首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Leaky integrate-and-fire (LIF) network models are commonly used to study how the spiking dynamics of neural networks changes with stimuli, tasks or dynamic network states. However, neurophysiological studies in vivo often rather measure the mass activity of neuronal microcircuits with the local field potential (LFP). Given that LFPs are generated by spatially separated currents across the neuronal membrane, they cannot be computed directly from quantities defined in models of point-like LIF neurons. Here, we explore the best approximation for predicting the LFP based on standard output from point-neuron LIF networks. To search for this best “LFP proxy”, we compared LFP predictions from candidate proxies based on LIF network output (e.g, firing rates, membrane potentials, synaptic currents) with “ground-truth” LFP obtained when the LIF network synaptic input currents were injected into an analogous three-dimensional (3D) network model of multi-compartmental neurons with realistic morphology, spatial distributions of somata and synapses. We found that a specific fixed linear combination of the LIF synaptic currents provided an accurate LFP proxy, accounting for most of the variance of the LFP time course observed in the 3D network for all recording locations. This proxy performed well over a broad set of conditions, including substantial variations of the neuronal morphologies. Our results provide a simple formula for estimating the time course of the LFP from LIF network simulations in cases where a single pyramidal population dominates the LFP generation, and thereby facilitate quantitative comparison between computational models and experimental LFP recordings in vivo.  相似文献   

2.
The spontaneous activity of working neurons yields synaptic currents that mix up in the volume conductor. This activity is picked up by intracerebral recording electrodes as local field potentials (LFPs), but their separation into original informative sources is an unresolved problem. Assuming that synaptic currents have stationary placing we implemented independent component model for blind source separation of LFPs in the hippocampal CA1 region. After suppressing contaminating sources from adjacent regions we obtained three main local LFP generators. The specificity of the information contained in isolated generators is much higher than in raw potentials as revealed by stronger phase-spike correlation with local putative interneurons. The spatial distribution of the population synaptic input corresponding to each isolated generator was disclosed by current-source density analysis of spatial weights. The found generators match with axonal terminal fields from subtypes of local interneurons and associational fibers from nearby subfields. The found distributions of synaptic currents were employed in a computational model to reconstruct spontaneous LFPs. The phase-spike correlations of simulated units and LFPs show laminar dependency that reflects the nature and magnitude of the synaptic currents in the targeted pyramidal cells. We propose that each isolated generator captures the synaptic activity driven by a different neuron subpopulation. This offers experimentally justified model of local circuits creating extracellular potential, which involves distinct neuron subtypes.  相似文献   

3.
The local field potential (LFP) is among the most important experimental measures when probing neural population activity, but a proper understanding of the link between the underlying neural activity and the LFP signal is still missing. Here we investigate this link by mathematical modeling of contributions to the LFP from a single layer-5 pyramidal neuron and a single layer-4 stellate neuron receiving synaptic input. An intrinsic dendritic low-pass filtering effect of the LFP signal, previously demonstrated for extracellular signatures of action potentials, is seen to strongly affect the LFP power spectra, even for frequencies as low as 10 Hz for the example pyramidal neuron. Further, the LFP signal is found to depend sensitively on both the recording position and the position of the synaptic input: the LFP power spectra recorded close to the active synapse are typically found to be less low-pass filtered than spectra recorded further away. Some recording positions display striking band-pass characteristics of the LFP. The frequency dependence of the properties of the current dipole moment set up by the synaptic input current is found to qualitatively account for several salient features of the observed LFP. Two approximate schemes for calculating the LFP, the dipole approximation and the two-monopole approximation, are tested and found to be potentially useful for translating results from large-scale neural network models into predictions for results from electroencephalographic (EEG) or electrocorticographic (ECoG) recordings.  相似文献   

4.
Local Field Potentials (LFPs) integrate multiple neuronal events like synaptic inputs and intracellular potentials. LFP spatiotemporal features are particularly relevant in view of their applications both in research (e.g. for understanding brain rhythms, inter-areal neural communication and neuronal coding) and in the clinics (e.g. for improving invasive Brain-Machine Interface devices). However the relation between LFPs and spikes is complex and not fully understood. As spikes represent the fundamental currency of neuronal communication this gap in knowledge strongly limits our comprehension of neuronal phenomena underlying LFPs. We investigated the LFP-spike relation during tactile stimulation in primary somatosensory (S-I) cortex in the rat. First we quantified how reliably LFPs and spikes code for a stimulus occurrence. Then we used the information obtained from our analyses to design a predictive model for spike occurrence based on LFP inputs. The model was endowed with a flexible meta-structure whose exact form, both in parameters and structure, was estimated by using a multi-objective optimization strategy. Our method provided a set of nonlinear simple equations that maximized the match between models and true neurons in terms of spike timings and Peri Stimulus Time Histograms. We found that both LFPs and spikes can code for stimulus occurrence with millisecond precision, showing, however, high variability. Spike patterns were predicted significantly above chance for 75% of the neurons analysed. Crucially, the level of prediction accuracy depended on the reliability in coding for the stimulus occurrence. The best predictions were obtained when both spikes and LFPs were highly responsive to the stimuli. Spike reliability is known to depend on neuron intrinsic properties (i.e. on channel noise) and on spontaneous local network fluctuations. Our results suggest that the latter, measured through the LFP response variability, play a dominant role.  相似文献   

5.
Multi-electrode array recordings of spike and local field potential (LFP) activity were made from primary auditory cortex of 12 normal hearing, ketamine-anesthetized cats. We evaluated 259 spectro-temporal receptive fields (STRFs) and 492 frequency-tuning curves (FTCs) based on LFPs and spikes simultaneously recorded on the same electrode. We compared their characteristic frequency (CF) gradients and their cross-correlation distances. The CF gradient for spike-based FTCs was about twice that for 2-40 Hz-filtered LFP-based FTCs, indicating greatly reduced frequency selectivity for LFPs. We also present comparisons for LFPs band-pass filtered between 4-8 Hz, 8-16 Hz and 16-40 Hz, with spike-based STRFs, on the basis of their marginal frequency distributions. We find on average a significantly larger correlation between the spike based marginal frequency distributions and those based on the 16-40 Hz filtered LFP, compared to those based on the 4-8 Hz, 8-16 Hz and 2-40 Hz filtered LFP. This suggests greater frequency specificity for the 16-40 Hz LFPs compared to those of lower frequency content. For spontaneous LFP and spike activity we evaluated 1373 pair correlations for pairs with >200 spikes in 900 s per electrode. Peak correlation-coefficient space constants were similar for the 2-40 Hz filtered LFP (5.5 mm) and the 16-40 Hz LFP (7.4 mm), whereas for spike-pair correlations it was about half that, at 3.2 mm. Comparing spike-pairs with 2-40 Hz (and 16-40 Hz) LFP-pair correlations showed that about 16% (9%) of the variance in the spike-pair correlations could be explained from LFP-pair correlations recorded on the same electrodes within the same electrode array. This larger correlation distance combined with the reduced CF gradient and much broader frequency selectivity suggests that LFPs are not a substitute for spike activity in primary auditory cortex.  相似文献   

6.
CH Wang  CP Hung  MT Chen  YH Shih  YY Lin 《PloS one》2012,7(6):e39763
Status epilepticus (SE), a pro-epileptogenic brain insult in rodent models of temporal lobe epilepsy, is successfully induced by pilocarpine in some, but not all, rats. This study aimed to identify characteristic alterations within the hippocampal neural network prior to the onset of SE. Sixteen microwire electrodes were implanted into the left hippocampus of male Sprague-Dawley rats. After a 7-day recovery period, animal behavior, hippocampal neuronal ensemble activities, and local field potentials (LFP) were recorded before and after an intra-peritoneal injection of pilocarpine (350 mg/kg). The single-neuron firing, population neuronal correlation, and coincident firing between neurons were compared between SE (n?=?9) and nonSE rats (n?=?12). A significant decrease in the strength of functional connectivity prior to the onset of SE, as measured by changes in coincident spike timing between pairs of hippocampal neurons, was exclusively found in SE rats. However, single-neuron firing and LFP profiles did not show a significant difference between SE and nonSE rats. These results suggest that desynchronization in the functional circuitry of the hippocampus, likely associated with a change in synaptic strength, may serve as an electrophysiological marker prior to SE in pilocarpine-treated rats.  相似文献   

7.
Studies analyzing sensory cortical processing or trying to decode brain activity often rely on a combination of different electrophysiological signals, such as local field potentials (LFPs) and spiking activity. Understanding the relation between these signals and sensory stimuli and between different components of these signals is hence of great interest. We here provide an analysis of LFPs and spiking activity recorded from visual and auditory cortex during stimulation with natural stimuli. In particular, we focus on the time scales on which different components of these signals are informative about the stimulus, and on the dependencies between different components of these signals. Addressing the first question, we find that stimulus information in low frequency bands (<12 Hz) is high, regardless of whether their energy is computed at the scale of milliseconds or seconds. Stimulus information in higher bands (>50 Hz), in contrast, is scale dependent, and is larger when the energy is averaged over several hundreds of milliseconds. Indeed, combined analysis of signal reliability and information revealed that the energy of slow LFP fluctuations is well related to the stimulus even when considering individual or few cycles, while the energy of fast LFP oscillations carries information only when averaged over many cycles. Addressing the second question, we find that stimulus information in different LFP bands, and in different LFP bands and spiking activity, is largely independent regardless of time scale or sensory system. Taken together, these findings suggest that different LFP bands represent dynamic natural stimuli on distinct time scales and together provide a potentially rich source of information for sensory processing or decoding brain activity.  相似文献   

8.
Local field-potentials (LFPs) are generated by neuronal ensembles and contain information about the activity of single neurons. Here, the LFPs of the cerebellar granular layer and their changes during long-term synaptic plasticity (LTP and LTD) were recorded in response to punctate facial stimulation in the rat in vivo. The LFP comprised a trigeminal (T) and a cortical (C) wave. T and C, which derived from independent granule cell clusters, co-varied during LTP and LTD. To extract information about the underlying cellular activities, the LFP was reconstructed using a repetitive convolution (ReConv) of the extracellular potential generated by a detailed multicompartmental model of the granule cell. The mossy fiber input patterns were determined using a Blind Source Separation (BSS) algorithm. The major component of the LFP was generated by the granule cell spike Na(+) current, which caused a powerful sink in the axon initial segment with the source located in the soma and dendrites. Reproducing the LFP changes observed during LTP and LTD required modifications in both release probability and intrinsic excitability at the mossy fiber-granule cells relay. Synaptic plasticity and Golgi cell feed-forward inhibition proved critical for controlling the percentage of active granule cells, which was 11% in standard conditions but ranged from 3% during LTD to 21% during LTP and raised over 50% when inhibition was reduced. The emerging picture is that of independent (but neighboring) trigeminal and cortical channels, in which synaptic plasticity and feed-forward inhibition effectively regulate the number of discharging granule cells and emitted spikes generating "dense" activity clusters in the cerebellar granular layer.  相似文献   

9.
Transient associations among neurons are thought to underlie memory and behavior. However, little is known about how such associations occur or how they can be identified. Here we recorded ongoing local field potential (LFP) activity at multiple sites within the cortex of awake monkeys and organotypic cultures of cortex. We show that when the composite activity of a local neuronal group exceeds a threshold, its activity pattern, as reflected in the LFP, occurs without distortion at other cortex sites via fast synaptic transmission. These large-amplitude LFPs, which we call coherence potentials, extend up to hundreds of milliseconds and mark periods of loss-less spread of temporal and amplitude information much like action potentials at the single-cell level. However, coherence potentials have an additional degree of freedom in the diversity of their waveforms, which provides a high-dimensional parameter for encoding information and allows identification of particular associations. Such nonlinear behavior is analogous to the spread of ideas and behaviors in social networks.  相似文献   

10.
Recordings of local field potentials (LFPs) reveal that the sensory cortex displays rhythmic activity and fluctuations over a wide range of frequencies and amplitudes. Yet, the role of this kind of activity in encoding sensory information remains largely unknown. To understand the rules of translation between the structure of sensory stimuli and the fluctuations of cortical responses, we simulated a sparsely connected network of excitatory and inhibitory neurons modeling a local cortical population, and we determined how the LFPs generated by the network encode information about input stimuli. We first considered simple static and periodic stimuli and then naturalistic input stimuli based on electrophysiological recordings from the thalamus of anesthetized monkeys watching natural movie scenes. We found that the simulated network produced stimulus-related LFP changes that were in striking agreement with the LFPs obtained from the primary visual cortex. Moreover, our results demonstrate that the network encoded static input spike rates into gamma-range oscillations generated by inhibitory–excitatory neural interactions and encoded slow dynamic features of the input into slow LFP fluctuations mediated by stimulus–neural interactions. The model cortical network processed dynamic stimuli with naturalistic temporal structure by using low and high response frequencies as independent communication channels, again in agreement with recent reports from visual cortex responses to naturalistic movies. One potential function of this frequency decomposition into independent information channels operated by the cortical network may be that of enhancing the capacity of the cortical column to encode our complex sensory environment.  相似文献   

11.
Deep brain stimulation (DBS) is a common therapy for treating movement disorders, such as Parkinson’s disease (PD), and provides a unique opportunity to study the neural activity of various subcortical structures in human patients. Local field potential (LFP) recordings are often performed with either intraoperative microelectrodes or DBS leads and reflect oscillatory activity within nuclei of the basal ganglia. These LFP recordings have numerous clinical implications and might someday be used to optimize DBS outcomes in closed-loop systems. However, the origin of the recorded LFP is poorly understood. Therefore, the goal of this study was to theoretically analyze LFP recordings within the context of clinical DBS applications. This goal was achieved with a detailed recording model of beta oscillations (∼20 Hz) in the subthalamic nucleus. The recording model consisted of finite element models of intraoperative microelectrodes and DBS macroelectrodes implanted in the brain along with multi-compartment cable models of STN projection neurons. Model analysis permitted systematic investigation into a number of variables that can affect the composition of the recorded LFP (e.g. electrode size, electrode impedance, recording configuration, and filtering effects of the brain, electrode-electrolyte interface, and recording electronics). The results of the study suggest that the spatial reach of the LFP can extend several millimeters. Model analysis also showed that variables such as electrode geometry and recording configuration can have a significant effect on LFP amplitude and spatial reach, while the effects of other variables, such as electrode impedance, are often negligible. The results of this study provide insight into the origin of the LFP and identify variables that need to be considered when analyzing LFP recordings in clinical DBS applications.  相似文献   

12.
Understanding of how neurons transform fluctuations of membrane potential, reflecting input activity, into spike responses, which communicate the ultimate results of single-neuron computation, is one of the central challenges for cellular and computational neuroscience. To study this transformation under controlled conditions, previous work has used a signal immersed in noise paradigm where neurons are injected with a current consisting of fluctuating noise that mimics on-going synaptic activity and a systematic signal whose transmission is studied. One limitation of this established paradigm is that it is designed to examine the encoding of only one signal under a specific, repeated condition. As a result, characterizing how encoding depends on neuronal properties, signal parameters, and the interaction of multiple inputs is cumbersome. Here we introduce a novel fully-defined signal mixture paradigm, which allows us to overcome these problems. In this paradigm, current for injection is synthetized as a sum of artificial postsynaptic currents (PSCs) resulting from the activity of a large population of model presynaptic neurons. PSCs from any presynaptic neuron(s) can be now considered as “signal”, while the sum of all other inputs is considered as “noise”. This allows us to study the encoding of a large number of different signals in a single experiment, thus dramatically increasing the throughput of data acquisition. Using this novel paradigm, we characterize the detection of excitatory and inhibitory PSCs from neuronal spike responses over a wide range of amplitudes and firing-rates. We show, that for moderately-sized neuronal populations the detectability of individual inputs is higher for excitatory than for inhibitory inputs during the 2–5 ms following PSC onset, but becomes comparable after 7–8 ms. This transient imbalance of sensitivity in favor of excitation may enhance propagation of balanced signals through neuronal networks. Finally, we discuss several open questions that this novel high-throughput paradigm may address.  相似文献   

13.
This model study investigates the validity of methods used to interpret linear (laminar) multielectrode recordings. In computer experiments extracellular potentials from a synaptically activated population of about 1,000 pyramidal neurons are calculated using biologically realistic compartmental neuron models combined with electrostatic forward modeling. The somas of the pyramidal neurons are located in a 0.4 mm high and wide columnar cylinder, mimicking a stimulus-evoked layer-5 population in a neocortical column. Current-source density (CSD) analysis of the low-frequency part (<500 Hz) of the calculated potentials (local field potentials, LFP) based on the ‘inverse’ CSD method is, in contrast to the ‘standard’ CSD method, seen to give excellent estimates of the true underlying CSD. The high-frequency part (>750 Hz) of the potentials (multi-unit activity, MUA) is found to scale approximately as the population firing rate to the power 3/4 and to give excellent estimates of the underlying population firing rate for trial-averaged data. The MUA signal is found to decay much more sharply outside the columnar populations than the LFP.  相似文献   

14.
The Local Field Potential (LFP) is the analog signal recorded from a microelectrode inserted into cortex, typically in the frequency band of approximately 1 to 200 Hz. Here visual stimuli were flashed on in the receptive fields of primary visual cortical neurons in awake behaving macaques, and both isolated single units (neurons) and the LFP signal were recorded from the same unipolar microelectrode. The fall-off of single unit activity as a visual stimulus was moved from near the center to near the edge of the receptive field paralleled the fall-off of the stimulus-locked (evoked) LFP response. This suggests that the evoked LFP strongly reflects local neuronal activity. However, the evoked LFP could be significant even when the visual stimulus was completely outside the receptive field and the single unit response had fallen to zero, although this phenomenon was variable. Some of the non-local components of the LFP may be related to the slow distributed, or non-retinotopic, LFP signal previously observed in anesthetized animals. The induced (not time-locked to stimulus onset) component of the LFP showed significant increases only for stimuli within the receptive field of the single units. While the LFP primarily reflects local neuronal activity, it can also reflect neuronal activity at more distant sites, although these non-local components are typically more variable, slower, and weaker than the local components.  相似文献   

15.
The auditory system creates a neuronal representation of the acoustic world based on spectral and temporal cues present at the listener''s ears, including cues that potentially signal the locations of sounds. Discrimination of concurrent sounds from multiple sources is especially challenging. The current study is part of an effort to better understand the neuronal mechanisms governing this process, which has been termed “auditory scene analysis”. In particular, we are interested in spatial release from masking by which spatial cues can segregate signals from other competing sounds, thereby overcoming the tendency of overlapping spectra and/or common temporal envelopes to fuse signals with maskers. We studied detection of pulsed tones in free-field conditions in the presence of concurrent multi-tone non-speech maskers. In “energetic” masking conditions, in which the frequencies of maskers fell within the ±1/3-octave band containing the signal, spatial release from masking at low frequencies (∼600 Hz) was found to be about 10 dB. In contrast, negligible spatial release from energetic masking was seen at high frequencies (∼4000 Hz). We observed robust spatial release from masking in broadband “informational” masking conditions, in which listeners could confuse signal with masker even though there was no spectral overlap. Substantial spatial release was observed in conditions in which the onsets of the signal and all masker components were synchronized, and spatial release was even greater under asynchronous conditions. Spatial cues limited to high frequencies (>1500 Hz), which could have included interaural level differences and the better-ear effect, produced only limited improvement in signal detection. Substantially greater improvement was seen for low-frequency sounds, for which interaural time differences are the dominant spatial cue.  相似文献   

16.
Power laws, that is, power spectral densities (PSDs) exhibiting behavior for large frequencies f, have been observed both in microscopic (neural membrane potentials and currents) and macroscopic (electroencephalography; EEG) recordings. While complex network behavior has been suggested to be at the root of this phenomenon, we here demonstrate a possible origin of such power laws in the biophysical properties of single neurons described by the standard cable equation. Taking advantage of the analytical tractability of the so called ball and stick neuron model, we derive general expressions for the PSD transfer functions for a set of measures of neuronal activity: the soma membrane current, the current-dipole moment (corresponding to the single-neuron EEG contribution), and the soma membrane potential. These PSD transfer functions relate the PSDs of the respective measurements to the PSDs of the noisy input currents. With homogeneously distributed input currents across the neuronal membrane we find that all PSD transfer functions express asymptotic high-frequency power laws with power-law exponents analytically identified as for the soma membrane current, for the current-dipole moment, and for the soma membrane potential. Comparison with available data suggests that the apparent power laws observed in the high-frequency end of the PSD spectra may stem from uncorrelated current sources which are homogeneously distributed across the neural membranes and themselves exhibit pink () noise distributions. While the PSD noise spectra at low frequencies may be dominated by synaptic noise, our findings suggest that the high-frequency power laws may originate in noise from intrinsic ion channels. The significance of this finding goes beyond neuroscience as it demonstrates how power laws with a wide range of values for the power-law exponent α may arise from a simple, linear partial differential equation.  相似文献   

17.
Local field potentials (LFPs) arise largely from dendritic activity over large brain regions and thus provide a measure of the input to and local processing within an area. We characterized LFPs and their relationship to spikes (multi and single unit) in monkey inferior temporal cortex (IT). LFP responses in IT to complex objects showed strong selectivity at 44% of the sites and tolerance to retinal position and size. The LFP preferences were poorly predicted by the spike preferences at the same site but were better explained by averaging spikes within approximately 3 mm. A comparison of separate sites suggests that selectivity is similar on a scale of approximately 800 microm for spikes and approximately 5 mm for LFPs. These observations imply that inputs to IT neurons convey selectivity for complex shapes and that such input may have an underlying organization spanning several millimeters.  相似文献   

18.
Kajikawa Y  Schroeder CE 《Neuron》2011,72(5):847-858
Local field potentials (LFPs) are of growing importance in neurophysiological investigations. LFPs supplement action potential recordings by indexing activity relevant to EEG, magnetoencephalographic, and hemodynamic (fMRI) signals. Recent reports suggest that LFPs reflect activity within very small domains of several hundred micrometers. We examined this conclusion by comparing LFP, current source density (CSD), and multiunit activity (MUA) signals in macaque auditory cortex. Estimated by frequency tuning bandwidths, these signals' "listening areas" differ systematically with an order of MUA?< CSD?< LFP. Computational analyses confirm that observed LFPs receive local contributions. Direct measurements indicate passive spread of LFPs to sites more than a centimeter from their origins. These findings appear to be independent of the frequency content of the LFP. Our results challenge the idea that LFP recordings typically integrate over extremely circumscribed local domains. Rather, LFPs appear as a mixture of local potentials with "volume conducted" potentials from distant sites.  相似文献   

19.
The frontal eye field (FEF) participates in selecting the location of behaviorally relevant stimuli for guiding attention and eye movements. We simultaneously recorded local field potentials (LFPs) and spiking activity in the FEF of monkeys performing memory-guided saccade and covert visual search tasks. We compared visual latencies and the time course of spatially selective responses in LFPs and spiking activity. Consistent with the view that LFPs represent synaptic input, visual responses appeared first in the LFPs followed by visual responses in the spiking activity. However, spatially selective activity identifying the location of the target in the visual search array appeared in the spikes about 30 ms before it appeared in the LFPs. Because LFPs reflect dendritic input and spikes measure neuronal output in a local brain region, this temporal relationship suggests that spatial selection necessary for attention and eye movements is computed locally in FEF from spatially nonselective inputs.  相似文献   

20.
The local field potential (LFP) reflects activity of many?neurons in the vicinity of the recording electrode and is therefore useful for studying local network dynamics. Much of the nature of the LFP is, however, still unknown. There are, for instance, contradicting reports on the spatial extent of the region generating the LFP. Here, we use a detailed biophysical modeling approach to investigate the size of the contributing region by simulating the LFP from a large number of neurons around the electrode. We find that the size of the generating region depends on the neuron morphology, the synapse distribution, and the correlation in synaptic activity. For uncorrelated activity, the LFP represents cells in a small region (within a radius of a few hundred micrometers). If the LFP contributions from different cells are correlated, the size of the generating region is determined by the spatial extent of the correlated activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号