首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cryptic species complexes are common among parasites, which tend to have large populations and are subject to rapid evolution. Such complexes may arise through host-parasite co-evolution and/or host switching. For parasites that reproduce directly on their host, there might be increased opportunities for sympatric speciation, either by exploiting different hosts or different micro-habitats within the same host. The genus Gyrodactylus is a specious group of viviparous monogeneans. These ectoparasites transfer between teleosts during social contact and cause significant host mortality. Their impact on the guppy (Poecilia reticulata), an iconic evolutionary and ecological model species, is well established and yet the population genetics and phylogenetics of these parasites remains understudied. Using mtDNA sequencing of the host and its parasites, we provide evidence of cryptic speciation in Gyrodactylus bullatarudis, G. poeciliae and G. turnbulli. For the COII gene, genetic divergence of lineages within each parasite species ranged between 5.7 and 17.2%, which is typical of the divergence observed between described species in this genus. Different lineages of G. turnbulli and G. poeciliae appear geographically isolated, which could imply allopatric speciation. In addition, for G. poeciliae, co-evolution with a different host species cannot be discarded due to its host range. This parasite was originally described on P. caucana, but for the first time here it is also recorded on the guppy. The two cryptic lineages of G. bullatarudis showed considerable geographic overlap. G. bullatarudis has a known wide host range and it can also utilize a killifish (Anablepsoides hartii) as a temporary host. This killifish is capable of migrating overland and it could act as a transmission vector between otherwise isolated populations. Additional genetic markers are needed to confirm the presence of these cryptic Gyrodactylus species complexes, potentially leading to more in-depth genetic, ecological and evolutionary analyses on this multi-host-parasite system.  相似文献   

2.
Two‐wing flyingfish (Exocoetus spp.) are widely distributed, epipelagic, mid‐trophic organisms that feed on zooplankton and are preyed upon by numerous predators (e.g., tunas, dolphinfish, tropical seabirds), yet an understanding of their speciation and systematics is lacking. As a model of epipelagic fish speciation and to investigate mechanisms that increase biodiversity, we studied the phylogeny and biogeography of Exocoetus, a highly abundant holoepipelagic fish taxon of the tropical open ocean. Morphological and molecular data were used to evaluate the phylogenetic relationships, species boundaries, and biogeographic patterns of the five putative Exocoetus species. We show that the most widespread species (E. volitans) is sister to all other species, and we find no evidence for cryptic species in this taxon. Sister relationship between E. monocirrhus (Indo‐Pacific) and E. obtusirostris (Atlantic) indicates the Isthmus of Panama and/or Benguela Barrier may have played a role in their divergence via allopatric speciation. The sister species E. peruvianus and E. gibbosus are found in different regions of the Pacific Ocean; however, our molecular results do not show a clear distinction between these species, indicating recent divergence or ongoing gene flow. Overall, our phylogeny reveals that the most spatially restricted species are more recently derived, suggesting that allopatric barriers may drive speciation, but subsequent dispersal and range expansion may affect the distributions of species.  相似文献   

3.
A D Twyford  C A Kidner  R A Ennos 《Heredity》2014,112(4):382-390
Begonia is one of the ten largest plant genera, with over 1500 species. This high species richness may in part be explained by weak species cohesion, which has allowed speciation by divergence in allopatry. In this study, we investigate species cohesion in the widespread Central American Begonia heracleifolia and Begonia nelumbiifolia, by genotyping populations at microsatellite loci. We then test for post-zygotic reproductive barriers using experimental crosses, and assess whether sterility barriers are related to intraspecific changes in genome size, indicating major genome restructuring between isolated populations. Strong population substructure was found for B. heracleifolia (FST=0.364, FST=0.506) and B. nelumbiifolia (FST=0.277, FST=0.439), and Bayesian admixture analysis supports the division of most populations into discrete genetic clusters. Moderate levels of inferred selfing (B. heracleifolia s=0.40, B. nelumbiifolia s=0.62) and dispersal limitation are likely to have contributed to significant genetic differentiation (B. heracleifolia Jost''s D=0.274; B. nelumbiifolia D=0.294). Interpopulation crosses involving a divergent B. heracleifolia population with a genome size ∼10% larger than the species mean had a ∼20% reduction in pollen viability compared with other outcrosses, supporting reproductive isolation being polymorphic within the species. The population genetic data suggest that Begonia populations are only weakly connected by gene flow, allowing reproductive barriers to accumulate between the most isolated populations. This supports allopatric divergence in situ being the precursor of speciation in Begonia, and may also be a common speciation mechanism in other tropical herbaceous plant groups.  相似文献   

4.
Pinpointing processes that structure the geographical distribution of genetic diversity of marine species and lead to speciation is challenging because of the lack of obvious dispersal barriers and the likelihood of substantial (passive) dispersal in oceans. In addition, cryptic radiations with sympatric distributions abound in marine species, challenging the allopatric speciation mechanism. Here, we present a phylogeographical study of the marine nematode species complex Rhabditis ( Pellioditis ) marina to investigate processes shaping genetic structure and speciation. Rhabditis ( P .) marina lives on decaying macroalgae in the intertidal, and may therefore disperse over considerable distances. Rhabditis ( P .) marina consists of several cryptic species sympatrically distributed at a local scale. Genetic variation in the COI gene was screened in 1362 specimens from 45 locations around the world. Two nuclear DNA genes (ITS and D2D3) were sequenced to infer phylogenetic species. We found evidence for ten sympatrically distributed cryptic species, seven of which show a strong genetic structuring. A historical signature showed evidence for restricted gene flow with occasional long-distance dispersal and range expansions pre-dating the last glacial maximum. Our data also point to a genetic break around the British Isles and a contact zone in the Southern Bight of the North Sea. We provide evidence for the transoceanic distribution of at least one cryptic species (PmIII) and discuss the dispersal capacity of marine nematodes. The allopatric distribution of some intraspecific phylogroups and of closely related cryptic species points to the potential for allopatric speciation in R. ( P .) marina .  相似文献   

5.
Drosophila antonietae and Drosophila gouveai are allopatric, cactophilic, cryptic and endemic of South America species, which aedeagus morphology is considered the main diagnostic character. In this work, single close populations from the edge distributions of each species, located in an “introgressive corridor”, were analyzed regarding temporal isozenzymatic genetic variability. Isocitrate dehydrogenase (Idh) appeared as a diagnostic locus between D. antonieate and D. gouveai because each population was fixed for different alleles. Moreover, several polymorphic loci showed accentuated divergence in the allele frequency, as evidenced by Nei’s I (0.3188) and D (1.1432), and also by Reynolds’ genetic distance and identity (1.3207 and 0.7331, respectively). Our results showed that, in spite of the very similar external morphology, related evolutionary histories, close distributions, and events of introgression in the studied area, these cryptic species have high allozymatic differentiation, and this is discussed here.  相似文献   

6.
Islands are bounded areas where high endemism is explained either by allopatric speciation through the fragmentation of the limited amount of space available, or by sympatric speciation and accumulation of daughter species. Most empirical evidence point out the dominant action of allopatric speciation. We evaluate this general view by looking at a case study where sympatric speciation is suspected. We analyse the mode, tempo and geography of speciation in Agnotecous, a cricket genus endemic to New Caledonia showing a generalized pattern of sympatry between species making sympatric speciation plausible. We obtained five mitochondrial and five nuclear markers (6.8 kb) from 37 taxa corresponding to 17 of the 21 known extant species of Agnotecous, and including several localities per species, and we conducted phylogenetic and dating analyses. Our results suggest that the diversification of Agnotecous occurred mostly through allopatric speciation in the last 10 Myr. Highly microendemic species are the most recent ones (<2 Myr) and current sympatry is due to secondary range expansion after allopatric speciation. Species distribution should then be viewed as a highly dynamic process and extreme microendemism only as a temporary situation. We discuss these results considering the influence of climatic changes combined with intricate soil diversity and mountain topography. A complex interplay between these factors could have permitted repeated speciation events and range expansion.  相似文献   

7.

Background  

Marine allopatric speciation is an enigma because pelagic larval dispersal can potentially connect disjunct populations thereby preventing reproductive and morphological divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC) that tests two hypotheses of marine allopatric speciation: 1.) "soft vicariance", where a speciation involves fragmentation of a large widespread ancestral species range that was previously connected by long distance gene flow; and 2.) peripatric colonization, where speciations in peripheral archipelagos emerge from sweepstakes colonizations from central source regions. The HABC approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair inferences about biogeographic processes while explicitly allowing for uncertainty in the demographic differences within each taxon-pair. Our method uses comparative phylogeographic data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing pairs of central and peripheral populations. We use the method on two comparative phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian (11 taxon-pairs) and Marquesan archipelagos (7 taxon-pairs).  相似文献   

8.
Surveys of tropical insects are increasingly uncovering cryptic species – morphologically similar yet reproductively isolated taxa once thought to comprise a single interbreeding entity. The vast majority of such species are described from a single location. This leaves us with little information on geographic range and intraspecific variation and limits our ability to infer the forces responsible for generating such diversity. For example, in herbivorous and parasitic insects, multiple specialists are often discovered within what were thought to be single more generalized species. Host shifts are likely to have contributed to speciation in these cases. But when and where did those shifts occur, and were they facilitated by geographic isolation? We attempted to answer these questions for two cryptic species within the butterfly Cymothoe egesta that were recently discovered on different host plants in central Cameroon. We first used mtDNA markers to separate individuals collected on the two hosts within Cameroon and then extended our analysis to incorporate individuals collected across the entire pan‐Afrotropical range of the original taxon. To our surprise, we found that the species are almost entirely allopatric, dividing the original range and overlapping only in the narrow zone of West‐Central Africa where they were first discovered in sympatry. This finding, combined with analyses of genetic variation within each butterfly species, strongly suggests that speciation occurred in allopatry, probably during the Pleistocene. We discuss the implications of our results for understanding speciation among other cryptic species recently discovered in the tropics and argue that more work is needed on geographic patterns and host usage in such taxa.  相似文献   

9.
10.
Collecting reef-fish specimens using a manned submersible diving to 300 m off Curaçao, southern Caribbean, is resulting in the discovery of numerous new fish species. The new Liopropoma sea bass described here differs from other western Atlantic members of the genus in having VIII, 13 dorsal-fin rays; a moderately indented dorsal-fin margin; a yellow-orange stripe along the entire upper lip; a series of approximately 13 white, chevron-shaped markings on the ventral portion of the trunk; and a reddish-black blotch on the tip of the lower caudal-fin lobe. The new species, with predominantly yellow body and fins, closely resembles the other two “golden basses” found together with it at Curaçao: L. aberrans and L. olneyi. It also shares morphological features with the other western Atlantic liopropomin genus, Bathyanthias. Preliminary phylogenetic data suggest that western Atlantic liopropomins, including Bathyanthias, are monophyletic with respect to Indo-Pacific Liopropoma, and that Bathyanthias is nested within Liopropoma, indicating a need for further study of the generic limits of Liopropoma. The phylogenetic data also suggest that western Atlantic liopropomins comprise three monophyletic clades that have overlapping depth distributions but different depth maxima (3–135 m, 30–150 m, 133–411 m). The new species has the deepest depth range (182–241 m) of any known western Atlantic Liopropoma species. Both allopatric and depth-mediated ecological speciation may have contributed to the evolution of western Atlantic Liopropomini.  相似文献   

11.
How do populations of highly mobile species inhabiting open environments become reproductively isolated and evolve into new species? We test the hypothesis that elevated ocean‐surface temperatures can facilitate allopatry among pelagic populations and thus promote speciation. Oceanographic modelling has shown that increasing surface temperatures cause localization and reduction of upwelling, leading to fragmentation of feeding areas critical to pelagic species. We test our hypothesis by genetic analyses of populations of two closely related baleen whales, the Antarctic minke whale (Balaenoptera bonaerensis) and common minke whale (Balaenoptera acutorostrata) whose current distributions and migration patterns extent are largely determined by areas of consistent upwelling with high primary production. Phylogeographic and population genetic analyses of mitochondrial DNA control‐region nucleotide sequences collected from 467 whales sampled in four different ocean basins were employed to infer the evolutionary relationship among populations of B. acutorostrata by rooting an intraspecific phylogeny with a population of B. bonaerensis. Our findings suggest that the two species diverged in the Southern Hemisphere less than 5 million years ago (Ma). This estimate places the speciation event during a period of extended global warming in the Pliocene. We propose that elevated ocean temperatures in the period facilitated allopatric speciation by disrupting the continuous belt of upwelling maintained by the Antarctic Circumpolar Current. Our analyses revealed that the current populations of B. acutorostrata likely diverged after the Pliocene some 1.5 Ma when global temperatures had decreased and presumably coinciding with the re‐establishment of the polar–equatorial temperature gradient that ultimately drives upwelling. In most population samples, we detected genetic signatures of exponential population expansions, consistent with the notion of increasing carrying capacity after the Pliocene. Our hypothesis that prolonged periods of global warming facilitate speciation in pelagic marine species that depend on upwelling should be tested by comparative analyses in other pelagic species.  相似文献   

12.
13.
Empirical demonstrations of feedbacks between ecology and evolution are rare. Here, we used a field experiment to test the hypothesis that avian predators impose density-dependent selection (DDS) on Timema cristinae stick insects. We transplanted wild-caught T. cristinae to wild bushes at 50 : 50 cryptic : conspicuous morph ratio and manipulated density by transplanting either 24 or 48 individuals. The frequency of the conspicuous morph was reduced by 73% in the low-density treatment, but only by 50% in the high-density treatment, supporting a hypothesis of negative DDS. Coupled with previous studies on T. cristinae, which demonstrate that maladaptive gene flow reduces population density, we support an eco-evolutionary feedback loop in this system. Furthermore, our results support the hypothesis that predator satiation is the mechanism driving DDS. We found no effects of T. cristinae density on the abundance or species richness of other arthropods. Eco-evolutionary feedbacks, driven by processes like DDS, can have implications for adaptive divergence and speciation.  相似文献   

14.
Theory suggests that sympatric speciation is possible; however, its prevalence in nature remains unknown. Because Neodiprion sawflies are host specialists and mate on their hosts, sympatric speciation via host shifts may be common in this genus. Here, we test this hypothesis using near-complete taxonomic sampling of a species group, comprehensive geographical and ecological data, and multiple comparative methods. Host-use data suggest that host shifts contributed to the evolution of reproductive isolation in Neodiprion and previous work has shown that gene flow accompanied divergence. However, geographical data provide surprisingly little support for the hypothesis that host shifts occurred in sympatry. While these data do not rule out sympatric host race formation in Neodiprion, they suggest that this speciation mode is uncommon in the genus and possibly in nature.  相似文献   

15.
Sympatric speciation has been contentious since its inception, yet is increasingly recognized as important based on accumulating theoretical and empirical support. Here, we present a compelling case of sympatric speciation in a taxon of marine reef fishes using a comparative and mechanistic approach. Hexagrammos otakii and H. agrammus occur in sympatry throughout their ranges. Molecular sequence data from six loci, with complete sampling of the genus, support monophyly of these sister species. Although hybridization occurrs frequently with an allopatric congener in an area of slight distributional overlap, we found no F1 hybrids between the focal sympatric taxa throughout their coextensive ranges. We present genetic evidence for complete reproductive isolation based on SNP analysis of 382 individuals indicating fixed polymorphisms, with no shared haplotypes or genotypes, between sympatric species. To address questions of speciation, we take a mechanistic approach and directly compare aspects of reproductive isolation between allopatric and sympatric taxa both in nature and in the laboratory. We conclude that the buildup of reproductive isolation is strikingly different in sympatric vs. allopatric taxa, consistent with theoretical predictions. Lab reared hybrids from allopatric species crosses exhibit severe fitness effects in the F1 or backcross generation. No intrinsic fitness effects are observed in F1 hybrids from sympatric species pairs, however these treatments exhibited reduced fertilization success and complete pre‐mating isolation is implied in nature because F1 hybrid adults do not occur. Our study addresses limitations of previous studies and supports new criteria for inferring sympatric speciation.  相似文献   

16.
Ecological speciation proceeds through the accumulation of divergent traits that contribute to reproductive isolation, but in the face of gene flow traits that characterize incipient species may become disassociated through recombination. Heliconius butterflies are well known for bright mimetic warning patterns that are also used in mate recognition and cause both pre- and post-mating isolation between divergent taxa. Sympatric sister taxa representing the final stages of speciation, such as Heliconius cydno and Heliconius melpomene, also differ in ecology and hybrid fertility. We examine mate preference and sterility among offspring of crosses between these species and demonstrate the clustering of Mendelian colour pattern loci and behavioural loci that contribute to reproductive isolation. In particular, male preference for red patterns is associated with the locus responsible for the red forewing band. Two further colour pattern loci are associated, respectively, with female mating outcome and hybrid sterility. This genetic architecture in which ‘speciation genes’ are clustered in the genome can facilitate two controversial models of speciation, namely divergence in the face of gene flow and hybrid speciation.  相似文献   

17.
Speciation can occur on both large and small geographical scales. In plants, local speciation, where small populations split off from a large-ranged progenitor species, is thought to be the dominant mode, yet there are still few examples to verify speciation has occurred in this manner. A recently described morphological species in the yellow monkey flowers, Mimulus filicifolius, is an excellent candidate for local speciation because of its highly restricted geographical range. Mimulus filicifolius was formerly identified as a population of M. laciniatus due to similar lobed leaf morphology and rocky outcrop habitat. To investigate whether M. filicifolius is genetically divergent and reproductively isolated from M. laciniatus, we examined patterns of genetic diversity in ten nuclear and eight microsatellite loci, and hybrid fertility in M. filicifolius and its purported close relatives: M. laciniatus, M. guttatus and M. nasutus. We found that M. filicifolius is genetically divergent from the other species and strongly reproductively isolated from M. laciniatus. We conclude that M. filicifolius is an independent rock outcrop specialist despite being morphologically and ecologically similar to M. laciniatus, and that its small geographical range nested within other wide-ranging members of the M. guttatus species complex is consistent with local speciation.  相似文献   

18.

Background and Aims

Interest in pollinator-mediated evolutionary divergence of flower phenotype and speciation in plants has been at the core of plant evolutionary studies since Darwin. Specialized pollination is predicted to lead to reproductive isolation and promote speciation among sympatric species by promoting partitioning of (1) the species of pollinators used, (2) when pollinators are used, or (3) the sites of pollen placement. Here this last mechanism is investigated by observing the pollination accuracy of sympatric Pedicularis species (Orobanchacae).

Methods

Pollinator behaviour was observed on three species of Pedicularis (P. densispica, P. tricolor and P. dichotoma) in the Hengduan Mountains, south-west China. Using fluorescent powder and dyed pollen, the accuracy was assessed of stigma contact with, and pollen deposition on, pollinating bumble-bees, respectively.

Key Results

All three species of Pedicularis were pollinated by bumble-bees. It was found that the adaptive accuracy of female function was much higher than that of male function in all three flower species. Although peak pollen deposition corresponded to the optimal location on the pollinator (i.e. the site of stigma contact) for each species, substantial amounts of pollen were scattered over much of the bees'' bodies.

Conclusions

The Pedicularis species studied in the eastern Himalayan region did not conform with Grant''s ‘Pedicularis Model’ of mechanical reproductive isolation. The specialized flowers of this diverse group of plants seem unlikely to have increased the potential for reproductive isolation or influenced rates of speciation. It is suggested instead that the extreme species richness of the Pedicularis clade was generated in other ways and that specialized flowers and substantial pollination accuracy evolved as a response to selection generated by the diversity of co-occurring congeners.  相似文献   

19.
The long generation time and large effective size of widespread forest tree species can result in slow evolutionary rate and incomplete lineage sorting, complicating species delimitation. We addressed this issue with the African timber tree genus Milicia that comprises two morphologically similar and often confounded species: M. excelsa, widespread from West to East Africa, and M. regia, endemic to West Africa. We combined information from nuclear microsatellites (nSSRs), nuclear and plastid DNA sequences, and morphological systematics to identify significant evolutionary units and infer their evolutionary and biogeographical history. We detected five geographically coherent genetic clusters using nSSRs and three levels of genetic differentiation. First, one West African cluster matched perfectly with the morphospecies M. regia that formed a monophyletic clade at both DNA sequences. Second, a West African M. excelsa cluster formed a monophyletic group at plastid DNA and was more related to M. regia than to Central African M. excelsa, but shared many haplotypes with the latter at nuclear DNA. Third, three Central African clusters appeared little differentiated and shared most of their haplotypes. Although gene tree paraphyly could suggest a single species in Milicia following the phylogenetic species concept, the existence of mutual haplotypic exclusivity and nonadmixed genetic clusters in the contact area of the two taxa indicate strong reproductive isolation and, thus, two species following the biological species concept. Molecular dating of the first divergence events showed that speciation in Milicia is ancient (Tertiary), indicating that long-living tree taxa exhibiting genetic speciation may remain similar morphologically.  相似文献   

20.
Two related species may mate readily yet rarely form hybrid zygotes. Such cryptic reproductive isolation may occur as a result of conspecific sperm precedence, suggesting that postmating sexual selection is a key process in speciation. However, demonstrating conspecific sperm precedence is nontrivial, and several methodological problems may confound the results of such studies. By mating females to conspecific and heterospecific males of varying degree of relatedness, we established the existence of conspecific sperm precedence in flour beetles, Tribolium spp. Postmating incompatibilities seem to accumulate rapidly in this group of insects, and we discuss the implications of our findings for the influence of postmating sexual selection on speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号