首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Incubation of cultured bovine vascular smooth muscle cells (VSMC) with forskolin increased cAMP as measured by an increase in cAMP-dependent protein kinase (PKA) activation (PKA ratio). Forskolin also produced a concentration- and time-dependent increase in activity (3–5-fold within 15 min) of a PDE4 (cAMP-specific cyclic nucleotide phosphodiesterase). The increase in PDE4 activity was not affected by cycloheximide and thus not likely due to increased synthesis of the enzyme. Activation, which was preserved during partial purification of the enzyme by chromatography on Sephacryl S-200 and MonoQ, was most likely due to a covalent modification. Incubation of cell homogenates with the catalytic subunit of PKA (PKAc) induced a ∼5-fold activation of PDE4 with a time course similar to that in intact cells after forskolin addition. The forskolin-mediated activation was reversed during incubation of homogenates at room temperature for two hours. Addition of PKAc resulted in rapid reactivation of PDE4. These data are consistent with the hypothesis that rapid, reversible activation of PDE4 in cultured VSMC is mediated by PKA.  相似文献   

2.
Insulin receptor substrate (IRS) 2 as intermediate docking platform transduces the insulin/IGF-1 (insulin like growth factor 1) signal to intracellular effector molecules that regulate glucose homeostasis, β-cell growth, and survival. Previously, IRS2 has been identified as a 14-3-3 interaction protein. 14-3-3 proteins can bind their target proteins via phosphorylated serine/threonine residues located within distinct motifs. In this study the binding of 14-3-3 to IRS2 upon stimulation with forskolin or the cAMP analog 8-(4-chlorophenylthio)-cAMP was demonstrated in HEK293 cells. Binding was reduced with PKA inhibitors H89 or Rp-8-Br-cAMPS. Phosphorylation of IRS2 on PKA consensus motifs was induced by forskolin and the PKA activator N6-Phe-cAMP and prevented by both PKA inhibitors. The amino acid region after position 952 on IRS2 was identified as the 14-3-3 binding region by GST-14-3-3 pulldown assays. Mass spectrometric analysis revealed serine 1137 and serine 1138 as cAMP-dependent, potential PKA phosphorylation sites. Mutation of serine 1137/1138 to alanine strongly reduced the cAMP-dependent 14-3-3 binding. Application of cycloheximide revealed that forskolin enhanced IRS2 protein stability in HEK293 cells stably expressing IRS2 as well as in primary hepatocytes. Stimulation with forskolin did not increase protein stability either in the presence of a 14-3-3 antagonist or in the double 1137/1138 alanine mutant. Thus the reduced IRS2 protein degradation was dependent on the interaction with 14-3-3 proteins and the presence of serine 1137/1138. We present serine 1137/1138 as novel cAMP-dependent phosphorylation sites on IRS2 and show their importance in 14-3-3 binding and IRS2 protein stability.  相似文献   

3.
The signal transduction pathways involved in NMDA receptor modulation by other receptors remain unclear. cAMP could be involved in this modulation. The aim of this work was to analyse the contribution of cAMP to NMDA receptor modulation in cerebellar neurones in culture. Forskolin increases cAMP and results in increased intracellular calcium and cGMP that are prevented by blocking NMDA receptors. Similar effects were induced by two cAMP analogues, indicating that cAMP leads to NMDA receptor activation. It has been reported that phosphorylation of Ser897 of the NR1 subunit of NMDA receptors by cAMP-dependent protein kinase (PKA) activates the receptors. Forskolin increases Ser897 phosphorylation. Neither Ser897 phosphorylation nor cGMP increase induced by forskolin are prevented by four inhibitors of PKA, suggesting that NMDA receptor activation is dependent on cAMP but not on PKA. Inhibition of Akt prevents forskolin-induced phosphorylation of Ser897, suggesting a role for Akt in the mediation of the modulation of NMDA receptors by cAMP. Pituitary adenylate cyclase-activating polypeptide (PACAP) activates its receptors, increasing cAMP and also leading to phosphorylation of Ser897 of NR1 and activation of NMDA receptors. These results indicate that cAMP modulates NMDA receptor in cerebellar neurones and may play a role in NMDA receptor modulation by other receptors.  相似文献   

4.
Forskolin (40 μM) stimulated adenylate cyclase activities of bovine thyroid plasma membranes without pthe addition of guanine nucleotides. GDP had little effect on the forskolin-stimulated adenylate cyclase activity while Gpp[NH]p (0.1–1.0 μM) decreased it. In the presence of TSH (10 mU/0.11), Gpp[NH]p no longer caused inhibition. Forskolin did not affect phosphodiesterase activities of thyroid homogenates. Forskolin (10 μM) rapidly increased cAMP levels in bovine thyroid slices both in the absence and presence of a phosphodiesterase inhibitor. The effect of TSH (50 mU/ml) on cAMP levels was additive or greater than additive to that of forskolin. An initial 2-h incubation of slices with forskolin did not decrease their subsequent cAMP responses to either forskolin and/or TSH while similar treatment of slices with TSH induced desensitization of the cAMP response to TSH, but not to forskolin. Forskolin (10 μM) as well as TSH (50 mU/ml) activated cAMP-dependent protein kinase of slices in the absence of a phosphodiesterase inhibitor. Although forskolin activated the adenylate cyclase cAMP system, it did not stimulate iodide organification or glucose oxidation, effects which have been attributed to cAMP. In fact, forskolin inhibited these parameters and 32P incorporation into phospholipids as well as their stimulation by TSH. These results indicate that an increase in cAMP levels and cAMP-dependent protein kinase activity in thyroid slices may not necessarily reproduce the effects of TSH on the thyroid.  相似文献   

5.
Stimulation of A2A receptors (A2A R) coupled to Gs/olf protein activates Adenylyl cyclase (AC) leading to the release of cAMP which activates the cAMP-dependent PKA phosphorylation. The possible role of A2A R in the modulation of free cytosolic Ca2+ concentration ([Ca2+]i) involving IP3, cAMP and PKA was investigated in HEK 293-A2A R. The levels of IP3 and cAMP were observed by enzyme immunoassay detection method and [Ca2+]i using Fluo-4 AM. Moreover, cAMP-dependent PKA was determined using the PKA Colorimetric Activity Kit. We observed that the cells pre-treated with A2A R agonist NECA showed increased levels of cAMP, PKA, IP3 and [Ca2+]i levels. However, the reverse effect was observed with A2A R antagonists (ZM241385 and caffeine). Blocking the Gαq/PLC/DAG/IP3 pathway with neomycin, a PLC inhibitor did not affect the modulation of IP3 and [Ca2+]i levels in HEK 293-A2A R cells. To investigate the Gαi/AC/cAMP/PKA, HEK 293-A2A R cells pre-treated with pertussis toxin followed by forskolin in the presence of A2A R agonist (NECA) showed no effect on cAMP levels. Further, Gαs/AC/cAMP/PKA pathway was investigated to elucidate the role of cAMP-dependent PKA in IP3 mediated [Ca2+]i modulation. In the HEK 293-A2A R cells pre-treated with PKA inhibitor KT5720 and treated with NECA led to inhibit the IP3 and [Ca2+]i levels. The study distinctly demonstrated that A2A R modulates IP3 levels to release the [Ca2+]i via cAMP-dependent PKA. The role of A2A R mediated Gαs pathway inducing IP3 mediated [Ca2+]i release may open new avenues in the therapy of neurodegenerative disorder.  相似文献   

6.
The function of the D3 dopamine (DA) receptor remains ambiguous largely because of the lack of selective D3 receptor ligands. To investigate the function and intracellular signaling of D3 receptors, we established a PC‐12/hD3 clone, which expresses the human D3 DA receptor in a DA producing cell line. In this model, we find that the D3 receptor functions as an autoreceptor controlling neurotransmitter secretion. Pre‐treatment with 3,6a,11, 14‐tetrahydro‐9‐methoxy‐2 methyl‐(12H)‐isoquino[1,2‐b] pyrrolo[3,2‐f][1,3] benzoxanzine‐1‐carboxylic acid, a D3 receptor preferring agonist, dose‐dependently suppressed K+‐evoked [3H]DA release in PC‐12/hD3 cells but not in the control cell line. This effect was prevented by D3 receptor preferring antagonists GR103691 and SB277011‐A. Furthermore, activation of D3 receptors significantly inhibits forskolin‐induced cAMP accumulation and leads to transient increases in phosphorylation of cyclin‐dependent kinase 5 (Cdk5), dopamine and cAMP‐regulated phosphoprotein of Mr 32 000 and Akt. Because we observed differences in Cdk5 phosphorylation as well as Akt phosphorylation after DA stimulation, we probed the ability of Cdk5 and phosphatidylinositol‐3 kinase (PI3K) to influence DA release. Cdk5 inhibitors, roscovitine, or olomoucine, but not the PI3K inhibitor wortmannin, blocked the D3 receptor inhibition of DA release. In a complimentary experiment, over‐expression of Cdk5 potentiated D3 receptor suppression of DA release. Pertussis toxin, 3‐[(2,4,6‐trimethoxyphenyl)methylidenyl]‐indolin‐2‐one and cyclosporine A also attenuated D3 receptor‐mediated inhibition of DA release indicating that this phenomenon acts through Gi/oα and casein kinase 1, and phosphatase protein phosphatase 2B (calcineurin), respectively. In support of previous data that D3 DA receptors reduce transmitter release from nerve terminals, the current results demonstrate that D3 DA receptors function as autoreceptors to inhibit DA release and that a signaling pathway involving Cdk5 is essential to this regulation.  相似文献   

7.
8.
9.
Both Ca(2+)- and cAMP-mediated second messenger cascades acutely regulate mucin secretion from human colonic epithelial cells. To better understand the cAMP-dependent regulation of mucin secretion we have characterized the complement of cAMP-dependent protein kinase (PKA) isoforms in mucus-secreting T84 cells, and determined which of these isoforms is responsible for agonist-stimulated mucin secretion. Our results show the presence of both type I and type II PKA in cells that also contain large mucin granules. Forskolin caused a rapid and sustained increase in PKA activity that reached a maximum 5-10 min following its addition. Secretion of mucin was detected 15 min following exposure to forskolin, and continued to increase for a further 15 min before reaching a plateau. Mucin secretion was also measured in the presence of combinations of site-selective cAMP analog pairs, which preferentially activate either type I or type II PKA. Similar levels of mucin secretion were observed for both type I and type II PKA-selective analog pairs. Subsequent addition of forskolin was unable to further increase mucin secretion. Thus, activation of either type I or type II PKA is able to maximally stimulate secretion of mucins from T84 human colonic epithelial cells.  相似文献   

10.
Exocytosis is evoked by intracellular signals, including Ca2+ and protein kinases. We determined how such signals interact to promote exocytosis in exocrine pancreatic duct epithelial cells (PDECs). Exocytosis, detected using carbon-fiber microamperometry, was stimulated by [Ca2+]i increases induced either through Ca2+ influx using ionomycin or by activation of P2Y2 or protease-activated receptor 2 receptors. In each case, the exocytosis was strongly potentiated when cyclic AMP (cAMP) was elevated either by activating adenylyl cyclase with forskolin or by activating the endogenous vasoactive intestinal peptide receptor. This potentiation was completely inhibited by H-89 and partially blocked by Rp-8-Br-cAMPS, inhibitors of protein kinase A. Optical monitoring of fluorescently labeled secretory granules showed slow migration toward the plasma membrane during Ca2+ elevations. Neither this Ca2+-dependent granule movement nor the number of granules found near the plasma membrane were detectably changed by raising cAMP, suggesting that cAMP potentiates Ca2+-dependent exocytosis at a later stage. A kinetic model was made of the exocytosis stimulated by UTP, trypsin, and Ca2+ ionophores with and without cAMP increase. In the model, without a cAMP rise, receptor activation stimulates exocytosis both by Ca2+ elevation and by the action of another messenger(s). With cAMP elevation the docking/priming step for secretory granules was accelerated, augmenting the releasable granule pool size, and the Ca2+ sensitivity of the final fusion step was increased, augmenting the rate of exocytosis. Presumably both cAMP actions require cAMP-dependent phosphorylation of target proteins. cAMP-dependent potentiation of Ca2+-induced exocytosis has physiological implications for mucin secretion and, possibly, for membrane protein insertion in the pancreatic duct. In addition, mechanisms underlying this potentiation of slow exocytosis may also exist in other cell systems.  相似文献   

11.
Octopamine (OA), a biogenic monoamine, is a neurotransmitter and neuromodulator in invertebrates. Here, we report the effect of OA on the spontaneous rhythmic contractions (SRCs) of the lateral oviduct of the cricket Gryllus bimaculatus and the possible signaling pathway involved. Application of OA increased both the frequency and amplitude of SRCs in a dose-dependent manner. The effect of OA was inhibited by subsequent application of the OA receptor antagonist epinastine, indicating that the action of OA is mediated by OA receptor. To investigate the predominant signaling pathway underlying the action of OA, we first examined a possible involvement of the cAMP/cAMP-dependent protein kinase A (PKA) signaling pathway. Application of the membrane-permeable cAMP analog 8-Br-cAMP had little effect on SRCs and the effect of OA was not influenced by subsequent application of the PKA inhibitor H89, indicating that the cAMP/PKA signaling pathway is not the predominant pathway in the action of OA. Next, we examined a possible involvement of the second messenger inositol 1,4,5-trisphosphate in the action of OA. The effect of OA on SRCs was inhibited by subsequent application of the phosphoinositide-specific phospholipase C (PLC) inhibitor U73122, indicating that the PLC pathway is involved in the action of OA. The OA-induced increase in the frequency of SRCs was inhibited by pretreatment of the cell with the ryanodine receptor antagonist tetracaine but was not significantly affected by the IP3 receptor antagonist 2-aminoethoxydiphenyl borate (2-APB). On the other hand, the OA-induced increase in the amplitude of SRCs was inhibited by pretreatment of the cells with 2-APB but was not significantly affected by tetracaine. Taken together, these results suggest that the OA-induced excitatory effect on SRCs is mediated by the PLC signaling pathway: Ca2+ release from IP3 receptors may contribute to the modulation of the amplitude of SRCs, whereas Ca2+ release from ryanodine receptors may contribute to the modulation of the frequency of SRCs.  相似文献   

12.
Cyclic AMP (cAMP) and dopamine modulate ion uptake across isolated and perfused posterior gills of Chasmagnathus granulatus acclimated to 10 per thousand salinity. Addition of cAMP agonists, such as cp-cAMP, forskolin, and IBMX, produced a significant increase in the transepithelial potential difference (Vte), which reflects ion transport activity. Dopamine (DA) also had a stimulatory effect on ion uptake, increasing Vte and Na(+) influx, although this effect was transient, since both variables remained elevated for less than 30 min. In addition, the dose-response curve for DA concentration-Vte was biphasic, and the maximum stimulation was obtained with 10 micromol l(-1). When the effects of forskolin and DA on the Na(+)/K(+)-ATPase activity were tested, they correlated well with the Vte and Na(+) influx experiments; the enzyme activity increased significantly after preincubation of gill fragments for 10 min with forskolin or DA (51 and 64%, respectively), but there was no effect after pre-incubation with DA for 20 min. Finally, KT5720, a specific inhibitor of cAMP-dependent protein kinase (PKA), completely abolished the stimulatory effect of DA on Vte, suggesting the involvement of PKA in this mechanism.  相似文献   

13.
14.
Intracellular cAMP level and cAMP mediated responses are elevated when Leishmania are exposed to macrophage phagolysosome conditions (37 °C and pH 5.5). Phosphodiesterases play major role in cAMP regulation and in the present study we have cloned and characterized a 2.1 kb cytosolic isoform of phosphodiesterase from Leishmania donovani (LdPDED) which plays important role in cAMP homeostasis when the promastigotes are exposed to macrophage phagolysome conditions for converting to axenic amastigotes. Domain characterization suggested the presence of two pseudo-substrate sites similar to the ones present in the regulatory subunit of cAMP-dependent protein kinase A (PKA) and a putative PKA phosphorylation site at T708 of C-terminus of LdPDED. Deletion constructs and site directed mutagenesis revealed the ability of LdPDED to interact with L. donovani PKA catalytic subunits (LdPKAC1 and LdPKAC2) resulting in inhibition of kinase activity in one hand and increase of phosphodiesterase activity through PKA mediated phosphorylation at putative phosphorylation site on the other hand. This study therefore identifies a unique phosphodiesterase in L. donovani which appears to regulate cAMP-dependent PKA signaling through a two way process.  相似文献   

15.
Fertilization competence is acquired in the female tract in a process known as capacitation. Capacitation is needed for the activation of motility (e.g. hyperactivation) and to prepare the sperm for an exocytotic process known as acrosome reaction. Although the HCO3-dependent soluble adenylyl cyclase Adcy10 plays a role in motility, less is known about the source of cAMP in the sperm head. Transmembrane adenylyl cyclases (tmACs) are another possible source of cAMP. These enzymes are regulated by stimulatory heterotrimeric Gs proteins; however, the presence of Gs or tmACs in mammalian sperm has been controversial. In this study, we used Western blotting and cholera toxin-dependent ADP-ribosylation to show the Gs presence in the sperm head. Also, we showed that forskolin, a tmAC-specific activator, induces cAMP accumulation in sperm from both WT and Adcy10-null mice. This increase is blocked by the tmAC inhibitor SQ22536 but not by the Adcy10 inhibitor KH7. Although Gs immunoreactivity and tmAC activity are detected in the sperm head, PKA is only found in the tail, where Adcy10 was previously shown to reside. Consistent with an acrosomal localization, Gs reactivity is lost in acrosome-reacted sperm, and forskolin is able to increase intracellular Ca2+ and induce the acrosome reaction. Altogether, these data suggest that cAMP pathways are compartmentalized in sperm, with Gs and tmAC in the head and Adcy10 and PKA in the flagellum.  相似文献   

16.

Background

Serotonin induces fluid secretion from Calliphora salivary glands by the parallel activation of the InsP3/Ca2+ and cAMP signaling pathways. We investigated whether cAMP affects 5-HT-induced Ca2+ signaling and InsP3-induced Ca2+ release from the endoplasmic reticulum (ER).

Results

Increasing intracellular cAMP level by bath application of forskolin, IBMX or cAMP in the continuous presence of threshold 5-HT concentrations converted oscillatory [Ca2+]i changes into a sustained increase. Intraluminal Ca2+ measurements in the ER of β-escin-permeabilized glands with mag-fura-2 revealed that cAMP augmented InsP3-induced Ca2+ release in a concentration-dependent manner. This indicated that cAMP sensitized the InsP3 receptor Ca2+ channel for InsP3. By using cAMP analogs that activated either protein kinase A (PKA) or Epac and the application of PKA-inhibitors, we found that cAMP-induced augmentation of InsP3-induced Ca2+ release was mediated by PKA not by Epac. Recordings of the transepithelial potential of the glands suggested that cAMP sensitized the InsP3/Ca2+ signaling pathway for 5-HT, because IBMX potentiated Ca2+-dependent Cl- transport activated by a threshold 5-HT concentration.

Conclusion

This report shows, for the first time for an insect system, that cAMP can potentiate InsP3-induced Ca2+ release from the ER in a PKA-dependent manner, and that this crosstalk between cAMP and InsP3/Ca2+ signaling pathways enhances transepithelial electrolyte transport.  相似文献   

17.
Dopamine (DA) is a physiologically important biogenic amine in insect peripheral and nervous tissues. We recently cloned two DA receptors (BmDopR1 and BmDopR2) from the silkworm Bombyx mori and identified them as D1-like receptors, which activate adenylate cyclase to increase intracellular cAMP levels. In this study, these two receptors were stably expressed in HEK-293 cells, and the dose-responsiveness to DA and their pharmacological properties were examined using cAMP assays. BmDopR1 showed a dose-dependent increase in cAMP levels at DA concentrations up to 10?7 M with EC50 of 3.30 nM, while BmDopR2 required 10?6 M DA for activation. In BmDopR1-expressing cells, DA at 10?6–10?4 M induced 30–50% lower cAMP production than 10?7 M DA. BmDopR2-expressing cells showed a standard sigmoidal dose–response, with maximum cAMP levels attained with 10?5–10?4 M DA and EC50 of 1.30 μM. Both receptors had similar agonist profiles, and the typical vertebrate D1-like receptor agonist SKF-38393 was ineffective. Experiments with antagonists revealed that BmDopR1 exhibits D1-like features. However, the pharmacology of BmDopR2 was distinct from D1-like receptors; the typical vertebrate D1-like receptor antagonist SCH-23390 was less potent than the nonselective antagonist flupenthixol and the D2-like receptor antagonist chlorpromazine. The rank order of activities of several antagonists for BmDopR1 and BmDopR2 was more similar to that of Drosophila melanogaster DA receptors than Apis mellifera DA receptors. These data suggest that DA receptors could be potential targets for specific insecticides or insectistatics.  相似文献   

18.
Yan X  Gao S  Tang M  Xi J  Gao L  Zhu M  Luo H  Hu X  Zheng Y  Hescheler J  Liang H 《Cell calcium》2011,50(5):433-443
In fetal mammalian heart, constitutive adenylyl cyclase/cyclic AMP-dependent protein kinase A (cAMP-PKA)-mediated phosphorylation, independent of β-adrenergic receptor stimulation, could under such circumstances play an important role in sustaining the L-type calcium channel current (ICa,L) and regulating other PKA dependent phosphorylation targets. In this study, we investigated the regulation of L-type Ca2+ channel (LTCC) in murine embryonic ventricles. The data indicated a higher phosphorylation state of LTCC at early developmental stage (EDS, E9.5-E11.5) than late developmental stage (LDS, E16.5-E18.5). An intrinsic adenylyl cyclase (AC) activity, PKA activity and basal cAMP concentration were obviously higher at EDS than LDS. The cAMP increase in the presence of isobutylmethylxanthine (IBMX, nonselective phosphodiesterase inhibitor) was further augmented at LDS but not at EDS by chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA)-acetoxymethyl ester (BAPTA-AM). Furthermore, ICa,L increased with time after patch rupture in LDS cardiomyocytes dialyzed with pipette solution containing BAPTA whereas not at EDS. Thus we conclude that the high basal level of LTCC phosphorylation is due to the high intrinsic PKA activity and the high intrinsic AC activity at EDS. The latter is possibly owing to the little or no effect of Ca2+ influx via LTCCs on AC activity, leading to the inability to inhibit AC.  相似文献   

19.
Although the corpus luteum (CL) is not known as a target tissue for thyrotropin (TSH), this hormone increases progesterone production by porcine luteal cells cultured in vitro. In this study we investigated the optimal conditions for TSH-stimulated progesterone secretion as well as the involvement of protein kinase A (PKA) and protein kinase C (PKC) in the mechanism of TSH action on porcine luteal cells. To study the PKA and PKC signaling mechanisms, luteal cells collected from mature CL were incubated with the inhibitor of PKA and potent activators of both kinases: PKA-forskolin and PKC-phorbol ester 12-myriistate-13-acetate (PMA). The PKA inhibitor totally suppressed progesterone production in TSH alone, forskolin alone and in TSH plus forskolin-stimulated luteal cells. Forskolin increased basal (P < 0.05) and TSH-stimulated (P < 0.05) progesterone secretion and cAMP accumulation (P < 0.05). Forskolin and PMA added together to control (non-TSH-treated) luteal cells had an additive effect on progesterone production. In TSH-treated cells, the effect of PMA was statistically significant but did not show an additive effect with forskolin. Further PMA did not affect cAMP accumulation in control and TSH-treated luteal cells. Treatment of control and TSH-treated luteal cells with forskolin and PMA together showed the same increase in cAMP accumulation as with forskolin alone. This is the first demonstration that TSH acts on luteal cell steroidogenesis by activation of the cAMP/PKA second messenger system and also that the PKC signaling pathway may be involved in luteal TSH action on the corpus luteum.  相似文献   

20.
Abstract: In this study we analyzed the involvement of the cyclic AMP (cAMP)-protein kinase A system in the regulation of interleukin 6 production by cultured cortical astrocytes. Vasoactive intestinal peptide strongly increased, in a dose-dependent manner, interleukin 6 production. This effect was reduced when protein kinase A was blocked by KT-5720; it was not affected by calphostin C, a protein kinase C inhibitor. Forskolin caused a concentration-dependent increase in interleukin 6 release that was also inhibited by KT-5720. Because prostaglandins are believed to play a role in interleukin 6 production, we tried to determine whether the stimulatory effects of vasoactive intestinal peptide and forskolin on cytokine release might be mediated by stimulation of prostaglandin production in cortical astrocytes. Vasoactive intestinal peptide did not increase the production of either prostaglandin E2 or F. Conversely, forskolin concentration-dependently stimulated the production of both prostaglandins, an effect that was blocked by indomethacin. Indomethacin did not affect either vasoactive intestinal peptide- or forskolin-stimulated interleukin 6 production. To exclude the possibility that prostaglandins participate in interleukin 6 production induced by forskolin, we tested prostaglandins E2 and F. The former was completely ineffective in eliciting the cytokine production, whereas prostaglandin F slightly increased interleukin 6 production only at the highest concentrations. 8-Bromo-cAMP and dibutyryl-cAMP stimulated interleukin 6 production to a lesser extent than vasoactive intestinal peptide and forskolin. In conclusion, we provide evidence that vasoactive intestinal peptide increases interleukin 6 production by astrocytes through the stimulation of the cAMP-protein kinase A pathway, an effect that is reproduced by cAMP analogues. In addition, we point out that prostaglandins are not involved in vasoactive intestinal peptide- and forskolin-mediated induction of interleukin 6 production in cultured astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号