首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Skeletal muscle satellite cells and adult myogenesis   总被引:9,自引:0,他引:9  
  相似文献   

3.
4.
5.
Skeletal muscle satellite cells, which are found between the muscle fiber and the basal lamina, remain quiescent and undifferentiated unless stimulated to remodel skeletal muscle or repair injured skeletal muscle tissue. Quiescent satellite cells express c-met and fibroblast growth factor receptors (FGFR) 1 and 4, suggesting these receptors are involved in maintaining the undifferentiated quiescent state or involved in satellite cell activation. Although the signaling pathways involved are poorly understood, the mitogen activated protein kinase (MAPK) cascade has been implicated in the regulation of skeletal muscle growth and differentiation by FGFs. In this study, we investigated if activation of the Raf-MKK1/2-ERK1/2 signaling cascade plays a role in FGF-dependent repression of differentiation and proliferation of MM14 cells, a skeletal muscle satellite cell line. Inactivation ofthe Raf-MKK1/2-ERK1/2 pathway in myoblasts through the overexpression of dominant negative mutants of Raf-1 blocks ERK1/2 activity and prevents myoblast proliferation. Additionally, inhibition of MKK1/2 by treatment with pharmacological inhibitors also blocks FGF-mediated stimulation of ERK1/2 and blocks the G1 to S phase transition of myoblasts. Unexpectedly, we found that inactivation of the Raf-ERK pathway does not activate a muscle reporter, nor does inactivation of this pathway promote myogenic differentiation. We conclude that FGF-stimulated ERK1/2 signaling is required during the G1 phase of the cell cycle for commitment of myoblasts to DNA synthesis but is not required for mitosis once cells have entered the S-phase. Moreover, ERK1/2 signaling is not required either to repress differentiation, to promote skeletal muscle gene expression, or to promote myoblast fusion.  相似文献   

6.
7.
Limb girdle muscular dystrophy type 2H (LGMD2H) is an inherited autosomal recessive disease of skeletal muscle caused by a mutation in the TRIM32 gene. Currently its pathogenesis is entirely unclear. Typically the regeneration process of adult skeletal muscle during growth or following injury is controlled by a tissue specific stem cell population termed satellite cells. Given that TRIM32 regulates the fate of mammalian neural progenitor cells through controlling their differentiation, we asked whether TRIM32 could also be essential for the regulation of myogenic stem cells. Here we demonstrate for the first time that TRIM32 is expressed in the skeletal muscle stem cell lineage of adult mice, and that in the absence of TRIM32, myogenic differentiation is disrupted. Moreover, we show that the ubiquitin ligase TRIM32 controls this process through the regulation of c-Myc, a similar mechanism to that previously observed in neural progenitors. Importantly we show that loss of TRIM32 function induces a LGMD2H-like phenotype and strongly affects muscle regeneration in vivo. Our studies implicate that the loss of TRIM32 results in dysfunctional muscle stem cells which could contribute to the development of LGMD2H.  相似文献   

8.
Satellite cells, which are skeletal muscle stem cells, divide to provide new myonuclei to growing muscle fibers during postnatal development, and then are maintained in an undifferentiated quiescent state in adult skeletal muscle. This state is considered to be essential for the maintenance of satellite cells, but their molecular regulation is unknown. We show that Hesr1 (Hey1) and Hesr3 (Heyl) (which are known Notch target genes) are expressed simultaneously in skeletal muscle only in satellite cells. In Hesr1 and Hesr3 single-knockout mice, no obvious abnormalities of satellite cells or muscle regenerative potentials are observed. However, the generation of undifferentiated quiescent satellite cells is impaired during postnatal development in Hesr1/3 double-knockout mice. As a result, myogenic (MyoD and myogenin) and proliferative (Ki67) proteins are expressed in adult satellite cells. Consistent with the in vivo results, Hesr1/3-null myoblasts generate very few Pax7(+) MyoD(-) undifferentiated cells in vitro. Furthermore, the satellite cell number gradually decreases in Hesr1/3 double-knockout mice even after it has stabilized in control mice, and an age-dependent regeneration defect is observed. In vivo results suggest that premature differentiation, but not cell death, is the reason for the reduced number of satellite cells in Hesr1/3 double-knockout mice. These results indicate that Hesr1 and Hesr3 are essential for the generation of adult satellite cells and for the maintenance of skeletal muscle homeostasis.  相似文献   

9.
A major obstacle in the application of cell-based therapies for the treatment of neuromuscular disorders is obtaining the appropriate number of stem/progenitor cells to produce effective engraftment. The use of embryonic stem (ES) or induced pluripotent stem (iPS) cells could overcome this hurdle. However, to date, derivation of engraftable skeletal muscle precursors that can restore muscle function from human pluripotent cells has not been achieved. Here we applied conditional expression of PAX7 in human ES/iPS cells to successfully derive large quantities of myogenic precursors, which, upon transplantation into dystrophic muscle, are able to engraft efficiently, producing abundant human-derived DYSTROPHIN-positive myofibers that exhibit superior strength. Importantly, transplanted cells also seed the muscle satellite cell compartment, and engraftment is present over 11 months posttransplant. This study provides the proof of principle for the derivation of functional skeletal myogenic progenitors from human ES/iPS cells and highlights their potential for future therapeutic application in muscular dystrophies.  相似文献   

10.
11.
12.
Craniofacial and trunk skeletal muscles are evolutionarily distinct and derive from cranial and somitic mesoderm, respectively. Different regulatory hierarchies act upstream of myogenic regulatory factors in cranial and somitic mesoderm, but the same core regulatory network – MyoD, Myf5 and Mrf4 – executes the myogenic differentiation program. Notch signaling controls self-renewal of myogenic progenitors as well as satellite cell homing during formation of trunk muscle, but its role in craniofacial muscles has been little investigated. We show here that the pool of myogenic progenitor cells in craniofacial muscle of Dll1LacZ/Ki mutant mice is depleted in early fetal development, which is accompanied by a major deficit in muscle growth. At the expense of progenitor cells, supernumerary differentiating myoblasts appear transiently and these express MyoD. The progenitor pool in craniofacial muscle of Dll1LacZ/Ki mutants is largely rescued by an additional mutation of MyoD. We conclude from this that Notch exerts its decisive role in craniofacial myogenesis by repression of MyoD. This function is similar to the one previously observed in trunk myogenesis, and is thus conserved in cranial and trunk muscle. However, in cranial mesoderm-derived progenitors, Notch signaling is not required for Pax7 expression and impinges little on the homing of satellite cells. Thus, Dll1 functions in satellite cell homing and Pax7 expression diverge in cranial- and somite-derived muscle.  相似文献   

13.
14.
Myogenic satellite cells are adult stem cells and have important roles in skeletal muscle growth, repair, and regeneration. Both insulin-like growth factor-1 (IGF-1) and leucine stimulate skeletal muscle growth, which link to the activation and proliferation of myogenic satellite cells in skeletal muscle. Mammalian target of rapamycin (mTOR) signaling is one of the main signaling pathways controlling protein synthesis and cell proliferation. Thus, IGF-1 and leucine may stimulate activation of myogenic satellite cells through mTOR signaling. In this study, myogenic satellite cells were isolated from 6-month-old pigs and subjected to IGF-1 and leucine treatments. Both IGF-1 and leucine upregulated mTOR signaling in myogenic satellite cells. The phosphorylation of mTOR at Ser(2448) increased 83.8 +/- 7.7% by IGF-1 (P < 0.05) and 83.4 +/- 5.7% by leucine (P < 0.05). The downstream targets of mTOR, S6 kinase, and 4E-binding protein 1 (4EBP1) were also phosphorylated due to IGF-1 and leucine treatments. Treatment with IGF-1 and leucine induced the phosphorylation of tuburin (TSC2), a key mediator upstream of mTOR signaling, by 272.8 +/- 26.4% and 94.2 +/- 28.7%, respectively. Treatment of cells with both IGF-1 and leucine did not show synergistic effect on mTOR signaling. Inhibition of mTOR by rapamycin abolished the protein synthesis and cell proliferation stimulated by both IGF-1 and leucine. In summary, our data showed that in preliminary cultured myogenic satellite cells mTOR signaling was activated due to IGF-1 and leucine treatments, and this mTOR activation is necessary for the activation of myogenic satellite cells.  相似文献   

15.
Skeletal muscle growth and its regeneration following injury rely on myogenic progenitor cells, a heterogeneous population that includes the satellite cells and other interstitial progenitors. The present study demonstrates that surface expression of β4 integrin marks a population of vessel-associated interstitial muscle progenitor cells. Muscle β4 integrin–positive cells do not express myogenic markers upon isolation. However, they are capable of undergoing myogenic specification in vitro and in vivo: β4 integrin cells differentiate into multinucleated myotubes in culture dishes and contribute to muscle regeneration upon delivery into diseased mice. Subfractionation of β4 integrin–expressing cells based on CD31 expression does not further enrich for myogenic precursors. These findings support the expression of β4 integrin in interstitial, vessel-associated cells with myogenic activity within adult skeletal muscle.  相似文献   

16.
In vertebrates, skeletal muscle is derived from mesodermal structures called somites. Myogenic progenitor cells that form skeletal muscles of the trunk and limbs are derived from the dermomyotome, the dorsal region of the somite. These cells enter the myogenic program by activating a set of four myogenic regulatory factors. During embryonic and fetal growth, muscle progenitor cells provide the source for muscle growth. Around birth, the muscle progenitor enters quiescence, and adopts a satellite cell position on muscle fibers, providing a pool of adult muscle stem cells. They are essential for the growth and regeneration of muscles. Among the mechanisms that control the maintenance of satellite cells properties, the Notch pathway plays a crucial role. In facts, this pathway is implicated from the early steps of somitogenesis and the development of skeletal muscles in the embryo. Furthermore, during ageing, Notch activity decreases which results in decreased muscle regeneration. Thus, the Notch pathway is a key regulator of muscle plasticity.  相似文献   

17.
The regenerative capacity of skeletal muscle has been usually attributed to resident satellite cells, which, upon activation by local or distant stimuli, initiate a myogenic differentiation program. Although recent studies have revealed that bone-marrow-derived progenitor cells may also participate in regenerative myogenesis, the signals and mechanisms involved in this process have not been elucidated. This study was designed to investigate whether signals from injured rat skeletal muscle were competent to induce a program of myogenic differentiation in expanded cultures of rat bone-marrow-derived mesenchymal stem cells (MSC). We observed that the incubation of MSC with a conditioned medium prepared from chemically damaged but not undamaged muscle resulted in a time-dependent change from fibroblast-like into elongated multinucleated cells, a transient increase in the number of MyoD positive cells, and the subsequent onset of myogenin, alpha-actinin, and myosin heavy chain expression. These results show that damaged rat skeletal muscle is endowed with the capacity to induce myogenic differentiation of bone-marrow-derived mesenchymal progenitors.  相似文献   

18.
Epigenetic alterations occur in various cells and tissues during aging, but it is not known if such alterations are also associated with aging in skeletal muscle. Here, we examined the changes of a panel of histone modifications and found H3K27ac (an active enhancer mark) is markedly increased in aged human skeletal muscle tissues. Further analyses uncovered that the H3K27ac increase and enhancer activation are associated with the up‐regulation of extracellular matrix (ECM) genes; this may result in alteration of the niche environment for skeletal muscle stem cells, also called satellite cells (SCs), which causes decreased myogenic potential and fibrogenic conversion of SCs. In mice, treatment of aging muscles with JQ1, an inhibitor of enhancer activation, inhibited the ECM up‐regulation and fibrogenic conversion of SCs and restored their myogenic differentiation potential. Altogether, our findings not only uncovered a novel aspect of skeletal muscle aging that is associated with enhancer remodeling but also implicated JQ1 as a potential treatment approach for restoring SC function in aging muscle.  相似文献   

19.
20.
The ability to regenerate tissues is shared across many metazoan taxa, yet the type and extent to which multiple cellular mechanisms come into play can differ across species. For example, urodele amphibians can completely regenerate all lost tissues, including skeletal muscles after limb amputation. This remarkable ability of urodeles to restore entire limbs has been largely linked to a dedifferentiation-dependent mechanism of regeneration. However, whether cell dedifferentiation is the fundamental factor that triggers a robust regeneration capacity, and whether the loss or inhibition of this process explains the limited regeneration potential in other vertebrates is not known. Here, we studied the cellular mechanisms underlying the repetitive regeneration of myogenic tissues in the electric fish S. macrurus. Our in vivo microinjection studies of high molecular weight cell lineage tracers into single identified adult myogenic cells (muscle or noncontractile muscle-derived electrocytes) revealed no fragmentation or cellularization proximal to the amputation plane. In contrast, ultrastructural and immunolabeling studies verified the presence of myogenic stem cells that express the satellite cell marker Pax7 in mature muscle fibers and electrocytes of S. macrurus. These data provide the first example of Pax-7 positive muscle stem cells localized within a non-contractile electrogenic tissue. Moreover, upon amputation, Pax-7 positive cells underwent a robust replication and were detected exclusively in regions that give rise to myogenic cells and dorsal spinal cord components revealing a regeneration process in S. macrurus that is dependent on the activation of myogenic stem cells for the renewal of both skeletal muscle and the muscle-derived electric organ. These data are consistent with the emergent concept in vertebrate regeneration that different tissues provide a distinct progenitor cell population to the regeneration blastema, and these progenitor cells subsequently restore the original tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号