首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.

Aim

Nicotinic acid (NA) treatment decreases plasma triglycerides and increases HDL cholesterol, but the mechanisms involved in these change are not fully understood. A reduction in cholesteryl ester transfer protein (CETP) activity has been advanced to explain most lipid-modulating effects of NA. However, due to the central role of CETP in reverse cholesterol transport in humans, other effects of NA may have been hidden. As dogs have no CETP activity, we conducted this study to examine the specific effects of extended-release niacin (NA) on lipids and high-density lipoprotein (HDL) cholesteryl ester (CE) turnover in obese Insulin-Resistant dogs with increase plasma triglycerides.

Methods

HDL kinetics were assessed in fasting dogs before and four weeks after NA treatment through endogenous labeling of cholesterol and apolipoprotein AI by simultaneous infusion of [1,2 13C2] acetate and [5,5,5 2H3] leucine for 8 h. Kinetic data were analyzed by compartmental modeling. In vitro cell cholesterol efflux of serum from NA-treated dogs was also measured.

Results

NA reduced plasma total cholesterol, low-density lipoprotein cholesterol, HDL cholesterol, triglycerides (TG), and very-low-density lipoprotein TG concentrations (p < 0.05). The kinetic study also showed a higher cholesterol esterification rate (p < 0.05). HDL-CE turnover was accelerated (p < 0.05) via HDL removal through endocytosis and selective CE uptake (p < 0.05). We measured an elevated in vitro cell cholesterol efflux (p < 0.05) with NA treatment in accordance with a higher cholesterol esterification.

Conclusion

NA decreased HDL cholesterol but promoted cholesterol efflux and esterification, leading to improved reverse cholesterol transport. These results highlight the CETP-independent effects of NA in changes of plasma lipid profile.  相似文献   

2.
The objective of this study was to determine the combined effects of HL and cholesteryl ester transfer protein (CETP), derived exclusively from bone marrow (BM), on plasma lipids and atherosclerosis in high-fat-fed, atherosclerosis-prone mice. We transferred BM expressing these proteins into male and female double-knockout HL-deficient, LDL receptor-deficient mice (HL−/−LDLr−/−). Four BM chimeras were generated, where BM-derived cells expressed 1) HL but not CETP, 2) CETP and HL, 3) CETP but not HL, or 4) neither CETP nor HL. After high-fat feeding, plasma HDL-cholesterol (HDL-C) was decreased in mice with BM expressing CETP but not HL (17 ± 4 and 19 ± 3 mg/dl, female and male mice, respectively) compared with mice with BM expressing neither CETP nor HL (87 ± 3 and 95 ± 4 mg/dl, female and male mice, respectively, P < 0.001 for both sexes). In female mice, the presence of BM-derived HL mitigated this CETP-mediated decrease in HDL-C. BM-derived CETP decreased the cholesterol component of HDL particles and increased plasma cholesterol. BM-derived HL mitigated these effects of CETP. Atherosclerosis was not significantly different between BM chimeras. These results suggest that BM-derived HL mitigates the HDL-lowering, HDL-modulating, and cholesterol-raising effects of BM-derived CETP and warrant further studies to characterize the functional properties of these protein interactions.  相似文献   

3.
Plasma lipoproteins and glucose homeostasis were evaluated after marked weight loss before and over 12 months following Roux-en-Y gastric-bypass (RYGBP) surgery in 19 morbidly obese women. Standard lipids, remnant-lipoprotein cholesterol (RLP-C); HDL-triglyceride (TG); apolipoproteins (apo) A-I, A-II, E, and A-I-containing HDL subpopulations; lecithin-cholesterol acyltransferase (LCAT) and cholesteryl ester transfer protein (CETP) mass and activity; plasma glucose and insulin levels were measured before and at 1, 3, 6, and 12 months after GBP surgery. Baseline concentrations of TG, RLP-C, glucose, and insulin were significantly higher in obese than in normal-weight, age-matched women, whereas HDL cholesterol (HDL-C), apoA-I, apoA-II, α-1 and α-2 levels were significantly lower. Over 1 year, significant decreases of body mass index, glucose, insulin, TG, RLP-C, HDL-TG, and preβ-1 levels were observed with significant increases of HDL-C and α-1 levels (all P < 0.05). Changes of fat mass were correlated with those of LDL cholesterol (P = 0.018) and LCAT mass (P = 0.011), but not with CETP mass (P = 0.265). Changes of fasting plasma glucose concentrations were inversely correlated with those of CETP mass (P = 0.005) and α-1 level (P = 0.004). Changes of fasting plasma insulin concentrations were positively correlated with those of LCAT mass (P = 0.043) and inversely with changes of α-1 (P = 0.03) and α-2 (P = 0.05) concentrations. These results demonstrate beneficial changes in HDL remodeling following substantial weight loss induced by RYGBP surgery and that these changes are associated with improvement of glucose homeostasis in these patients.  相似文献   

4.
Recently, we showed in APOE*3-Leiden cholesteryl ester transfer protein (E3L.CETP) mice that anacetrapib attenuated atherosclerosis development by reducing (V)LDL cholesterol [(V)LDL-C] rather than by raising HDL cholesterol. Here, we investigated the mechanism by which anacetrapib reduces (V)LDL-C and whether this effect was dependent on the inhibition of CETP. E3L.CETP mice were fed a Western-type diet alone or supplemented with anacetrapib (30 mg/kg body weight per day). Microarray analyses of livers revealed downregulation of the cholesterol biosynthesis pathway (P < 0.001) and predicted downregulation of pathways controlled by sterol regulatory element-binding proteins 1 and 2 (z-scores −2.56 and −2.90, respectively; both P < 0.001). These data suggest increased supply of cholesterol to the liver. We found that hepatic proprotein convertase subtilisin/kexin type 9 (Pcsk9) expression was decreased (−28%, P < 0.01), accompanied by decreased plasma PCSK9 levels (−47%, P < 0.001) and increased hepatic LDL receptor (LDLr) content (+64%, P < 0.01). Consistent with this, anacetrapib increased the clearance and hepatic uptake (+25%, P < 0.001) of [14C]cholesteryl oleate-labeled VLDL-mimicking particles. In E3L mice that do not express CETP, anacetrapib still decreased (V)LDL-C and plasma PCSK9 levels, indicating that these effects were independent of CETP inhibition. We conclude that anacetrapib reduces (V)LDL-C by two mechanisms: 1) inhibition of CETP activity, resulting in remodeled VLDL particles that are more susceptible to hepatic uptake; and 2) a CETP-independent reduction of plasma PCSK9 levels that has the potential to increase LDLr-mediated hepatic remnant clearance.  相似文献   

5.
Farnesoid X receptor (FXR) is a nuclear receptor that regulates bile acid metabolism and transport. Mice lacking expression of FXR (FXR KO) have a high incidence of foci of cellular alterations (FCA) and liver tumors. Here, we report that Helicobacter hepaticus infection is necessary for the development of increased hepatitis scores and FCA in previously Helicobacter-free FXR KO mice. FXR KO and wild-type (WT) mice were sham-treated or orally inoculated with H. hepaticus. At 12 months post-infection, mice were euthanized and liver pathology, gene expression, and the cecal microbiome were analyzed. H. hepaticus induced significant increases hepatitis scores and FCA numbers in FXR KO mice (P<0.01 and P<0.05, respectively). H. hepaticus altered the beta diversity of cecal microbiome in both WT and FXR KO mice compared to uninfected mice (P<0.05). Significant upregulation of β-catenin, Rela, Slc10a1, Tlr2, Nos2, Vdr, and Cyp3a11 was observed in all FXR KO mice compared to controls (P<0.05). Importantly, H. hepaticus and FXR deficiency were necessary to significantly upregulate Cyp2b10 (P<0.01). FXR deficiency was also a potent modulator of the cecal microbiota, as observed by a strong decrease in alpha diversity. A significant decrease in Firmicutes, particularly members of the order Clostridiales, was observed in FXR KO mice (P<0.05 and FDR<5%, ANOVA). While FXR deficiency strongly affects expression of genes related to immunity and bile acid metabolism, as well as the composition of the microbiome; however, its deficiency was not able to produce significant histopathological changes in the absence of H. hepaticus infection.  相似文献   

6.
Genome-wide association studies show that cholesteryl ester transfer protein (CETP) single nucleotide polymorphisms (SNPs) are more strongly associated with HDL cholesterol (HDL-C) concentrations than any other loci across the genome. However, gene-environment interactions for clinical applications are still largely unknown. We studied gene-environment interactions between CETP SNPs and dietary fat intake, adherence to the Mediterranean diet, alcohol consumption, smoking, obesity, and diabetes on HDL-C in 4,210 high cardiovascular risk subjects from a Mediterranean population. We focused on the −4,502C>T and the TaqIB SNPs in partial linkage disequilibrium (D''= 0.88; P < 0.001). They were independently associated with higher HDL-C (P < 0.001); this clinically relevant association was greater when their diplotype was considered (14% higher in TT/B2B2 vs. CC/B1B1). No gene-gene interaction was observed. We also analyzed the association of these SNPs with blood pressure, and no clinically relevant associations were detected. No statistically significant interactions of these SNPs with obesity, diabetes, and smoking in determining HDL-C concentrations were found. Likewise, alcohol, dietary fat, and adherence to the Mediterranean diet did not statistically interact with the CETP variants (independently or as diplotype) in determining HDL-C. In conclusion, the strong association of the CETP SNPs and HDL-C was not statistically modified by diet or by the other environmental factors.  相似文献   

7.
Background: Emerging evidence shows that m.5178C>A variant is associated with a lower risk of coronary artery disease (CAD). However, the specific mechanisms remain elusive. Since dyslipidemia is one of the most critical risk factors for CAD and accounts for at least 50% of the population-attributable risk, it is tempting to speculate that the reduced CAD risk caused by the m.5178C>A variant may stem from an improved lipid profile. In order to verify this hypothesis, we conducted the present study to clarify the association of m.5178C>A variant with lipid levels.Methods: By searching ten databases for studies published before 30 June 2021. Thirteen East Asian populations (7587 individuals) were included for the analysis.Results: The present study showed that m.5178C>A variant was associated with higher high-density lipoprotein cholesterol (HDL-C) [standardized mean difference (SMD) = 0.12, 95% confidence interval (CI) = 0.06–0.17, P<0.001] and total cholesterol (TC) (SMD = 0.08, 95% CI = 0.02–0.14, P=0.01) levels. In subgroup analysis, the association of m.5178C>A variant with higher HDL-C levels were observed in Japanese (SMD = 0.09, 95% CI = 0.01–0.17, P=0.03) and Chinese populations (SMD = 0.13, 95% CI = 0.07–0.20, P<0.001). However, the association of m.5178C>A variant with lower low-density lipoprotein cholesterol (LDL-C) levels were only observed in Japanese populations (SMD = −0.11, 95% CI = −0.22 to 0.00, P=0.04).Conclusions: The m.5178C>A variant was associated with higher HDL-C and lower LDL-C levels in Japanese populations, which may contribute to decreased CAD risk and longevity of Japanese.  相似文献   

8.

Background

Xanthohumol is expected to be a potent anti-atherosclerotic agent due to its inhibition of cholesteryl ester transfer protein (CETP). In this study, we hypothesized that xanthohumol prevents atherosclerosis in vivo and used CETP-transgenic mice (CETP-Tg mice) to evaluate xanthohumol as a functional agent.

Methodology/Principal Findings

Two strains of mice, CETP-Tg and C57BL/6N (wild-type), were fed a high cholesterol diet with or without 0.05% (w/w) xanthohumol ad libitum for 18 weeks. In CETP-Tg mice, xanthohumol significantly decreased accumulated cholesterol in the aortic arch and increased HDL cholesterol (HDL-C) when compared to the control group (without xanthohumol). Xanthohumol had no significant effect in wild-type mice. CETP activity was significantly decreased after xanthohumol addition in CETP-Tg mice compared with the control group and it inversely correlated with HDL-C (%) (P<0.05). Furthermore, apolipoprotein E (apoE) was enriched in serum and the HDL-fraction in CETP-Tg mice after xanthohumol addition, suggesting that xanthohumol ameliorates reverse cholesterol transport via apoE-rich HDL resulting from CETP inhibition.

Conclusions

Our results suggest xanthohumol prevents cholesterol accumulation in atherogenic regions by HDL-C metabolism via CETP inhibition leading to apoE enhancement.  相似文献   

9.
Gene polymorphisms associated so far with plasma lipid concentrations explain only a fraction of their heritability, which can reach up to 60%. Recent studies suggest that epigenetic modifications (DNA methylation) could contribute to explain part of this missing heritability. We therefore assessed whether the DNA methylation of key lipoprotein metabolism genes is associated with high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C) and triglyceride levels in patients with familial hypercholesterolemia (FH). Untreated FH patients (61 men and 37 women) were recruited for the measurement of blood DNA methylation levels at the ABCG1, LIPC, PLTP and SCARB1 gene loci using bisulfite pyrosequencing. ABCG1, LIPC and PLTP DNA methylation was significantly associated with HDL-C, LDL-C and triglyceride levels in a sex-specific manner (all P < 0.05). FH subjects with previous history of coronary artery disease (CAD) had higher LIPC DNA methylation levels compared with FH subjects without CAD (P = 0.02). Sex-specific multivariable linear regression models showed that new and previously reported epipolymorphisms (ABCG1-CpGC3, LIPC-CpGA2, mean PLTP-CpGC, LPL-CpGA3, CETP-CpGA2, and CETP-CpGB2) significantly contribute to variations in plasma lipid levels (all P < 0.001 in men and P < 0.02 in women), independently of traditional predictors such as age, waist circumference, blood pressure, fasting plasma lipids and glucose levels. These results suggest that epigenetic perturbations of key lipoprotein metabolism genes are associated with plasma lipid levels, contribute to the interindividual variability and might partially explain the missing heritability of plasma lipid levels, at least in FH.  相似文献   

10.
Comorbidities impact negatively on breast cancer prognosis, especially in developing countries where cases are usually presented to clinics at advanced stages. This study aimed to determine the atherogenic index of plasma (AIP) and cardiovascular risk factors among Ghanaian women diagnosed with breast cancer. A total of 52 breast cancer patients were age-matched with 52 healthy controls. Sociodemographics of participants were obtained using a well-structured questionnaire. Pathological data of patients were obtained from medical records, and all clinical and anthropometric measurements were done using standard instruments. Lipid profile was determined from serum using enzymatic assays, and cardiovascular risk factors were calculated from estimated lipid parameters. Blood pressure, AIP, total cholesterol (T. chol), triglyceride (TG), and low-density lipoprotein cholesterol (LDL-c) were significantly elevated (P < 0.05) in the breast cancer patients compared to the controls, but the reverse was observed for high-density lipoprotein cholesterol (HDL-c) (P < 0.01). Obesity (odds ratio [OR] = 2.51, P = 0.015), hypertension (OR = 4.04, P < 0.001), AIP (OR = 10.44, P < 0.001), and dyslipidemia (P < 0.01) were significantly associated with breast cancer. AIP correlated positively with age (r = 0.244, P < 0.05), body mass index (r = 0.225, P < 0.05), blood pressure (P < 0.01), T. chol (r =0.418, P< 0.01), and TG (r = 0.880, P < 0.01), but inversely correlated with HDL-c (r = −0.460, P < 0.01). A greater proportion (88%) of the patients presented with advanced breast cancer. AIP and cardiovascular risk factors were high in the breast cancer patients. Considering that AIP and cardiovascular disease risk factors are of interest in breast cancer patients, further studies are needed to understand the effect of AIP and cardiovascular risk factors on breast cancer outcomes.  相似文献   

11.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition is a potential novel strategy for treatment of CVD. Alirocumab is a fully human PCSK9 monoclonal antibody in phase 3 clinical development. We evaluated the antiatherogenic potential of alirocumab in APOE*3Leiden.CETP mice. Mice received a Western-type diet and were treated with alirocumab (3 or 10 mg/kg, weekly subcutaneous dosing) alone and in combination with atorvastatin (3.6 mg/kg/d) for 18 weeks. Alirocumab alone dose-dependently decreased total cholesterol (−37%; −46%, P < 0.001) and TGs (−36%; −39%, P < 0.001) and further decreased cholesterol in combination with atorvastatin (−48%; −58%, P < 0.001). Alirocumab increased hepatic LDL receptor protein levels but did not affect hepatic cholesterol and TG content. Fecal output of bile acids and neutral sterols was not changed. Alirocumab dose-dependently decreased atherosclerotic lesion size (−71%; −88%, P < 0.001) and severity and enhanced these effects when added to atorvastatin (−89%; −98%, P < 0.001). Alirocumab reduced monocyte recruitment and improved the lesion composition by increasing the smooth muscle cell and collagen content and decreasing the macrophage and necrotic core content. Alirocumab dose-dependently decreases plasma lipids and, as a result, atherosclerosis development, and it enhances the beneficial effects of atorvastatin in APOE*3Leiden.CETP mice. In addition, alirocumab improves plaque morphology.  相似文献   

12.
High density lipoprotein cholesterol is thought to represent a preferred source of sterols secreted into bile following hepatic uptake by scavenger receptor class B type I (SR-BI). The present study aimed to determine the metabolic effects of an endothelial lipase (EL)–mediated stimulation of HDL cholesterol uptake on liver lipid metabolism and biliary cholesterol secretion in wild-type, SR-BI knockout, and SR-BI overexpressing mice. In each model, injection of an EL expressing adenovirus decreased plasma HDL cholesterol (P < 0.001) whereas hepatic cholesterol content increased (P < 0.05), translating into decreased expression of sterol-regulatory element binding protein 2 (SREBP2) and its target genes HMG-CoA reductase and LDL receptor (each P < 0.01). Biliary cholesterol secretion was dependent on hepatic SR-BI expression, being decreased in SR-BI knockouts (P < 0.001) and increased following hepatic SR-BI overexpression (P < 0.001). However, in each model, biliary secretion of cholesterol, bile acids, and phospholipids as well as fecal bile acid and neutral sterol content, remained unchanged in response to EL overexpression. Importantly, hepatic ABCG5/G8 expression did not correlate with biliary cholesterol secretion rates under these conditions. These results demonstrate that an acute decrease of plasma HDL cholesterol levels by overexpressing EL increases hepatic cholesterol content but leaves biliary sterol secretion unaltered. Instead, biliary cholesterol secretion rates are related to the hepatic expression level of SR-BI. These data stress the importance of SR-BI for biliary cholesterol secretion and might have relevance for concepts of reverse cholesterol transport.  相似文献   

13.
Animal experiments show that the kidney contributes to apolipoprotein (apo)A-I catabolism. We tested relationships of HDL cholesterol (HDL-C) and apo-I with kidney function in subjects without severe chronic kidney disease. Included was a random sample of the general population (part of the PREVEND cohort). Kidney function [estimated glomerular filtration rate (e-GFR) by two well-established equations and creatinine clearance], HDL-C, triglycerides, apoA-I and insulin resistance (HOMAir) were measured in 2,484 fasting subjects (e-GFR≥45 ml/min/1.73m2) without macroalbuminuria, cardiovascular disease, diabetes, or the use of anti-hypertensives and/or lipid-lowering agents. HDL-C (r = −0.056 to −0.102, P < 0.01 to < 0.001) and apo A-I (r = −0.096 to −0.126, P < 0.001) were correlated inversely with both GFR estimates and creatinine clearance in univariate analyses. Multiple linear regression analyses also demonstrated inverse relationships of HDL-C and apoA-I with all measures of kidney function even after adjustment for age, sex, waist circumference, HOMAir, triglycerides, and urinary albumin excretion (P = 0.053 to 0.004). In conclusion, HDL-C and apoA-I are inversely related to e-GFR and creatinine clearance in subjects without severely compromised kidney function, which fits the concept that the kidney contributes to apoA-I regulation in humans. High glomerular filtration rate may be an independent determinant of a pro-atherogenic lipoprotein profile.  相似文献   

14.
Cholesteryl ester transfer protein (CETP) deficiency causes elevated high-density lipoprotein-cholesterol (HDL-C) levels; its impact on HDL functionality however remains elusive. We compared functional and compositional properties of HDL derived from 9 Caucasian heterozygous CETP mutation carriers (splice-site mutation in intron 7 resulting in premature truncation) with those of 9 age- and sex-matched normolipidemic family controls. As expected, HDL-C levels were increased 1.5-fold, and CETP mass and activity were decreased by −31% and −38% respectively, in carriers versus non-carriers. HDL particles from carriers were enriched in CE (up to +19%, p<0.05) and depleted of triglycerides (TG; up to −54%, p<0.01), resulting in a reduced TG/CE ratio (up to 2.5-fold, p<0.01). In parallel, the apoA-I content was increased in HDL from carriers (up to +22%, p<0.05). Both the total HDL fraction and small, dense HDL3 particles from CETP-deficient subjects displayed normal antioxidative activity by attenuating low-density lipoprotein oxidation with similar efficacy on a particle mass basis as compared to control HDL3. Consistent with these data, circulating levels of systemic biomarkers of oxidative stress (8-isoprostanes) were similar between the two groups. These findings support the contention that HDL functionality is maintained in heterozygous CETP deficiency despite modifications in lipid and protein composition.  相似文献   

15.
Liver X receptor (LXR) activation promotes reverse cholesterol transport (RCT) in rodents but has major side effects (increased triglycerides and LDL-cholesterol levels) in species expressing cholesteryl ester transfer protein (CETP). In the face of dyslipidemia, it remains unclear whether LXR activation stimulates RCT in CETP species. We therefore used a hamster model made dyslipidemic with a 0.3% cholesterol diet and treated with vehicle or LXR agonist GW3965 (30 mg/kg bid) over 10 days. To investigate RCT, radiolabeled 3H-cholesterol macrophages or 3H-cholesteryl oleate-HDL were then injected to measure plasma and feces radioactivity over 72 or 48 h, respectively. The cholesterol-enriched diet increased VLDL-triglycerides and total cholesterol levels in all lipoprotein fractions and strongly increased liver lipids. Overall, GW3965 failed to improve both dyslipidemia and liver steatosis. However, after 3H-cholesterol labeled macrophage injection, GW3965 treatment significantly increased the 3H-tracer appearance by 30% in plasma over 72 h, while fecal 3H-cholesterol excretion increased by 156% (P < 0.001). After 3H-cholesteryl oleate-HDL injection, GW3965 increased HDL-derived cholesterol fecal excretion by 64% (P < 0.01 vs. vehicle), while plasma fractional catabolic rate remained unchanged. Despite no beneficial effect on dyslipidemia, LXR activation promotes macrophage-to-feces RCT in dyslipidemic hamsters. These results emphasize the use of species with a more human-like lipoprotein metabolism for drug profiling.  相似文献   

16.
Because apoB-containing lipoproteins are pro-atherogenic and their secretion by liver and intestine largely depends on microsomal triglyceride transfer protein (MTP) activity, MTP inhibition strategies are actively pursued. How decreasing the secretion of apoB-containing lipoproteins affects intracellular rerouting of cholesterol is unclear. Therefore, the aim of the present study was to determine the effects of reducing either systemic or liver-specific MTP activity on cholesterol metabolism and reverse cholesterol transport (RCT) using a pharmacological MTP inhibitor or a genetic model, respectively. Plasma total cholesterol and triglyceride levels were decreased in both MTP inhibitor-treated and liver-specific MTP knockout (L-Mttp−/−) mice (each P < 0.001). With both inhibition approaches, hepatic cholesterol as well as triglyceride content was consistently increased (each P < 0.001), while biliary cholesterol and bile acid secretion remained unchanged. A small but significant decrease in fecal bile acid excretion was observed in inhibitor-treated mice (P < 0.05), whereas fecal neutral sterol excretion was substantially increased by 75% (P < 0.001), conceivably due to decreased intestinal absorption. In contrast, in L-Mttp−/− mice both fecal neutral sterol and bile acid excretion remained unchanged. However, while total RCT increased in inhibitor-treated mice (P < 0.01), it surprisingly decreased in L-Mttp−/− mice (P < 0.05). These data demonstrate that: i) pharmacological MTP inhibition increases RCT, an effect that might provide additional clinical benefit of MTP inhibitors; and ii) decreasing hepatic MTP decreases RCT, pointing toward a potential contribution of hepatocyte-derived VLDLs to RCT.  相似文献   

17.
HDL is strongly inversely related to cardiovascular risk. Hepatic HDL uptake is controlled by ecto-F1-ATPase activity, and potentially inhibited by mitochondrial inhibitor factor 1 (IF1). We recently found that IF1 is present in serum and correlates with HDL-cholesterol (HDL-C). Here, we have evaluated the relationship between circulating IF1 and plasma lipoproteins, and we determined whether IF1 concentration is associated with the risk of coronary heart disease (CHD). Serum IF1 was measured in 648 coronary patients ages 45–74 and in 669 matched male controls, in the context of a cross-sectional study on CHD. Cardiovascular risk factors were documented for each participant, including life-style habits and biological and clinical markers. In controls, multivariate analysis demonstrated that IF1 was independently positively associated with HDL-C and apoA-I (r = 0.27 and 0.28, respectively, P < 0.001) and negatively with triglycerides (r = −0.23, P < 0.001). Mean IF1 concentration was lower in CHD patients than in controls (0.43 mg/l and 0.53 mg/l, respectively, P < 0.001). In multivariate analyses, following adjustments on cardiovascular risk factors or markers, IF1 was negatively related to CHD (P < 0.001). This relationship was maintained after adjustment for HDL-C or apoA-I. This study identifies IF1 as a new determinant of HDL-C that is inversely associated with CHD.  相似文献   

18.
19.
African ancestry individuals have a more favorable lipoprotein profile than Caucasians, although the mechanisms for these differences remain unclear. We measured fasting serum lipoproteins and genotyped 768 tagging or potentially functional single nucleotide polymorphisms (SNPs) across 33 candidate gene regions in 401 Afro-Caribbeans older than 18 years belonging to 7 multi-generational pedigrees (mean family size 51, range 21–113, 3,426 relative pairs). All lipoproteins were significantly heritable (P < 0.05). Gender-specific analysis showed that heritability for triglycerides was much higher (P < 0.01) in women than in men (women, 0.62 ± 0.18, P < 0.01; men, 0.13 ± 0.17, P > 0.10), but the heritability for LDL cholesterol (LDL-C) was higher (P < 0.05) in men than in women (men, 0.79 ± 0.21, P < 0.01; women, 0.39 ± 0.12, P < 0.01). The top 14 SNPs that passed the false discovery rate threshold in the families were then tested for replication in an independent population-based sample of 1,750 Afro-Caribbean men aged 40+ years. Our results revealed significant associations for three SNPs in two genes (rs5929 and rs6511720 in LDLR and rs7517090 in PCSK9) and LDL-C in both the family study and in the replication study. Our findings suggest that LDLR and PCSK9 variants may contribute to a variation in LDL-C among African ancestry individuals. Future sequencing and functional studies of these loci may advance our understanding of genetic factors contributing to LDL-C in African ancestry populations.Lipoprotein abnormalities, characterized by elevated levels of LDL cholesterol (LDL-C) and triglycerides (TRIG) and low levels of HDL cholesterol (HDL-C), have a central role in the development of atherosclerotic coronary heart disease (CHD). A recent meta-analysis, including 3,000 individuals with CHD-related deaths, showed that HDL-C and LDL-C are independently associated with CHD risk (1). There is also considerable evidence that high levels of TRIG are an additional, independent risk factor for CHD (2, 3), although this is still controversial (4).Individuals of African ancestry have a more favorable lipoprotein profile than Caucasians, characterized by lower levels of TRIG and higher levels of HDL-C (58). The mechanisms responsible for these ethnic differences remain to be defined. In particular, the differences in TRIG levels are independent of the greater degree of obesity among individuals of African ancestry and several other risk factors and appear to be consistent across African populations in different environments (9), indicating a possible role of genetic factors. Although genetic factors are important in determining lipoprotein levels, little data exists regarding the importance of heredity and specific genetic factors in determining lipoprotein levels in populations of African ancestry, especially outside the US, and the findings from previous studies in African-Americans may not necessarily apply to other African ancestry populations. Recently, several genome-wide association studies identified a number of loci contributing to inter-individual variation in lipoprotein levels (10, 11). However, the majority of these studies were restricted to Caucasian populations. Given the ethnic differences in lifestyle and environmental factors, as well as in genetic background, it is important to examine genes related to lipoprotein metabolism in different ethnic groups. Therefore, we examined the heritability of fasting, serum levels of HDL-C, LDL-C, and TRIG and systematically screened for association with 33 positional and biological candidate genes in large, multigenerational families of African ancestry.  相似文献   

20.
Yin RX  Li YY  Liu WY  Zhang L  Wu JZ 《PloS one》2011,6(3):e17954

Background

Little is known about the interactions of apolipoprotein (Apo) A5 gene polymorphisms and alcohol consumption on serum lipid profiles. The present study was undertaken to detect the interactions of ApoA5–1131T>C, c.553G>T and c.457G>A polymorphisms and alcohol consumption on serum lipid levels.

Methodology/Principal Findings

A total of 516 nondrinkers and 514 drinkers were randomly selected from our previous stratified randomized cluster samples. Genotyping was performed by polymerase chain reaction and restriction fragment length polymorphism. The levels of serum total cholesterol (TC), triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), ApoA1 and ApoB were higher in drinkers than in nondrinkers (P<0.05–0.001). The genotypic and allelic frequencies of three loci were not different between the two groups. The interactions between –1131T>C genotypes and alcohol consumption on ApoB levels (P<0.05) and the ApoA1/ApoB ratio (P<0.01), between c.553G>T genotypes and alcohol consumption on low-density lipoprotein cholesterol (LDL-C) levels (P<0.05) and the ApoA1/ApoB ratio (P<0.05), and between c.457G>A genotypes and alcohol consumption on TG levels (P<0.001) were detected by factorial regression analysis after controlling for potential confounders. Four haplotypes (T-G-G, C-G-G, T-A-G and C-G-T) had frequencies ranging from 0.06 to 0.87. Three haplotypes (C-G-G, T-A-G, and C-G-T) were significantly associated with serum lipid parameters. The –1131T>C genotypes were correlated with TG, and c.553G>T and c.457G>A genotypes were associated with HDL-C levels in nondrinkers (P<0.05 for all). For drinkers, the –1131T>C genotypes were correlated with TC, TG, LDL-C, ApoB levels and the ApoA1/ApoB ratio (P<0.01 for all); c.553G>T genotypes were correlated with TC, TG, HDL-C and LDL-C levels (P<0.05–0.01); and c.457G>A genotypes were associated with TG, LDL-C, ApoA1 and ApoB levels (P<0.05–0.01).

Conclusions

The differences in some serum lipid parameters between the drinkers and nondrinkers might partly result from different interactions of the ApoA5 gene polymorphisms and alcohol consumption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号