首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While M1 macrophages are highly pro-inflammatory and microbicidal, M2 macrophages and the related tumor associated macrophages (TAMs) regulate tissue remodeling and angiogenesis and can display immunomodulatory activity. In July issue of Cell Research, Zhang et al. show that ROS production, critical for the activation and functions of M1 macrophages, is necessary for the differentiation of M2 macrophages and TAMs, and that antioxidant therapy blocks TAM differentiation and tumorigenesis in mouse models of cancer.Macrophages are key orchestrators in both the initiation and resolution stages of inflammation, and function as sentinel cells that maintain homeostasis and protect against infection. They are activated by many stimuli including pathogen-associated molecular patterns (PAMPs), endogenous danger-associated molecular patterns (DAMPs), and cytokines found in the tissue microenvironment1. During their activation, macrophages can polarize to pro-inflammatory or anti-inflammatory states with distinct phenotypes and physiological responses — the classical pro-inflammatory M1 state induced by LPS and interferon-γ (IFN-γ) and the “alternative” M2 state triggered by IL-4 and IL-132. The M1 state is characterized by increased expression of pro-inflammatory cytokines as well as microbicidal activity, while M2 macrophages upregulate the anti-inflammatory cytokine IL-10 and participate in tissue remodeling, wound repair, and host defense against large parasites.M2-like macrophage polarization is of particular pathophysiological consequence in the setting of cancer. Early in tumor development, monocytes are recruited by tumor and stromal cell-derived chemokines to take up residence at the tumor site, where they differentiate into macrophages in response to MCSF produced by tumor cells. Such tumor-associated macrophages (TAMs) facilitate multiple steps in tumorigenesis, including promotion of tumor cell proliferation and resistance to apoptosis as well as secretion of pro-angiogenic factors and proteolytic enzymes that aid tumor cell metastasis. TAMs also display some immunosuppressive features, such as IL-10 and TGF-β production and poor antigen presentation, which conspire to prevent tumor cell killing by infiltrating T cells. Thus, the characteristics most critical for the tumor-promoting profile of TAMs bear semblance to the M2 phenotype. Although the details of such M2 polarization are not well characterized, IL-4 produced by T-cells in the tumor, as well as other tumor-derived factors, may be critical3.In July issue of Cell Research, a study by Zhang et al.4 provides new insights into control of macrophage differentiation and activation. In particular, the authors show that ROS production is important in M2 but not M1 macrophage differentiation. Their experimental protocol is to treat monocytes for 6 days with M-CSF or GM-CSF to induce differentiation to macrophages, followed by polarization with IL-4 (M2 state) or LPS and IFN-γ (M1 state). Interestingly, pre-treating monocytes with the antioxidant butylated hydroxyanisole (BHA) prior to differentiation inhibits M2 but not M1 polarization, as indicated by analysis of macrophage differentiation markers and M1/M2 polarization markers. The authors attribute this to the effects of BHA, i.e., block of ROS production, in inhibiting ERK activation during macrophage differentiation, consistent with previous reports implicating a role for ROS as well as MAP kinases in macrophage differentiation5. Furthermore, LPS and IFN-γ but not IL-4 stimulation can “rescue” ERK activation, perhaps in a manner dependent on ROS production, thus explaining why M2 but not M1 polarization is impaired by antioxidant treatment (Figure 1).Open in a separate windowFigure 1M1 macrophages are highly pro-inflammatory and microbicidal and are polarized by treatment with LPS+IFNγ, while M2 macrophages mediate tissue repair, angiogenesis and immunomodulation. Tumor associated macrophages (TAMs), which are M2-like, are associated with worsened clinical prognosis in many cancers and are thought to be skewed by a combination of tumor-derived factors and other cytokines present in the tumor microenvironment. ROS production increases during M-CSF- or GM-CSF-induced macrophage differentiation from monocytes, and the antioxidant BHA specifically inhibits M2 and TAM polarization. LPS+IFNγ treatment is able to overcome the effects of BHA to induce normal M1 polarization, revealing a specific role for ROS in macrophage polarization.As the M2-like properties of TAMs are thought to promote tumorigenesis, Zhang et al. go on to investigate the consequences of BHA administration in mouse models of cancer. They demonstrate that in vivo treatment of BHA can attenuate cancer initiation, progression, and metastasis in multiple models. As ROS can promote tumor cell proliferation, survival, and DNA damage, BHA could be acting directly on the tumor cells to prevent growth and metastasis6. However, BHA had no effects on the proliferation of three tumor cell lines in vitro. The authors propose that TAM differentiation may be a critical target, as BHA administration reduced TAM numbers as well as levels of TAM markers. Moreover, in at least one of the models, BHA administration was ineffective when macrophages were depleted by clodronate injection.Collectively, the findings of Zhang et al. are intriguing for several reasons. First, ROS production is usually associated with the activation and functions of M1 rather than M2 macrophages. ROS production downstream of LPS signaling mediates production of pro-inflammatory cytokines (in part through MAP kinase activation). ROS and nitric oxide (NO) production by NADPH oxidase and iNOS, respectively, as well as mROS upregulation are key to the antimicrobial activity of M1 macrophages7. Indeed NO production can inhibit oxidative metabolism, pivotal to the survival and function of M2 macrophages8. Thus ROS production may be important in M1 activation and function while the requirement for ROS in M2 differentiation may be most critical during MCSF-mediated differentiation rather than IL-4-triggered polarization. Future studies to better understand the role of ROS production in macrophage differentiation and activation may be informative. Second, it would be interesting to further probe the effects of BHA in inhibiting tumorigenesis. The authors'' in vitro studies suggest inhibition of TAM differentiation as one underlying mechanism, but one can envision additional possibilities. At least in some cancers, tumor cells and other immune cells in the microenvironment produce ROS that promote inflammation9, thus contributing to tumorigenesis. mROS has been linked to activation of HIF1α, which can facilitate angiogenesis and metastasis. Indeed, it is worth pointing out that ROS can regulate many cellular processes, some of which have already been alluded to, including signal transduction (e.g., downstream of growth factor receptors and innate immune signaling pathways as well as MAP kinase activation), redox signaling, autophagy, and respiratory burst and other antimicrobial activities10. Thus it is likely that other cellular processes perturbed by antioxidant treatment contribute to the effects of BHA in reducing tumorigenesis.Finally, the study by Zhang et al. suggests that treatment with BHA or perhaps other antioxidants could be considered in therapeutic control of cancer. Indeed, there is tremendous interest in the clinical use of antioxidants for treating many diseases. Given the pleiotropic activities of ROS mentioned above, it would be important to better understand the molecular pathways by which antioxidants exert their effects.  相似文献   

2.
Hypoxia is an important factor in the macrophages microenvironment. Many physiological and pathological processes including solid tumor development are characterized by both low oxygen content and presence of macrophages. Tumor-associated hypoxia causes alternative polarization of macrophages in tumor tissue and transformation of these cells into the allies of a malignant neoplasm. The aim of the work was to investigate the effect of NSC631570, a cancer-selective drug that is known to selectively accumulate in the tumor tissue, on hypoxic macrophage function. Murine peritoneal macrophages (PMs) were subjected to hypoxia (3% O2). Nitrite level was assayed by the Griess reaction. Arginase activity was measured by colorimetric method. ROS generation and phagocytosis was estimated by flow cytometry. O 2 ? generation was assayed by the NBT reduction method. HMGB1 expression was determined by ELISA. 42 h hypoxia caused alternative polarization of murine PMs with significant arginase prevalence. NSC631570 repolarized arginine metabolism of hypoxic macrophages to NOS dominant and activated their pro-inflammatory functions: recovered ROS production and increased alarmin release. Thus, NSC631570 can restore pro-inflammatory functions of macrophages, alternatively polarized by hypoxia.  相似文献   

3.
4.
Using a continuous spectrophotometric assay, we have monitored the formation of superoxide anion (O2?) by activated and resident murine peritoneal macrophages. Macrophages elicited by injection with Corynebacterium parvum, as well as resident macrophages from untreated mice, were kept in suspension culture overnight to eliminate short-lived, contaminating neutrophils. Cytochemical analysis of the cultured macrophages disclosed that essentially all of the activated macrophages reduced nitroblue tetrazolium (NBT) dye vigorously. In contrast, only 18% of the resident macrophages demonstrated vigorous NBT reduction; the remainder of the resident macrophages reduced NBT very weakly. Kinetic analysis of macrophage O2? formation revealed that activated macrophages exposed to phorbol myristate acetate (PMA) produced O2? at a 13-fold greater maximum rate than resident macrophages. The decline in the rate of O2? production with time by activated macrophages was also greater than that of resident macrophages. The data indicate that the greater O2? production by activated macrophage populations is due to (i) the presence of an increased percentage of macrophages that respond to PMA with vigorous O2? production, and (ii) an increased maximum rate of O2? formation by these macrophages.  相似文献   

5.
6.
Tumor‐associated macrophages (TAMs) are a key component of the tumor microenvironment and orchestrate various aspects of cancer. Diversity and plasticity are hallmarks of cells of the monocyte–macrophage lineage. In response to distinct signals macrophages undergo M1 (classical) or M2 (alternative) activation, which represent extremes of a continuum in a spectrum of activation states. Metabolic adaptation is a key component of macrophage plasticity and polarization, instrumental to their function in homeostasis, immunity and inflammation. Generally, TAMs acquire an M2‐like phenotype that plays important roles in many aspects of tumor growth and progression. There is now evidence that also neutrophils can be driven towards distinct phenotypes in response to microenvironmental signals. The identification of mechanisms and molecules associated with macrophage and neutrophil plasticity and polarized activation provides a basis for new diagnostic and therapeutic strategies. J. Cell. Physiol. 228: 1404–1412, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Although macrophages were originally recognized as major immune effector cells, it is now appreciated that they also play many important roles in the maintenance of tissue homeostasis, and are involved in a variety of pathological conditions including cancer. Several studies have demonstrated the contributions of tumor-associated macrophages (TAMs) to tumor initiation, progression and metastasis. However, the detailed mechanisms underlying how TAMs differ molecularly from their normal counterparts and how the conversion to TAMs occurs have only just begun to be understood. TAMs have been proposed to exhibit phenotypes of ‘alternatively activated’ acrophages, though there has been limited evidence directly linking the phenotypes of TAMs to the alternative activation of macrophages. This review will focus on IL-4, the prototypic cytokine that induces the alternative activation of macrophages, and review current knowledge regarding the contributions of IL-4 to the phenotypes of TAMs and its effects on tumorigenesis.Key words: interleukin-4, tumor-associated macrophage, tumor microenvironment, cytokines, cathepsin proteases  相似文献   

8.
Numerous studies have shown the positive correlation between high levels of Pi and tumour progression. A critical goal of macrophage-based cancer therapeutics is to reduce anti-inflammatory macrophages (M2) and increase proinflammatory antitumour macrophages (M1). This study aimed to investigate the relationship between macrophage polarization and low-Pi stress. First, the spatial populations of M2 and M1 macrophages in 22 HCC patient specimens were quantified and correlated with the local Pi concentration. The levels of M2 and M1 macrophage markers expressed in the peritumour area were higher than the intratumour levels, and the expression of M2 markers was positively correlated with Pi concentration. Next, monocytes differentiated from THP-1 cells were polarized against different Pi concentrations to investigate the activation or silencing of the expression of p65, IκB-α and STAT3 as well as their phosphorylation. Results showed that low-Pi stress irreversibly repolarizes tumour-associated macrophages (TAMs) towards the M1 phenotype by silencing stat6 and activating p65. Moreover, HepG-2 and SMCC-7721 cells were cultured in conditioned medium to investigate the innate anticancer immune effects on tumour progression. Both cancer cell lines showed reduced proliferation, migration and invasion, as epithelial–mesenchymal transition (EMT) was inactivated. In vivo therapeutic effect on the innate and adaptive immune processes was validated in a subcutaneous liver cancer model by the intratumoural injection of sevelamer. Tumour growth was significantly inhibited by the partial deprivation of intratumoural Pi as the tumour microenvironment under low-Pi stress is more immunostimulatory. The anticancer immune response, activated by low-Pi stress, suggests a new macrophage-based immunotherapeutic modality.  相似文献   

9.
Autophagy allows the elimination of superfluous or damaged macromolecules or organelles. Genetic evidence indicates that autophagy plays essential functions during differentiation. The differentiation of human blood monocytes into macrophages is a caspase-dependent process triggered by colony stimulating factor1 (CSF1/CSF-1). We have established, using pharmacological inhibitors, siRNA approaches and Atg7−/− mice, that autophagy is required for proper CSF1/CSF-1-driven differentiation of human and murine monocytes and acquisition of phagocytic functions. Collectively, these findings highlight an essential role of autophagy during monocyte differentiation and acquisition of macrophage functions. Deciphering the complex interplay between caspase and autophagy that occurs during this process will undoubtedly bring new insights in our understanding of monocyte differentiation.  相似文献   

10.
Tumor-associated macrophages (TAMs) play a critical role in melanoma growth and metastasis.Infiltration of TAMs correlates with the poor prognosis of melanoma.TAMs are differentiated from monocytes in ...  相似文献   

11.
Macrophage polarization contributes to a number of human pathologies. This is exemplified for tumor-associated macrophages (TAMs), which display a polarized M2 phenotype, closely associated with promotion of angiogenesis and suppression of innate immune responses. We present evidence that induction of apoptosis in tumor cells and subsequent recognition of apoptotic debris by macrophages participates in the macrophage phenotype shift. During coculture of human primary macrophages with human breast cancer carcinoma cells (MCF-7) the latter ones were killed, while macrophages acquired an alternatively activated phenotype. This was characterized by decreased tumor necrosis factor (TNF)-alpha and interleukin (IL) 12-p70 production, but increased formation of IL-8 and -10. Alternative macrophage activation required tumor cell death because a coculture with apoptosis-resistant colon carcinoma cells (RKO) or Bcl-2-overexpressing MCF-7 cells failed to induce phenotype alterations. Interestingly, phenotype alterations were achieved with conditioned media from apoptotic tumor cells, arguing for a soluble factor. Knockdown of sphingosine kinase (Sphk) 2, but not Sphk1, to attenuate S1P formation in MCF-7 cells, restored classical macrophage responses during coculture. Furthermore, macrophage polarization achieved by tumor cell apoptosis or substitution of authentic S1P suppressed nuclear factor (NF)-kappaB signaling. These findings suggest that tumor cell apoptosis-derived S1P contributes to macrophage polarization.  相似文献   

12.
13.
Inflammation plays a crucial role in the occurrence and development of renal fibrosis, which ultimately results in end-stage renal disease (ESRD). There is new focus on lymphangiogenesis in the field of inflammation. Recent studies have revealed the association between lymphangiogenesis and renal fibrosis, but the source of lymphatic endothelial cells (LECs) is not clear. It has also been reported that macrophages are involved in lymphangiogenesis through direct and indirect mechanisms in other tissues. We hypothesized that there was a close relationship between macrophages and lymphatic endothelial progenitor cells in renal fibrosis. In this study, we demonstrated that lymphangiogenesis occurred in a renal fibrosis model and was positively correlated with the degree of fibrosis and macrophage infiltration. Compared to resting (M0) macrophages and alternatively activated (M2) macrophages, classically activated (M1) macrophages predominantly transdifferentiated into LECs in vivo and in vitro. VEGF-C further increased M1 macrophage polarization and transdifferentiation into LECs by activating VEGFR3. It was suggested that VEGF-C/VEGFR3 pathway activation downregulated macrophage autophagy and subsequently regulated macrophage phenotype. The induction of autophagy in macrophages by rapamycin decreased M1 macrophage polarization and differentiation into LECs. These results suggested that M1 macrophages promoted lymphangiogenesis and contributed to newly formed lymphatic vessels in the renal fibrosis microenvironment, and VEGF-C/VEGFR3 signaling promoted macrophage M1 polarization by suppressing macrophage autophagy and then increased the transdifferentiation of M1 macrophages into LECs.Subject terms: Lymphangiogenesis, End-stage renal disease  相似文献   

14.
巨噬细胞是一群表型和功能均具有高度异质性的免疫细胞。巨噬细胞通过清除并修复受损的细胞和基质来维护组织完整性。巨噬细胞在不同的组织微环境、不同病理条件下,可极化成不同的表型即M1型巨噬细胞(经典活化的巨噬细胞)和M2型巨噬细胞(替代活化的巨噬细胞)。本文将对不同巨噬细胞亚群在抗细菌感染、抗寄生虫感染、哮喘、动脉粥样硬化和肿瘤产生中起到的的保护或致病作用,以及调控巨噬细胞极化的机制进行综述。掌握巨噬细胞极化在不同疾病中的作用以及调控巨噬细胞极化的具体机制,将为疾病的预防、诊断、治疗及药物研发提供新策略。  相似文献   

15.
Macrophages (MO) are versatile cells, assuming distinct functional phenotypes depending on the activating stimulus and the microenvironment. The differential activation of macrophages is supported by profound intracellular metabolic changes, being well accepted that the M1/M(LPS+IFN-γ) phenotype rely on aerobic glycolysis, while M2/M(IL-4) macrophages depend on oxidative metabolism. On the other hand, although tumor-associated macrophages (TAMs) are characterized by their high expression of M2/M(IL-4) markers, is currently unclear whether TAMs present the same oxidative metabolic profile of M2/M(IL-4) cells. Herein, we demonstrate for the first time that despite their high expression of M2/M(IL-4) markers, TAMs show high glycolytic activity, with high lactate secretion similar to the M1/M(LPS+ IFN-γ) phenotype. This activity seems to be essential for the M2 profile of TAMs, since the inhibition of glycolysis, but not the impairment of the oxidative phosphorylation or pentose phosphate pathway, diminished the expression of M2/M(IL-4) markers. These novel data indicate that TAMs, although are usually phenotyped as M2/M(IL-4)-like macrophages, they are metabolically distinct from these cells, being rather similar to M1/M(LPS+IFN-γ) macrophages, depending on the glycolytic metabolism to support their profile and functions.  相似文献   

16.
17.
High macrophage infiltration has been correlated to improved survival in colorectal cancer (CRC). Tumor associated macrophages (TAMs) play complex roles in tumorigenesis since they are believed to hold both tumor preventing (M1 macrophages) and tumor promoting (M2 macrophages) activities. Here we have applied an immunohistochemical approach to determine the degree of infiltrating macrophages with a M1 or M2 phenotype in clinical specimens of CRC in relation to prognosis, both in CRC in general but also in subgroups of CRC defined by microsatellite instability (MSI) screening status and the CpG island methylator phenotype (CIMP). A total of 485 consecutive CRC specimens were stained for nitric oxide synthase 2 (NOS2) (also denoted iNOS) as a marker for the M1 macrophage phenotype and the scavenger receptor CD163 as a marker for the M2 macrophage phenotype. The average infiltration of NOS2 and CD163 expressing macrophages along the invasive tumor front was semi-quantitatively evaluated using a four-graded scale. Two subtypes of macrophages, displaying M1 (NOS2+) or M2 (CD163+) phenotypes, were recognized. We observed a significant correlation between the amount of NOS2+ and CD163+ cells (P<0.0001). A strong inverse correlation to tumor stage was found for both NOS2 (P<0.0001) and CD163 (P<0.0001) infiltration. Furthermore, patients harbouring tumors highly infiltrated by NOS2+ cells had a significantly better prognosis than those infiltrated by few NOS2+ cells, and this was found to be independent of MSI screening status and CIMP status. No significant difference was found on cancer-specific survival in groups of CRC with different NOS2/CD163 ratios. In conclusion, an increased infiltration of macrophages with a M1 phenotype at the tumor front is accompanied by a concomitant increase in macrophages with a M2 phenotype, and in a stage dependent manner correlated to a better prognosis in patients with CRC.  相似文献   

18.
Adipose tissue macrophages are a heterogeneous collection of classically activated (M1) and alternatively activated (M2) macrophages. Interleukin 10 (IL-10) is an anti-inflammatory cytokine, secreted by a variety of cell types including M2 macrophages. We generated a macrophage cell line stably overexpressing IL-10 (C2D-IL10) and analyzed the C2D-IL10 cells for several macrophage markers after exposure to adipocytes compared to C2D cells transfected with an empty vector (C2D-vector). C2D-IL10 macrophage cells expressed more CD206 when co-cultured with adipocytes than C2D-vector cells; while the co-cultured cell mixture also expressed higher levels of Il4, Il10, Il1β and Tnf. Since regular C2D cells traffic to adipose tissue after adoptive transfer, we explored the impact of constitutive IL-10 expression on C2D-IL10 macrophages in adipose tissue in vivo. Adipose tissue-isolated C2D-IL10 cells increased the percentage of CD206+, CD301+, CD11cCD206+ (M2) and CD11c+CD206+ (M1b) on their cell surface, compared to isolated C2D-vector cells. These data suggest that the expression of IL-10 remains stable, alters the C2D-IL10 macrophage cell surface phenotype and may play a role in regulating macrophage interactions with the adipose tissue.  相似文献   

19.
Tumor-associated macrophages (TAMs) play a major role in promoting tumor growth and metastasis and in suppressing the antitumor immune response. Despite the immunosuppressive environment created by the tumor and enforced by tumor-associated macrophages, treatment of tumor-bearing mice with IL-12 induces tumor regression associated with appearance of activated NK cells and activated tumor-specific CTLs. We therefore tested the hypothesis that IL-12 treatment could alter the function of these tumor-associated suppressor macrophages. Analysis of tumor-infiltrating macrophages and distal TAMs revealed that IL-12, both in vivo and in vitro, induced a rapid (<90 min) reduction of tumor supportive macrophage activities (IL-10, MCP-1, migration inhibitory factor, and TGFbeta production) and a concomitant increase in proinflammatory and proimmunogenic activities (TNF-alpha, IL-15, and IL-18 production). Similar shifts in functional phenotype were induced by IL-12 in tumor-infiltrating macrophages isolated from the primary tumor mass and in TAMs isolated from lung containing metastases, spleen, and peritoneal cavity. Therefore, although TAMs display a strongly polarized immunosuppressive functional profile, they retain the ability to change their functional profile to proinflammatory activities given the appropriate stimulus. The ability of IL-12 to initiate this functional conversion may contribute to early amplification of the subsequent destructive antitumor immune response.  相似文献   

20.
Kim  Ok-Hee  Kang  Gun-Hyung  Noh  Hyungjoon  Cha  Ji-Young  Lee  Ho-Jae  Yoon  Jeong-Hwan  Mamura  Mizuko  Nam  Jeong-Seok  Lee  Dae Ho  Kim  Young A.  Park  Young Joo  Kim  Hyeonjin  Oh  Byung-Chul 《Molecules and cells》2013,36(5):432-438
Tumor-associated macrophages (TAMs) accumulate in various cancers and promote tumor angiogenesis and metastasis, and thus may be ideal targets for the clinical diagnosis of tumor metastasis with high specificity. However, there are few specific markers to distinguish between TAMs and normal or inflammatory macrophages. Here, we show that TAMs localize in green fluorescent protein-labeled tumors of metastatic lymph nodes (MLNs) from B16F1 melanoma cells but not in necrotic tumor regions, suggesting that TAMs may promote the growth of tumor cells and the progression of tumor metastasis. Furthermore, we isolated pure populations of TAMs from MLNs and characterized their gene expression signatures compared to peritoneal macrophages (PMs), and found that TAMs significantly overexpress immunosuppressive cytokines such as IL-4, IL-10, and TGF-β as well as proangiogenic factors such as VEGF, TIE2, and CD31. Notably, immunological analysis revealed that TIE2+/CD31+ macrophages constitute the predominant population of TAMs that infiltrate MLNs, distinct from tissue or inflammatory macrophages. Importantly, these TIE2+/CD31+ macrophages also heavily infiltrated MLNs from human breast cancer biopsies but not reactive hyperplastic LNs. Thus, TIE2+/CD31+ macrophages may be a unique histopathological biomarker for detecting metastasis in clinical diagnosis, and a novel and promising target for TAM-specific cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号