activity (1.6±0.1 vs 2.8±0.1 nmol/mcg protein/hr; p<0.001) and increased 5α-reductase and 5β-reductase mRNAs (1.9±0.3 vs 1.0±0.2 and 1.6±0.1 vs 1.0±0.1 AU respectively; p<0.01) in the liver, and reduced 11β-HSD1 mRNA and activity (both p<0.01) in adipose tissue. Although an obesity-inducing high fat diet in rats recapitulates the abnormal glucocorticoid metabolism associated with human obesity in liver (but not in adipose tissue), a low carbohydrate diet does not increase hepatic 11β-HSD1 in obese rats as occurs in humans.  相似文献   

15.

Aims

To assess the determinants of exercise training-induced improvements in glucose control (HbA1C) including changes in serum total adiponectin and FFA concentrations, and skeletal muscle peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) protein content.

Methods

A sub-cohort (n = 35; 48% men; 74% Caucasian) from the HART-D study undertaking muscle biopsies before and after 9 months of aerobic (AT), resistance (RT), or combination training (ATRT).

Results

Changes in HbA1C were associated with changes in adiponectin (r = −0.45, P = 0.007). Participants diagnosed with type 2 diabetes for a longer duration had the largest increase in PGC-1α (r = 0.44, P = 0.008). Statistical modeling examining changes in HbA1C suggested that male sex (P = 0.05), non-Caucasian ethnicity (P = 0.02), duration of type 2 diabetes (r = 0.40; P<0.002) and changes in FFA (r = 0.36; P<0.004), adiponectin (r = −0.26; P<0.03), and PGC-1α (r = −0.28; P = 0.02) explain ∼65% of the variability in the changes in HbA1C.

Conclusions

Decreases in HbA1C after 9 months of exercise were associated with shorter duration of diabetes, lowering of serum FFA concentrations, increasing serum adiponectin concentrations and increasing skeletal muscle PGC-1α protein expression.

Trial Registration

ClinicalTrials.gov NCT00458133  相似文献   

16.

Background

Interferon (IFN)-α is effective in inhibiting tumor growth and metastasis of hepatocellular carcinoma (HCC). However, the biologic mechanisms of IFN-α treatment in lung metastasis are not yet clear.

Methods

The effect of IFN-α treatment was studied by using an orthotopic xenograft model and measuring tumor size and lung metastasis. Pretreatment with IFN-α before implantation of tumor was done to explore the effect of IFN-α on lung tissues. Cytokines and macrophages were measured by immunohistochemistry and/or PCR assay, using human origin or mouse origin primers to differentiate the sources. Circulating tumor cells (CTCs) were also assayed by flow cytometry.

Results

IFN-α treatment did not decrease the number of CTCs (0.075%±0.020% versus 0.063%±0.018%, P = 0.574, IFN-α–treated versus control groups), but did decrease the number and size of lung metastasis (number: 1.75±1.0 versus 28.0±6.3, P = 0.008; size [pixels]: 116.8±72.2 versus 5226.4±1355.7, P = 0.020), and inhibited macrophage infiltration (0.20%±0.04% versus 1.36%±0.21%, P = 0.0058) and alteration of matrix metalloproteinase (MMP)-9 expression (mean integrated optical density (IOD): 5.1±1.7 versus 21.9±0.4, P<0.000) in the lung, which was independent of the primary tumor.

Conclusion

IFN-α inhibited lung metastasis by directly modulating the lung microenvironment.  相似文献   

17.

Background

Systemic sclerosis (SSc) is an autoimmune disease where controversy on Th1/Th2 balance dominates. We investigated whether the recently discovered Th17 pattern was present in SSc.

Methodology and Principal Findings

Patients were subdivided as having limited cutaneous SSc (lcSSc, n = 12) or diffuse cutaneous SSc (dcSSc, n = 24). A further arbitrary subdivision was made between early dcSSc (n = 11) and late dcSSc (n = 13) based upon the duration of disease. As a comparator group 14 healthy controls were studied. CD3+ cells were isolated using FACS and subsequently studied for the expression of CD4, CD8, CD25, CD45Ro, CD45Ra, IL-23, GITR, CD69 and intracellular expression of IL-17, TGFβ and IFNγ using flow cytometry. Levels of IL-17, IL-6, IL-1α and IL-23 were measured using Bioplex assays. SSc patients had more and more activated CD4+ cells. In addition, CD4, CD45Ro and CD45Ra cells from all SSc patients highly expressed the IL23R, which was associated with a higher IL-17 expression as well. In contrast, IFNγ and TGFβ were selectively up regulated in SSc subsets. In line with these observation, circulating levels of IL-17 inducing cytokines IL-6, IL-23 and IL-1α were increased in all or subsets of SSc patients.

Conclusion and Significance

The combination of IL-17, IFNγ and TGFβ levels in CD45Ro and CD45Ra cells from SSc patients is useful to distinguish between lSSc, ldSSc or edSSc. Blocking Th17 inducing cytokines such as IL-6 and IL-23 may provide a useful tool to intervene in the progression of SSc.  相似文献   

18.

Purpose

To examine the effects of exercise intensity on acute changes in endothelial function in lean and obese adults.

Methods

Sixteen lean (BMI <25, age 23±3 yr) and 10 obese (BMI >30, age 26±6 yr) physically inactive adults were studied during 3 randomized admissions [control (C, no exercise), moderate-intensity exercise (M, @ lactate threshold (LT)) and high-intensity exercise (H, midway between LT and VO2peak) (30 min)]. Endothelial function was assessed by flow-mediated dilation (FMD) at baseline and 1, 2, and 4 h post-exercise.

Results

RM ANCOVA revealed significant main effects for group, time, and group x condition interaction (p<0.05). A diurnal increase in FMD was observed in lean but not obese subjects. Lean subjects exhibited greater increases in FMD than obese subjects (p = 0.0005). In the obese group a trend was observed for increases in FMD at 2- and 4-hr after M (p = 0.08). For lean subjects, FMD was significantly elevated at all time points after H. The increase in FMD after H in lean subjects (3.2±0.5%) was greater than after both C (1.7±0.4%, p = 0.015) and M (1.4±0.4%, p = 0.002). FMD responses of lean and obese subjects significantly differed after C and H, but not after M.

Conclusion

In lean young adults, high-intensity exercise acutely enhances endothelial function, while moderate-intensity exercise has no significant effect above that seen in the absence of exercise. The FMD response of obese adults is blunted compared to lean adults. Diurnal variation should be considered when examining the effects of acute exercise on FMD.  相似文献   

19.

Background

It has been hypothesized that obese and reduced-obese individuals have decreased oxidative capacity, which contributes to weight gain and regain. Recent data have challenged this concept.

Objective

To determine (1) whether total and dietary fat oxidation are decreased in obese and reduced-obese adults compared to lean but increase in response to an acute exercise bout and (2) whether regular physical activity attenuates these metabolic alterations.

Design

We measured 24-hr total (whole-room calorimetry) and dietary fat (14C-oleate) oxidation in Sedentary Lean (BMI = 21.5±1.6; n = 10), Sedentary Obese (BMI = 33.6±2.5; n = 9), Sedentary Reduced-Obese (RED-SED; BMI = 26.9±3.7; n = 7) and in Physically Active Reduced-Obese (RED-EX; BMI = 27.3±2.8; n = 12) men and women with or without an acute exercise bout where energy expended during exercise was not replaced.

Results

Although Red-SED and Red-EX had a similar level of fatness, aerobic capacity and metabolic profiles were better in Red-EX only compared to Obese subjects. No significant between-group differences were seen in 24-hr respiratory quotient (RQ, Lean: 0.831±0.044, Obese: 0.852±0.023, Red-SED: 0.864±0.037, Red-EX: 0.842±0.039), total and dietary fat oxidation. A single bout of exercise increased total (+27.8%, p<0.0001) and dietary (+6.6%, p = 0.048) fat oxidation across groups. Although exercise did not impact RQ during the day, it decreased RQ during sleep (p = 0.01) in all groups. Red-EX oxidized more fat overnight than Red-SED subjects under both resting (p = 0.036) and negative energy balance (p = 0.003) conditions, even after adjustment for fat-free mass.

Conclusion

Obese and reduced-obese individuals oxidize as much fat as lean both under eucaloric and negative energy balance conditions, which does not support the hypothesis of reduced oxidative capacity in these groups. Reduced-obese individuals who exercise regularly have markers of metabolic health similar to those seen in lean adults. Both the acute and chronic effects of exercise were primarily observed at night suggesting an important role of sleep in the regulation of lipid metabolism.  相似文献   

20.

Objective

To investigate injury pattern during intense exercises in hot and humid environment particularly on liver in a rat exertional heat stroke model.

Methods

We randomly divided 30 rats into a control group (CG), a normal temperature (25±2°C, 60%±5% humidity) exercise group (NTEG) and a high temperature and high humidity (35±2°C, 80%±10% humidity) exercising group (HTEG), each comprising 10 animals. The NTEG and HTEG rats were forced to run in a treadmill for 1 hour maximum at 20 rpm. We analyzed liver cells of all three groups with JC-1 dye and flow cytometry for apoptosis rates in addition to liver tissue 8 - hydroxy deoxyguanosine (8 - OhdG) and blood serum IL–6, tumor necrosis factor alpha (TNF-α), alanine aminotransferase ALT, aspartate amino transferase (AST), serum creatinine (CREA), blood urea nitrogen (BUN), lactate dehydrogenase (LDH), creatine phosphate kinase (CK) concentrations.

Result

Compared with NTEG rats, beside reduced exercise tolerance (60±5 vs. 15±3 minutes) (p = 0.002) the 8-OhdG liver tissue concentrations were significantly higher (p = 0.040) in the HTEG rats. The HTEG developed more organ tissue damage and cellular fragmentations of liver cells. In both exercise groups TNF-α and IL-6 serum concentrations were enhanced significantly (p<0.001) being highest in the HTEG animals. Serum ALT, AST, LDH, CREA, BUN and CK concentrations were significantly enhance in both exercise groups.

Conclusion

In our exertional heat stroke rat model, we found tissue damage particularly in livers during exercises in hot and humid environment that was related to inflammation, oxidative stress and apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号