共查询到20条相似文献,搜索用时 15 毫秒
1.
PPARs调控巨噬细胞的活化与功能 总被引:1,自引:0,他引:1
巨噬细胞是先天性防御病原体的关键组分,它参与炎症的发生和消退,同时也参与了组织的修复。巨噬细胞的多种功能通过不同的活化状态完成,即从经典活化状态到替代性活化状态,再到失活状态。巨噬细胞活化的失调与代谢、炎症和免疫病变有关,调节蛋白控制巨噬细胞的活化可作为新的治疗靶点。主要综述过氧化物酶体增殖物激活受体(PPARs)调控巨噬细胞活化的作用。 相似文献
2.
《MABS-AUSTIN》2013,5(6):1377-1384
Antibodies evoke cellular responses through the binding of their Fc region to Fc receptors, most of which contain immunoreceptor tyrosine-based activation motif domains and are thus considered “activating.” However, there is a growing appreciation of these receptors for their ability to deliver an inhibitory signal as well. We previously described one such phenomenon whereby interferon (IFN)γ signaling is inhibited by immune complex signaling through FcγRI. To understand the implications of this in the context of therapeutic antibodies, we assessed individual IgG subclasses to determine their ability to deliver this anti-inflammatory signal in monocyte-derived macrophages. Like IgG1, we found that IgG4 is fully capable of inhibiting IFNγ-mediated events. In addition, F(ab’)2 fragments that interfere with FcγRI signaling reversed this effect. For mAbs developed with either an IgG1 or an IgG4 constant region for indications where inflammation is undesirable, further examination of a potential Fc-dependent contribution to their mechanism of action is warranted. 相似文献
3.
Jennifer FA Swisher Devin A Haddad Anna G McGrath Gunther H Boekhoudt Gerald M Feldman 《MABS-AUSTIN》2014,6(6):1377-1384
Antibodies evoke cellular responses through the binding of their Fc region to Fc receptors, most of which contain immunoreceptor tyrosine-based activation motif domains and are thus considered “activating.” However, there is a growing appreciation of these receptors for their ability to deliver an inhibitory signal as well. We previously described one such phenomenon whereby interferon (IFN)γ signaling is inhibited by immune complex signaling through FcγRI. To understand the implications of this in the context of therapeutic antibodies, we assessed individual IgG subclasses to determine their ability to deliver this anti-inflammatory signal in monocyte-derived macrophages. Like IgG1, we found that IgG4 is fully capable of inhibiting IFNγ-mediated events. In addition, F(ab’)2 fragments that interfere with FcγRI signaling reversed this effect. For mAbs developed with either an IgG1 or an IgG4 constant region for indications where inflammation is undesirable, further examination of a potential Fc-dependent contribution to their mechanism of action is warranted. 相似文献
4.
巨噬细胞的分类及其调节性功能的差异 总被引:3,自引:0,他引:3
巨噬细胞在固有免疫和适应性免疫反应中具有重要的作用,它可将加工后的抗原提呈给相应的T细胞,活化后的T细胞通过细胞膜上的分子或分泌的细胞介素进一步活化巨噬细胞。此时的巨噬细胞吞噬杀伤能力大大加强,并释放各种活性物质,因此巨噬细胞是主要的炎性反应调节细胞。巨噬细胞可分为经典活化和选择性活化的巨噬细胞,其在炎性反应过程中分泌不同的细胞因子、趋化因子等,然后间接或直接地参与各种炎症性疾病的反应过程。该文介绍了不同型巨噬细胞在胰岛素抵抗、HIV感染和肿瘤等疾病中的调节功能。 相似文献
5.
Roser Guiteras Anna Sola Maria Flaquer Anna Manonelles Georgina Hotter Josep M. Cruzado 《Journal of cellular and molecular medicine》2019,23(2):841-851
Alternatively activated macrophages (M2) have regenerative properties and shown promise as cell therapy in chronic kidney disease. However, M2 plasticity is one of the major hurdles to overcome. Our previous studies showed that genetically modified macrophages stabilized by neutrophil gelatinase‐associated lipocalin (NGAL) were able to preserve their M2 phenotype. Nowadays, little is known about M2 macrophage effects in diabetic kidney disease (DKD). The aim of the study was to investigate the therapeutic effect of both bone marrow‐derived M2 (BM‐фM2) and ф‐NGAL macrophages in the db/db mice. Seventeen‐week‐old mice with established DKD were divided into five treatment groups with their controls: D+BM‐фM2; D+ф‐BM; D+ф‐NGAL; D+ф‐RAW; D+SHAM and non‐diabetic (ND) (db/‐ and C57bl/6J) animals. We infused 1 × 106 macrophages twice, at baseline and 2 weeks thereafter. BM‐фM2 did not show any therapeutic effect whereas ф‐NGAL significantly reduced albuminuria and renal fibrosis. The ф‐NGAL therapy increased the anti‐inflammatory IL‐10 and reduced some pro‐inflammatory cytokines, reduced the proportion of M1 glomerular macrophages and podocyte loss and was associated with a significant decrease of renal TGF‐β1. Overall, our study provides evidence that ф‐NGAL macrophage cell therapy has a therapeutic effect on DKD probably by modulation of the renal inflammatory response caused by the diabetic milieu. 相似文献
6.
Jihyun Yang Ok-Jin Park Jiseon Kim Yeongkag Kwon Cheol-Heui Yun Seung Hyun Han 《Journal of cellular physiology》2019,234(12):23033-23042
Bone-resorbing osteoclasts are differentiated from macrophages (MΦ) by M-CSF and RANKL. MΦ can be mainly classified into M1 and M2 MΦ, which are proinflammatory and anti-inflammatory, respectively, but little is known about their osteoclastogenic potential. Here, we investigated the osteoclastogenic potential of MΦ subtypes. When the two MΦ subtypes were differentiated into osteoclasts using M-CSF and RANKL, M2 MΦ more potently differentiated into osteoclasts than M1 MΦ. M2 MΦ generated with IL-4 or IL-10 also showed enhanced osteoclast differentiation compared with M1 MΦ induced by IFN-γ and lipopolysaccharide. In addition, robust bone-resorptive capacity and giant actin rings, which are features of mature osteoclasts, were observed in M2, but not M1 MΦ, under the osteoclast differentiation condition. Osteoclast differentiation was significantly increased in CD206+ M2 MΦ but not in CD86+ M1 MΦ. Compared with M1 MΦ, c-Fms and RANK were highly expressed in M2 MΦ. Enhanced osteoclastogenesis of M2 MΦ was mediated through sustained ERK activation, followed by efficient c-Fos and NFATc1 induction. Notably, the osteoclastogenic potential of M1 MΦ converted into M2 MΦ by exposure to M-CSF was higher than that of M2 MΦ converted into M1 MΦ by exposure to GM-CSF. Silencing IRF5, which is responsible for M1 MΦ polarization, increased osteoclast differentiation by enhancing c-Fms expression and activation of ERK, c-Fos, CREB, and NFATc1, which was inhibited by overexpression of IRF5. Collectively, M2 MΦ are suggested to be more efficient osteoclast precursors than M1 MΦ because of the attenuated expression of IRF5. 相似文献
7.
Tuberculosis (TB) is one of the earliest recorded human diseases and still one of the deadliest worldwide. Its causative agent is the bacteria Mycobacterium tuberculosis (Mtb). Cytokine-mediated macrophage activation is a necessary step in control of bacterial growth, and early immunologic events in lymph node and lung are crucial to the outcome of infection, although the factors that influence these environments and the immune response are poorly understood.Our goal is to build the next-generation two-compartmental model of the immune response to provide a gateway to more spatial and mechanistic investigations of M. tuberculosis infection in the LN and lung. Crucial immune factors emerge that affect macrophage populations and inflammation, namely TNF-dependent recruitment and apoptosis, and IL-10 levels. Surprisingly, bacterial load plays a less important role than TNF in increasing the population of infected macrophages and inflammation.Using a mathematical model, it is possible to distinguish the effects of pro-inflammatory (TNF) and anti-inflammatory (IL-10) cytokines on the spectrum of phagocyte populations (macrophages and dendritic cells) in the lung and lymph node. Our results suggest that TNF is a major mediator of recruitment of phagocytes to the lungs. In contrast, IL-10 plays a role in balancing the dominant macrophage phenotype in LN and lung. 相似文献
8.
Yan-Cun Liu Xian-Biao Zou Yan-Fen Chai Yong-Ming Yao 《International journal of biological sciences》2014,10(5):520-529
Diversity and plasticity are two hallmarks of macrophages. M1 macrophages (classically activated macrophages) are pro-inflammatory and have a central role in host defense against infection, while M2 macrophages (alternatively activated macrophages) are associated with responses to anti-inflammatory reactions and tissue remodeling, and they represent two terminals of the full spectrum of macrophage activation. Transformation of different phenotypes of macrophages regulates the initiation, development, and cessation of inflammatory diseases. Here we reviewed the characters and functions of macrophage polarization in infection, atherosclerosis, obesity, tumor, asthma, and sepsis, and proposed that targeting macrophage polarization and skewing their phenotype to adapt to the microenvironment might hold great promise for the treatment of inflammatory diseases. 相似文献
9.
Reyes JL González MI Ledesma-Soto Y Satoskar AR Terrazas LI 《International journal of biological sciences》2011,7(9):1323-1333
Information concerning TLR-mediated antigen recognition and regulation of immune responses during helminth infections is scarce. TLR2 is a key molecule required for innate immunity and is involved in the recognition of a wide range of viruses, bacteria, fungi and parasites. Here, we evaluated the role of TLR2 in a Taenia crassiceps cysticercosis model. We compared the course of T. crassiceps infection in C57BL/6 TLR2 knockout mice (TLR2-/-) with that in wild type C57BL/6 (TLR2+/+) mice. In addition, we assessed serum antibody and cytokine profiles, splenic cellular responses and cytokine profiles and the recruitment of alternatively activated macrophages (AAMφs) to the site of the infection. Unlike wild type mice, TLR2-/- mice failed to produce significant levels of inflammatory cytokines in either the serum or the spleen during the first two weeks of Taenia infection. TLR2-/- mice developed a Th2-dominant immune response, whereas TLR2+/+ mice developed a Th1-dominant immune response after Taenia infection. The insufficient production of inflammatory cytokines at early time points and the lack of Th1-dominant adaptive immunity in TLR2-/- mice were associated with significantly elevated parasite burdens; in contrast, TLR2+/+ mice were resistant to infection. Furthermore, increased recruitment of AAMφs expressing PD-L1, PD-L2, OX40L and mannose receptor was observed in TLR2-/- mice. Collectively, these findings indicate that TLR2-dependent signaling pathways are involved in the recognition of T. crassiceps and in the subsequent activation of the innate immune system and production of inflammatory cytokines, which appear to be essential to limit infection during experimental cysticercosis. 相似文献
10.
11.
《Cell host & microbe》2020,27(1):54-67.e5
- Download : Download high-res image (322KB)
- Download : Download full-size image
12.
13.
《Cell metabolism》2022,34(3):487-501.e8
- Download : Download high-res image (166KB)
- Download : Download full-size image
14.
SPARC (osteonectin/BM-40), a secreted matricellular protein that promotes cellular deadhesion and motility in wound healing, carcinogenesis, and inflammation, binds to the scavenger receptor stabilin-1 in alternatively activated macrophages and undergoes endocytosis and clearance from the extracellular space. Both SPARC and stabilin-1 are expressed by endothelial cells during inflammation, but their interaction in this context is unknown. We have identified a binding site on SPARC for stabilin-1 by a solid-state peptide array coupled with a modified enzyme-linked immunosorbent assay. A monoclonal antibody that recognizes the identified binding site was also characterized that could be an inhibitor for the SPARC-stabilin-1 interaction in macrophages or endothelial cells. 相似文献
15.
Guzmán-Morales J Ariganello MB Hammami I Thibault M Jolicoeur M Hoemann CD 《Biochemical and biophysical research communications》2011,(4):538-544
Alternatively activated macrophages have been implicated in the therapeutic activity of biodegradable chitosan on wound healing, however, the mechanisms of phenotypic differentiation are still unclear.In vitro, macrophages stimulated with high doses of chitosan (?500 μg/mL) were reported to produce low-level markers associated with alternative activation (arginase-1) as well as classical activation (nitric oxide), and to undergo apoptosis. In this study, we tested the hypothesis that 40 kDa biodegradable chitosan (5–500 μg/mL) is sufficient to polarize mouse bone marrow-derived macrophages (BMDM) in vitro to an alternatively activated phenotype. Control cultures were stimulated with IL-4 (alternative activation), IFN-γ/LPS (classical activation), 1 μm diameter latex beads (phagocytosis), or left untreated. After 48 h of in vitro exposure, BMDM phagocytosed fluorescent chitosan particles or latex beads, and remained viable and metabolically active, although some cells detached with increasing chitosan and latex bead dosage. Arginase-1 was over 100-fold more strongly induced by IL-4 than by chitosan, which induced only sporadic and weak arginase-1 activity over untreated BMDM, and no nitric oxide. IFN-γ/LPS stimulated nitric oxide production and arginase-1 activity and high concentrations of inflammatory cytokines (IL-6, IL-1β, TNF-α, MIP-1α/MIP-1β), while latex beads stimulated nitric oxide and not arginase-1 activity. Chitosan or latex bead exposure, but not IL-4, tended to promote the release of several chemokines (MIP-1α/β, GM-CSF, RANTES, IL-1β), while all treatments promoted MCP-1 release. These data show that chitosan phagocytosis is not sufficient to polarize BMDM to the alternative or the classical pathway, suggesting that biodegradable chitosan elicits alternatively activated macrophages in vivo through indirect mechanisms. 相似文献
16.
Lei Qiao Xin‐yu Zhang Xiao‐ling Liu Mei Dong Hong‐yan Dai Mei Ni Xiao‐rong Luan Jun Guan Hui‐xia Lu 《Journal of cellular and molecular medicine》2018,22(1):409-416
Atherosclerosis (AS) is characterized as progressive arterial plaque, which is easy to rupture under low stability. Macrophage polarization and inflammation response plays an important role in regulating plaque stability. Ginsenoside Rb1 (Rb1), one of the main active principles of Panax Ginseng, has been found powerful potential in alleviating inflammatory response. However, whether Rb1 could exert protective effects on AS plaque stability remains unclear. This study investigated the role of Rb1 on macrophage polarization and atherosclerotic plaque stability using primary peritoneal macrophages isolated from C57BL/6 mice and AS model in ApoE?/? mice. In vitro, Rb1 treatment promoted the expression of arginase‐I (Arg‐I) and macrophage mannose receptor (CD206), two classic M2 macrophages markers, while the expression of iNOS (M1 macrophages) was decreased. Rb1 increased interleukin‐4 (IL‐4) and interleukin‐13 (IL‐13) secretion in supernatant and promoted STAT6 phosphorylation. IL‐4 and/or IL‐13 neutralizing antibodies and leflunomide, a STAT6 inhibitor attenuated the up‐regulation of M2 markers induced by Rb1. In vivo, the administration of Rb1 promoted atherosclerotic lesion stability, accompanied by increased M2 macrophage phenotype and reduced MMP‐9 staining. These data suggested that Rb1 enhanced atherosclerotic plaque stability through promoting anti‐inflammatory M2 macrophage polarization, which is achieved partly by increasing the production of IL‐4 and/or IL‐13 and STAT6 phosphorylation. Our study provides new evidence for possibility of Rb1 in prevention and treatment of atherosclerosis. 相似文献
17.
巨噬细胞在不同环境刺激下分化为经典活化巨噬细胞和选择性活化巨噬细胞,巨噬细胞选择性活化的信号通路包括:JAK/STAT6途径、M2分化成熟的转录调节途径(KLF4的转录调节,PPARs的转录调节)以及Jmjd3表观遗传学调节途径。选择性活化对机体而言是一种保护机制,可以依据上述分子理论予以干预,如:细胞因子、PPARγ完全性激动剂、PPARγ部分性激动剂、微量元素硒以及生活方式等通过IL-4/STAT6/PPARγ途径促进巨噬细胞选择性极化。对巨噬细胞选择性活化的信号通路及其促进措施进行了简述。 相似文献
18.
19.
Zahra Javanmardi Mahmoud Mahmoudi Houshang Rafatpanah Zahra Rezaieyazdi Abbas Shapouri-Moghaddam Parisa Ahmadi Samaneh Mollazadeh Nafiseh Sadat Tabasi Seyed-Alireza Esmaeili 《Cell biochemistry and function》2024,42(2):e3981
Systemic lupus erythematosus (SLE) is known as an autoimmune disorder that is characterized by the breakdown of self-tolerance, resulting in disease onset and progression. Macrophages have been implicated as a factor in the development of SLE through faulty phagocytosis of dead cells or an imbalanced M1/M2 ratio. The study aimed to investigate the immunomodulatory effects of Lactobacillus delbrueckii and Lactobacillus rhamnosus on M1 and M2 macrophages in new case lupus patients. For this purpose, blood monocytes were collected from lupus patients and healthy people and were cultured for 5 days to produce macrophages. For 48 h, the macrophages were then cocultured with either probiotics or lipopolysaccharides (LPS). Flow cytometry and real-time polymerase chain reaction were then used to analyze the expression of cluster of differentiation (CD) 14, CD80, and human leukocyte antigen – DR (HLADR) markers, as well as cytokine expression (interleukin [IL]1-β, IL-12, tumor necrosis factor α [TNF-α], IL-10, and transforming growth factor beta [TGF-β]). The results indicated three distinct macrophage populations, M0, M1, and M2. In both control and patient-derived macrophage-derived monocytes (MDMs), the probiotic groups showed a decrease in CD14, CD80, and HLADR expression compared to the LPS group. This decrease was particularly evident in M0 and M2 macrophages from lupus patients and M1 macrophages from healthy subjects. In addition, the probiotic groups showed increased levels of IL-10 and TGF-β and decreased levels of IL-12, IL1-β, and TNF-α in MDMs from both healthy and lupus subjects compared to the LPS groups. Although there was a higher expression of pro-inflammatory cytokines in lupus patients, there was a higher expression of anti-inflammatory cytokines in healthy subjects. In general, L. delbrueckii and L. rhamnosus could induce anti-inflammatory effects on MDMs from both healthy and lupus subjects. 相似文献
20.
Ling-yu Wei An-qi Jiang Ren Jiang Si-ying Duan Xue Xu Ze-da-zhong Su Jia Xu 《Innate immunity》2021,27(4):313
Trichinella spiralis represents an effective treatment for autoimmune and inflammatory diseases. The effects of recombinant T. spiralis (TS) 53-kDa protein (rTsP53) on acute lung injury (ALI) remain unclear. Here, mice were divided randomly into a control group, LPS group, and rTsP53 + LPS group. ALI was induced in BALB/c mice by LPS (10 mg/kg) injected via the tail vein. rTsP53 (200 µl; 0.4 μg/μl) was injected subcutaneously three times at an interval of 5 d before inducing ALI in the rTsP53+LPS group. Lung pathological score, the ratio and markers of classic activated macrophages (M1) and alternatively activated macrophages (M2), cytokine profiles in alveolar lavage fluid, and pyroptosis protein expression in lung tissue were investigated. RTsP53 decreased lung pathological score. Furthermore, rTsP53 suppressed inflammation by increasing IL-4, IL-10, and IL-13. There was an increase in alveolar M2 macrophage numbers, with an increase in CD206 and arginase-1-positive cells and a decrease in alveolar M1 markers such as CD197 and iNOS. In addition, the polarization of M2 macrophages induced by rTsP53 treatment could alleviate ALI by suppressing lung pyroptosis. RTsP53 was identified as a potential agent for treating LPS-induced ALI via alleviating lung pyroptosis by promoting M2 macrophage polarization. 相似文献