首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ERK1/2 signaling is frequently dysregulated in tumors through BRAF mutation. Targeting mutant BRAF with vemurafenib frequently elicits therapeutic responses; however, durable effects are often limited by ERK1/2 pathway reactivation via poorly defined mechanisms. We generated mutant BRAFV600E melanoma cells that exhibit resistance to PLX4720, the tool compound for vemurafenib, that co-expressed mutant (Q61K) NRAS. In these BRAFV600E/NRASQ61K co-expressing cells, re-activation of the ERK1/2 pathway during PLX4720 treatment was dependent on NRAS. Expression of mutant NRAS in parental BRAFV600 cells was sufficient to by-pass PLX4720 effects on ERK1/2 signaling, entry into S phase and susceptibility to apoptosis in a manner dependent on the RAF binding site in NRAS. ERK1/2 activation in BRAFV600E/NRASQ61K cells required CRAF only in the presence of PLX4720, indicating a switch in RAF isoform requirement. Both ERK1/2 activation and resistance to apoptosis of BRAFV600E/NRASQ61K cells in the presence of PLX4720 was modulated by SHOC-2/Sur-8 expression, a RAS-RAF scaffold protein. These data show that NRAS mutations confer resistance to RAF inhibitors in mutant BRAF cells and alter RAF isoform and scaffold molecule requirements to re-activate the ERK1/2 pathway.  相似文献   

2.
BRAF inhibitors have demonstrated improvement of overall survival in patients with metastatic melanoma and BRAFV600 mutations. In order to evaluate BRAF tumor heterogeneity between primary and metastatic site, we have evaluated the performance of immunohistochemistry (IHC) with an anti-BRAFV600E antibody in both localization by comparison with high resolution melting analysis followed by Sanger sequencing in a parallel blinded study. A total of 230 samples distributed as primary melanoma (n = 88) and different types of metastatic samples (n = 142) were studied in 99 patients with advanced or metastatic melanoma (stage III or IV). The prevalence of each BRAF mutation was c.1799T>A, BRAFV600E (45.2%), c.1799_1800TG>AA, BRAFV600E2 (3.0%), c.1798_1799GT>AA, BRAFV600K (3.0%), c.1801 A>G, BRAFK601E (1.3%), c.1789_1790CT>TC, BRAFL597S (0.4%), c.1780G>A, BRAFD594N (0.9%) respectively. IHC was positive in 109/112 samples harboring BRAFV600E/E2 mutations and negative in other cases. The cytoplasmic staining was either strongly positive in tumor cells of BRAFV600E mutated cases. It appeared strong brown, different from the vesicular grey cytoplasmic pigmentation of melanophages. Concordance between the two techniques was 96.4%. Sensitivity of IHC for detecting the BRAFV600E/E2 mutations was 97.3%, while specificity was 100%. Both our IHC and molecular study demonstrated homogeneity between primary and metastatic sites for BRAF status in melanoma. This study also provides evidence that IHC may be a cost-effective first-line method for BRAFV600E detection. Thereafter, molecular techniques should be used in negative, ambiguous or non-contributive cases.  相似文献   

3.
BRAFV600E/K is a frequent mutationally active tumor-specific kinase in melanomas that is currently targeted for therapy by the specific inhibitor PLX4032. Our studies with melanoma tumor cells that are BRAFV600E/K and BRAFWT showed that, paradoxically, while PLX4032 inhibited ERK1/2 in the highly sensitive BRAFV600E/K, it activated the pathway in the resistant BRAFWT cells, via RAF1 activation, regardless of the status of mutations in NRAS or PTEN. The persistently active ERK1/2 triggered downstream effectors in BRAFWT melanoma cells and induced changes in the expression of a wide-spectrum of genes associated with cell cycle control. Furthermore, PLX4032 increased the rate of proliferation of growth factor-dependent NRAS Q61L mutant primary melanoma cells, reduced cell adherence and increased mobility of cells from advanced lesions. The results suggest that the drug can confer an advantage to BRAFWT primary and metastatic tumor cells in vivo and provide markers for monitoring clinical responses.  相似文献   

4.
Altered cell metabolism is a hallmark of cancer, and targeting specific metabolic nodes is considered an attractive strategy for cancer therapy. In this study, we evaluate the effects of metabolic stressors on the deregulated ERK pathway in melanoma cells bearing activating mutations of the NRAS or BRAF oncogenes. We report that metabolic stressors promote the dimerization of KSR proteins with CRAF in NRAS‐mutant cells, and with oncogenic BRAF in BRAFV600E‐mutant cells, thereby enhancing ERK pathway activation. Despite this similarity, the two genomic subtypes react differently when a higher level of metabolic stress is induced. In NRAS‐mutant cells, the ERK pathway is even more stimulated, while it is strongly downregulated in BRAFV600E‐mutant cells. We demonstrate that this is caused by the dissociation of mutant BRAF from KSR and is mediated by activated AMPK. Both types of ERK regulation nevertheless lead to cell cycle arrest. Besides studying the effects of the metabolic stressors on ERK pathway activity, we also present data suggesting that for efficient therapies of both genomic melanoma subtypes, specific metabolic targeting is necessary.  相似文献   

5.
Melanoma is the most lethal form of skin cancer, and the incidence and mortality rates are rapidly rising. Epidemiologically, high numbers of nevi (moles) are associated with higher risk of melanoma . The majority of melanomas exhibit activating mutations in the serine/threonine kinase BRAF . BRAF mutations may be critical for the initiation of melanoma ; however, the direct role of BRAF in nevi and melanoma has not been tested in an animal model. To directly test the role of activated BRAF in nevus and melanoma development, we have generated transgenic zebrafish expressing the most common BRAF mutant form (V600E) under the control of the melanocyte mitfa promoter. Expression of mutant, but not wild-type, BRAF led to dramatic patches of ectopic melanocytes, which we have termed fish (f)-nevi. Remarkably, in p53-deficient fish, activated BRAF induced formation of melanocyte lesions that rapidly developed into invasive melanomas, which resembled human melanomas and could be serially transplanted. These data provide direct evidence that BRAF activation is sufficient for f-nevus formation, that BRAF activation is among the primary events in melanoma development, and that the p53 and BRAF pathways interact genetically to produce melanoma.  相似文献   

6.

Background

BRAFV600 inhibitors have offered a new gateway for better treatment of metastatic melanoma. However, the overall efficacy of BRAFV600 inhibitors has been lower than expected in clinical trials, and many patients have shown resistance to the drug’s effect. We hypothesized that somatic mutations in the Phosphoinositide 3-Kinase (PI3K) pathway, which promotes proliferation and survival, may coincide with BRAFV600 mutations and contribute to chemotherapeutic resistance.

Methods

We performed a somatic mutation profiling study using the 454 FLX pyrosequencing platform in order to identify candidate cancer genes within the MAPK and PI3K pathways of melanoma patients. Somatic mutations of theses candidate cancer genes were then confirmed using Sanger sequencing.

Results

As expected, BRAFV600 mutations were seen in 51% of the melanomas, whereas NRAS mutations were seen in 19% of the melanomas. However, PI3K pathway mutations, though more heterogeneous, were present in 41% of the melanoma, with PTEN being the highest mutated PI3K gene in melanomas (22%). Interestingly, several novel PI3K pathway mutations were discovered in MTOR, IRS4, PIK3R1, PIK3R4, PIK3R5, and NFKB1. PI3K pathway mutations co-occurred with BRAFV600 mutations in 17% of the tumors and co-occurred with 9% of NRAS mutant tumors, implying cooperativity between these pathways in terms of melanoma progression.

Conclusions

These novel PI3K pathway somatic mutations could provide alternative survival and proliferative pathways for metastatic melanoma cells. They therefore may be potential chemotherapeutic targets for melanoma patients who exhibit resistance to BRAFV600 inhibitors.  相似文献   

7.
BRAFV600E mutations are involved in the development of melanoma, colon cancer, and papillary thyroid carcinoma. These mutations are also found in primary brain tumors at low to moderate frequencies. In this study, we investigated a series of brain tumors to determine the prevalence and associated clinicopathologic features of BRAFV600E mutations. By direct sequencing, we analyzed 223 brain tumors, including 51 gangliogliomas (GGs), 45 pilocytic astrocytomas (PAs), 12 pleomorphic xanthoastrocytomas (PXAs), 35 glioblastomas (GBs), 28 anaplastic astrocytomas (AAs), 44 oligodendroglial tumors (ODGs), 3 anaplastic oligoastrocytomas, and 5 diffuse astrocytomas. Thirty-six cases (16.1%) exhibited the BRAFV600E mutation, including 66.7% of PXAs, 23.5% of GGs, 15.6% of PAs, and 9.7% of the malignant gliomas; the latter included 14.3% of AAs, 8.6% of GBs, and 4.5% of ODGs. Copy number aberration at the 7q34 (BRAF) locus was found in 73.1% of PAs and 50% of PXAs. 9p Homozygous deletion was found in 66.7% of PXAs, but it was not correlated with the BRAFV600E mutation. Patients' age, sex, histologic grade, and progression-free survival were also not correlated with the BRAFV600E mutation. The BRAFV600E mutation in brain tumors did not have prognostic value but is certainly a diagnostic marker and therapeutic target, not only for pediatric low-grade gliomas but also for malignant gliomas, even though the rate of mutation was not high. These results should be verified in a larger study with more cases and a longer follow-up period to overcome the limitation of small sample size.  相似文献   

8.
Although targeting the V600E activating mutation in the BRAF gene, the most common genetic abnormality in melanoma, has shown clinical efficacy in melanoma patients, response is, invariably, short lived. To better understand mechanisms underlying this acquisition of resistance to BRAF-targeted therapy in previously responsive melanomas, we induced vemurafenib resistance in two V600E BRAF+ve melanoma cell lines, A375 and DM443, by serial in vitro vemurafenib exposure. The resulting approximately 10-fold more vemurafenib-resistant cell lines, A375rVem and D443rVem, had higher growth rates and showed differential collateral resistance to cisplatin, melphalan, and temozolomide. The acquisition of vemurafenib resistance was associated with significantly increased NRAS levels in A375rVem and D443rVem, increased activation of the prosurvival protein, AKT, and the MAPKs, ERK, JNK, and P38, which correlated with decreased levels of the MAPK inhibitor protein, GSTP1. Despite the increased NRAS, whole exome sequencing showed no NRAS gene mutations. Inhibition of all three MAPKs and siRNA-mediated NRAS suppression both reversed vemurafenib resistance significantly in A375rVem and DM443rVem. Together, the results indicate a mechanism of acquired vemurafenib resistance in V600E BRAF+ve melanoma cells that involves increased activation of all three human MAPKs and the PI3K pathway, as well as increased NRAS expression, which, contrary to previous reports, was not associated with mutations in the NRAS gene. The data highlight the complexity of the acquired vemurafenib resistance phenotype and the challenge of optimizing BRAF-targeted therapy in this disease. They also suggest that targeting the MAPKs and/or NRAS may provide a strategy to mitigate such resistance in V600E BRAF+ve melanoma.  相似文献   

9.
Although BRAFV600E is well known to play an important role in the tumorigenesis of melanoma, its molecular mechanism, particularly the epigenetic aspect, has been incompletely understood. Here, we investigated the role of BRAFV600E signaling in altering gene methylation in the genome of melanoma cells using a methylated CpG island amplification/CpG island microarray system and searched for genes coupled to the BRAFV600E signaling through methylation aberrations. The results indicated that a wide range of genes with broad functions were linked to BRAFV600E signaling through their hyper- or hypomethylation. Expression of 59 genes hypermethylated upon BRAF knockdown was selectively tested and found to be largely correspondingly underexpressed, suggesting that these genes were naturally hypomethylated and overexpressed with BRAFV600E in melanoma. This BRAFV600E-promoted hypomethylation was confirmed on genes selectively examined in primary melanoma tumors. Some of these genes were functionally tested and demonstrated to play a role in melanoma cell proliferation and invasion. As a mechanism of aberrant gene methylation driven by BRAFV600E, expression of the DNA methyltransferase 1 and histone methyltransferase EZH2 was profoundly affected by BRAFV600E. We have thus uncovered a previously unrecognized prominent epigenetic mechanism in the tumorigenesis of melanoma driven by BRAFV600E. Many of the functionally important genes controlled by the BRAFV600E signaling through aberrant methylation may prove to be novel therapeutic targets for melanoma.Key words: BRAF mutation, DNA methylation, melanoma, MAP kinase pathway, gene hypomethylation, gene hypermethylation  相似文献   

10.
The rationale for using small molecule inhibitors of oncogenic proteins as cancer therapies depends, at least in part, on the assumption that metastatic tumors are primarily clonal with respect to mutant oncogene. With the emergence of BRAFV600E as a therapeutic target, we investigated intra- and inter-tumor heterogeneity in melanoma using detection of the BRAFV600E mutation as a marker of clonality. BRAF mutant-specific PCR (MS-PCR) and conventional sequencing were performed on 112 tumors from 73 patients, including patients with matched primary and metastatic specimens (n = 18). Nineteen patients had tissues available from multiple metastatic sites. Mutations were detected in 36/112 (32%) melanomas using conventional sequencing, and 85/112 (76%) using MS-PCR. The better sensitivity of the MS-PCR to detect the mutant BRAFV600E allele was not due to the presence of contaminating normal tissue, suggesting that the tumor was comprised of subclones of differing BRAF genotypes. To determine if tumor subclones were present in individual primary melanomas, we performed laser microdissection and mutation detection via sequencing and BRAFV600E-specific SNaPshot analysis in 9 cases. Six of these cases demonstrated differing proportions of BRAFV600Eand BRAFwild-type cells in distinct microdissected regions within individual tumors. Additional analyses of multiple metastatic samples from individual patients using the highly sensitive MS-PCR without microdissection revealed that 5/19 (26%) patients had metastases that were discordant for the BRAFV600E mutation. In conclusion, we used highly sensitive BRAF mutation detection methods and observed substantial evidence for heterogeneity of the BRAFV600E mutation within individual melanoma tumor specimens, and among multiple specimens from individual patients. Given the varied clinical responses of patients to BRAF inhibitor therapy, these data suggest that additional studies to determine possible associations between clinical outcomes and intra- and inter-tumor heterogeneity could prove fruitful.  相似文献   

11.
Patients with early stage, radial growth phase (RGP) melanoma have a 97% survival rate; however, when the melanoma progresses to the invasive vertical growth phase (VGP), survival rates decrease to 15%. The targets of many clinical trials are the known genetic and molecular mechanisms involved in melanoma progression, with the most common oncogenic mutation being the BRAFV600E. However, less than half of melanomas harbor this mutation, and consequently, do not respond to the current BRAF targeted treatments. It is therefore critical to elucidate alternative mechanisms regulating melanoma progression. Increased expression of the chemokine receptor, CXCR3, on melanoma cells is correlated with increased metastasis and poor patient outcomes, suggesting a role for CXCR3 in the RGP to VGP transition. We found that endogenous CXCR3 can be induced in two RGP cell lines, BOWES (BRAFWT) and WM35 (BRAFV600E), with in vitro environmental stress and nutrient deprivation. Signaling via induced endogenous CXCR3 is linked with IL-8 expression in BOWES cells. Ectopic overexpression of CXCR3 in BOWES cells leads to increased ligand-mediated phERK, cellular migration, and IL-8 expression in vitro, and to increased tumorigenesis and lymph node metastasis in vivo. Our results demonstrate that, in BRAFWT melanomas, CXCR3 signaling mediates significant increases in IL-8 expression, suggesting that CXCR3 expression and signaling may represent a transformative event that drives the progression of BRAFWT melanomas. Implications: Expression of CXCR3 on BRAFWT melanoma cells may be a mediator of melanoma progression.  相似文献   

12.
《Genome biology》2013,14(10):R113

Background

Melanoma is the most deadly form of skin cancer. Expression of oncogenic BRAF or NRAS, which are frequently mutated in human melanomas, promote the formation of nevi but are not sufficient for tumorigenesis. Even with germline mutated p53, these engineered melanomas present with variable onset and pathology, implicating additional somatic mutations in a multi-hit tumorigenic process.

Results

To decipher the genetics of these melanomas, we sequence the protein coding exons of 53 primary melanomas generated from several BRAFV600E or NRASQ61K driven transgenic zebrafish lines. We find that engineered zebrafish melanomas show an overall low mutation burden, which has a strong, inverse association with the number of initiating germline drivers. Although tumors reveal distinct mutation spectrums, they show mostly C > T transitions without UV light exposure, and enrichment of mutations in melanogenesis, p53 and MAPK signaling. Importantly, a recurrent amplification occurring with pre-configured drivers BRAFV600E and p53-/- suggests a novel path of BRAF cooperativity through the protein kinase A pathway.

Conclusion

This is the first analysis of a melanoma mutational landscape in the absence of UV light, where tumors manifest with remarkably low mutation burden and high heterogeneity. Genotype specific amplification of protein kinase A in cooperation with BRAF and p53 mutation suggests the involvement of melanogenesis in these tumors. This work is important for defining the spectrum of events in BRAF or NRAS driven melanoma in the absence of UV light, and for informed exploitation of models such as transgenic zebrafish to better understand mechanisms leading to human melanoma formation.  相似文献   

13.
Although BRAFV600E is well known to play an important role in the tumorigenesis of melanoma, its molecular mechanism, particularly the epigenetic aspect, has been incompletely understood. Here, we investigated the role of BRAFV600E signaling in altering gene methylation in the genome of melanoma cells using a methylated CpG island amplification/CpG island microarray system and searched for genes coupled to the BRAFV600Esignaling through methylation aberrations. The results indicated that a wide range of genes with broad functions were linked to BRAFV600E signaling through their hyper- or hypomethylation. Expression of 59 genes hypermethylated upon BRAF knockdown was selectively tested and found to be largely correspondingly underexpressed, suggesting that these genes were naturally hypomethylated, and overexpressed with BRAFV600E in melanoma. This BRAFV600E-promoted hypomethylation was confirmed on genes selectively examined in primary melanoma tumors. Some of these genes were functionally tested and demonstrated to play a role in melanoma cell proliferation and invasion. As a mechanism of aberrant gene methylation driven by BRAFV600E, expression of the DNA methyltransferase 1 and histone methyltransferase EZH2 was profoundly affected by BRAFV600E. We have thus uncovered a previously unrecognized prominent epigenetic mechanism in the tumorigenesis of melanoma driven by BRAFV600E. Many of the functionally important genes controlled by the BRAFV600E signaling through aberrant methylation may prove to be novel therapeutic targets for melanoma.  相似文献   

14.
The effect of NRAS mutations on the pathological features and clinical outcomes in patients with cutaneous melanoma was compared with that of tumors containing BRAF(V600E) mutations and tumors wild type for both (WT). Clinical outcome data were obtained from a prospective cohort of 249 patients. Mutations involving NRAS and BRAF(V600E) were detected by PCR and were sequence verified. Cox proportional hazards regression was performed to relate NRAS and BRAF mutations to clinical outcome. Seventy-five percentage of NRAS mutations occurred in tumors >1 mm thick (BRAF(V600E) 40%, WT 34%); 75% of NRAS mutations had >1 mitosis/mm(2) (BRAF(V600E) 40%, WT 55%). When compared to WT, multivariate analysis of melanoma-specific survival (MSS) identified NRAS mutations as an adverse prognostic factor [hazard ratio (HR) 2.96; P = 0.04] but not BRAF(V600E) mutations (HR 1.73; P = 0.23). NRAS mutations were associated with thicker tumors and higher rates of mitosis when compared to BRAF(V600E) and WT melanoma and independently of this, with shorter MSS.  相似文献   

15.

Purpose

Dendritic cells (DCs) can induce strong tumor-specific T-cell immune responses. Constitutive upregulation of the mitogen-activated protein kinase (MAPK) pathway by a BRAFV600 mutation, which is present in about 50 % of metastatic melanomas, may be linked to compromised function of DCs in the tumor microenvironment. Targeting both MEK and BRAF has shown efficacy in BRAFV600 mutant melanoma.

Methods

We co-cultured monocyte-derived human DCs with melanoma cell lines pretreated with the MEK inhibitor U0126 or the BRAF inhibitor vemurafenib. Cytokine production (IL-12 and TNF-α) and surface marker expression (CD80, CD83, and CD86) in DCs matured with the Toll-like receptor 3/Melanoma Differentiation-Associated protein 5 agonist polyI:C was examined. Additionally, DC function, viability, and T-cell priming capacity were assessed upon direct exposure to U0126 and vemurafenib.

Results

Cytokine production and co-stimulation marker expression were suppressed in polyI:C-matured DCs exposed to melanoma cells in co-cultures. This suppression was reversed by MAPK blockade with U0126 and/or vemurafenib only in melanoma cell lines carrying a BRAFV600E mutation. Furthermore, when testing the effect of U0126 directly on DCs, marked inhibition of function, viability, and DC priming capacity was observed. In contrast, vemurafenib had no effect on DC function across a wide range of dose concentrations.

Conclusions

BRAFV600E mutant melanoma cells modulate DC through the MAPK pathway as its blockade can reverse suppression of DC function. MEK inhibition negatively impacts DC function and viability if applied directly. In contrast, vemurafenib does not have detrimental effects on important functions of DCs and may therefore be a superior candidate for combination immunotherapy approaches in melanoma patients.  相似文献   

16.
Past studies have shown that histone deacetylase (HDAC) and mutant BRAF (v-Raf murine sarcoma viral oncogene homolog B1) inhibitors synergistically kill melanoma cells with activating mutations in BRAF. However, the mechanism(s) involved remains less understood. Here, we report that combinations of HDAC and BRAF inhibitors kill BRAFV600E melanoma cells by induction of necrosis. Cotreatment with the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) or panobinostat (LBH589) and the BRAF inhibitor PLX4720 activated the caspase cascade, but caspases appeared dispensable for killing, in that inhibition of caspases did not invariably block induction of cell death. The majority of dying cells acquired propidium iodide positivity instantly when they became positive for Annexin V, suggesting induction of necrosis. This was supported by caspase-independent release of high-mobility group protein B1, and further consolidated by rupture of the plasma membrane and loss of nuclear and cytoplasmic contents, as manifested by transmission electron microscopic analysis. Of note, neither the necrosis inhibitor necrostatin-1 nor the small interference RNA (siRNA) knockdown of receptor-interacting protein kinase 3 (RIPK3) inhibited cell death, suggesting that RIPK1 and RIPK3 do not contribute to induction of necrosis by combinations of HDAC and BRAF inhibitors in BRAFV600E melanoma cells. Significantly, SAHA and the clinically available BRAF inhibitor vemurafenib cooperatively inhibited BRAFV600E melanoma xenograft growth in a mouse model even when caspase-3 was inhibited. Taken together, these results indicate that cotreatment with HDAC and BRAF inhibitors can bypass canonical cell death pathways to kill melanoma cells, which may be of therapeutic advantage in the treatment of melanoma.  相似文献   

17.
Melanoma is one of the most aggressive cancers and its incidence is increasing worldwide. So far there are no curable therapies especially after metastasis. Due to frequent mutations in members of the mitogen-activated protein kinase (MAPK) signaling pathway, this pathway is constitutively active in melanoma. It has been shown that the SONIC HEDGEHOG (SHH)-GLI and MAPK signaling pathway regulate cell growth in many tumors including melanoma and interact with each other in the regulation of cell proliferation and survival.Here we show that the SHH-GLI pathway is active in human melanoma cell lines as they express downstream target of this pathway GLI1. Expression of GLI1 was significantly higher in human primary melanoma tissues harboring BRAFV600E mutation than those with wild type BRAF. Pharmacologic inhibition of BRAFV600E in human melanoma cell lines resulted in decreased expression of GLI1 thus demonstrating interaction of SHH-GLI and MAPK pathways. Inhibition of SHH-GLI pathway by the novel small molecule inhibitor of smoothened NVP-LDE225 was followed by inhibition of cell growth and induction of apoptosis in human melanoma cell lines, interestingly with both BRAFV600E and BRAFWild Type status. NVP-LDE225 was potent in reducing cell proliferation and inducing tumor growth arrest in vitro and in vivo, respectively and these effects were superior to the natural compound cyclopamine.Finally, we conclude that inhibition of SHH-GLI signaling pathway in human melanoma by the specific smoothened inhibitor NVP-LDE225 could have potential therapeutic application in human melanoma even in the absence of BRAFV600E mutation and warrants further investigations.  相似文献   

18.
BRAF mutations at codons L597 and K601 occur uncommonly in melanoma. Clinical and pathological associations of these mutations were investigated in a cohort of 1119 patients with known BRAF mutation status. A BRAF mutation was identified in 435 patients; Mutations at L597 and the K601E mutation were seen in 3.4 and 3.2% of these, respectively. K601E melanomas tended to occur in male patients, a median age of 58 yr, were generally found on the trunk (64%) and uncommonly associated with chronically sun‐damaged (CSD) skin. BRAF L597 melanomas occurred in older patients (median 66 yr), but were associated with CSD skin (extremities or head and neck location – 73.3%, P = 0.001). Twenty‐three percent of patients with V600E‐ and 43% of patients with K601E‐mutant melanomas presented with nodal disease at diagnosis compared to just 14% of patients with BRAF wild‐type tumors (P = 0.001 and 0.006, respectively). Overall, these mutations represent a significant minority of BRAF mutations, but have distinct clinicopathological phenotypes and clinical behaviors.  相似文献   

19.
The V600E BRAF kinase mutation, which activates the downstream MAPK signaling pathway, commonly occurs in about 8% of all human malignancies and about 50% of all melanomas. In this study, we employed virtual screening and chemical synthesis to identify a series of N-(thiophen-2-yl) benzamide derivatives as potent BRAFV600E inhibitors. Structure–activity relationship studies of these derivatives revealed that compounds b40 and b47 are the two most potent BRAFV600E inhibitors in this series.  相似文献   

20.
The majority of melanomas carry an oncogenic BRAF mutation (BRAFV600E), which results in constitutive kinase activity driving melanoma proliferation. While inhibitors of BRAFV600E (BRAFi) effectively lead to rapid tumor shrinkage, most patients treated with BRAFi develop acquired resistance. Identification of factors as regulators of melanoma growth and as potential sources of resistance is thus crucial for the design of improved therapies to treat advanced melanoma with more durable responses. Here, we show that KH-type splicing regulatory protein (KSRP) is critical for proliferation of melanoma cells without and with acquired resistance to vemurafenib. Silencing KSRP reduces cell proliferation and augments the growth suppressive effects of vemurafenib. We identify killin (KLLN), a p53-regulated DNA replication inhibitor, as a downstream effector of growth inhibition by KSRP silencing and demonstrate that KSRP promotes decay of KLLN mRNA through an RNA-protein interaction. Using heterologous mRNA reporters, we show that a U-rich element within the 3′ untranslated region of KLLN is responsible for KSRP-dependent mRNA decay. These findings implicate that KSRP is an important regulator of melanoma cell growth in part through controlling KLLN mRNA stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号