首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 172 毫秒
1.
Plasmodium parasites cause malaria in mammalian hosts and are transmitted by Anopheles mosquitoes. Activated gametocytes in the mosquito midgut egress from erythrocytes followed by fertilization and zygote formation. Zygotes differentiate into motile invasive ookinetes, which penetrate the midgut epithelium before forming oocysts beneath the basal lamina. Ookinete development and traversal across the mosquito midgut wall are major bottlenecks in the parasite life cycle. In ookinetes, surface proteins and proteins stored in apical organelles have been shown to be involved in parasite-host interactions. A group of ookinete proteins that are predicted to have such functions are named PSOPs (putative secreted ookinete protein). PSOP1 is possibly involved in migration through the midgut wall, and here its subcellular localization was examined in ookinetes by immunoelectron microscopy. PSOP1 localizes to the micronemes of Plasmodium yoelii and Plasmodium berghei ookinetes, indicating that it is stored and possibly apically secreted during ookinete penetration through the mosquito midgut wall.  相似文献   

2.
Plasmodium, the causative agent of malaria, has to undergo sexual differentiation and development in anopheline mosquitoes for transmission to occur. To isolate genes specifically induced in both organisms during the early stages of Plasmodium differentiation in the mosquito, two cDNA libraries were constructed, one enriched for sequences expressed in differentiating Plasmodium berghei ookinetes and another enriched for sequences expressed in Anopheles stephensi guts containing invading ookinetes and early oocysts. Sequencing of 457 ookinete library clones and 652 early oocyst clones represented 175 and 346 unique expressed sequence tags, respectively. Nine of 13 Plasmodium and four of the five Anopheles novel expressed sequence tags analyzed on Northern blots were induced during ookinete differentiation and mosquito gut invasion. Ancaspase-7, an Anopheles effector caspase, is proteolytically activated during Plasmodium invasion of the midgut. WARP, a gene encoding a Plasmodium surface protein with a von Willebrand factor A-like adhesive domain, is expressed only in ookinetes and early oocysts. An anti-WARP polyclonal antibody strongly inhibits (70-92%) Plasmodium development in the mosquito, making it a candidate antigen for transmission blocking vaccines. The present results and those of an accompanying report (Srinivasan, P., Abraham, E. G., Ghosh, A. K., Valenzuela, J., Ribeiro, J. M. C., Dimopoulos G., Kafatos, F. C., Adams, J. H., and Jacobs-Lorena, M. (2004) J. Biol. Chem. 279, 5581-5587) provide the foundation for further analysis of Plasmodium differentiation in the mosquito and of mosquito responses to the parasite.  相似文献   

3.
Early sporogony of Plasmodium parasites involves 2 major developmental transitions within the insect vector, i.e., gametocyte-to-ookinete and ookinete-to-oocyst. This study compared the population dynamics of early sporogony among murine rodent Plasmodium (Plasmodium berghei, Plasmodium chabaudi, Plasmodium vinckei, and Plasmodium yoelii) developing within Anopheles stephensi mosquitoes. Estimates of absolute densities were determined for gametocytes, ookinetes, and oocysts for 108 experimental infections. Total losses throughout early sporogony were greatest in P. vinckei (ca. 250,000-fold loss), followed by P. yoelii (ca. 70,000-fold loss), P. berghei (ca. 45,000-fold loss), and P. chabaudi (ca. 15,000-fold loss). The gametocyte-to-ookinete transition represented the most severe population bottleneck. Numerical losses during this transition (ca. 3,000- to 30,000-fold, depending on species) were orders of magnitude greater than losses incurred during the ookinete-to-oocyst transition (3- to 14-fold). There were no significant correlations between gametocyte and ookinete densities. Significant correlations between ookinete and oocyst densities existed for P. berghei, P. chabaudi, and P. yoelii (but not for P. vinckei), and were best described by nonlinear functions (P. berghei = sigmoid, P. chabaudi = hyperbolic, P. yoelii = sigmoid), indicating that conversion of ookinetes to oocysts in these species is density dependent. The upper theoretical limit for oocyst density on the mosquito midgut for P. chabaudi and P. yoelii (ca. 300 oocysts per midgut) was higher than for P. berghei (ca. 30 oocysts per midgut). This study provides basic information about population processes that occur during the early sporogonic development of some common laboratory model systems of malaria.  相似文献   

4.
5.
When malaria parasites enter to mosquitoes, they fertilize and differentiate to zygotes and ookinetes. The motile ookinetes cross the midgut cells and arrive to the basement membranes where they differentiate into oocysts. The midgut epithelium is thus a barrier for ookinetes to complete their life cycle in the mosquitoes. The ookinetes develop gliding motility to invade midgut cells successfully, but the molecular mechanisms behind are poorly understood. Here, we identified a single molecule with guanylate cyclase domain and N-terminal P-type ATPase like domain in the rodent malaria parasite Plasmodium berghei and named it PbGCbeta. We demonstrated that transgenic parasites in which the PbGCbeta gene was disrupted formed normal ookinetes but failed to produce oocyst. Confocal microscopic analysis showed that the disruptant ookinetes remained on the surface of the microvilli. The disruptant ookinetes showed severe defect in motility, resulting in failure of parasite invasion of the midgut epithelium. When the disruptant ookinetes were cultured in vitro, they transformed into oocysts and sporozoites. These results demonstrate that PbGCbeta is essential for ookinete motility when passing through the midgut cells, but not for further development of the parasites.  相似文献   

6.
CTRP is essential for mosquito infection by malaria ookinetes   总被引:18,自引:0,他引:18       下载免费PDF全文
The malaria parasite suffers severe population losses as it passes through its mosquito vector. Contributing factors are the essential but highly constrained developmental transitions that the parasite undergoes in the mosquito midgut, combined with the invasion of the midgut epithelium by the malaria ookinete (recently described as a principal elicitor of the innate immune response in the Plasmodium-infected insect). Little is known about the molecular organization of these midgut-stage parasites and their critical interactions with the blood meal and the mosquito vector. Elucidation of these molecules and interactions will open up new avenues for chemotherapeutic and immunological attack of parasite development. Here, using the rodent malaria parasite Plasmodium berghei, we identify and characterize the first microneme protein of the ookinete: circumsporozoite- and TRAP-related protein (CTRP). We show that transgenic parasites in which the CTRP gene is disrupted form ookinetes that have reduced motility, fail to invade the midgut epithelium, do not trigger the mosquito immune response, and do not develop further into oocysts. Thus, CTRP is the first molecule shown to be essential for ookinete infectivity and, consequently, mosquito transmission of malaria.  相似文献   

7.
The ookinete is a motile form of the malaria parasite that travels from the midgut lumen of the mosquito, invades the epithelial cells and settles beneath the basal lamina. The events surrounding cessation of ookinete motility and its transformation into an oocyst are poorly understood, but interaction between components of the basal lamina and the parasite surface has been implicated. Here we report that interactions occur between basal lamina constituents and ookinete proteins and that these interactions inhibit motility and are likely to be involved in transformation to an oocyst. Plasmodium berghei ookinetes bound weakly to microtitre plate wells coated with fibronectin and much more strongly to wells coated with laminin and collagen IV. A 1:1 mixture of collagen and laminin significantly enhanced binding. Binding increased with time of incubation up to 10 h and different components showed different binding profiles with time. Two parasite molecules were shown to act as ligands for basal lamina components. Western blots demonstrated that the surface molecule Pbs21 bound strongly to laminin but not to collagen IV whereas a 215 kDa molecule (possibly PbCTRP) bound to both laminin and collagen IV. Furthermore up to 90% inhibition of binding of ookinetes to collagen IV/laminin combination occurred if parasites were pre-incubated with anti-Pbs21 monoclonal antibody 13.1. Some transformation of ookinetes to oocysts occurred in wells coated with laminin or laminin/collagen IV combinations but collagen IV alone did not trigger transformation. No binding or transformation occurred in uncoated wells. Our data support the suggestion that ookinete proteins Pbs21 and a 215 kDa protein may have multiple roles including interactions with midgut basal lamina components that cause binding, inhibit motility and trigger transformation.  相似文献   

8.
ABSTRACT We observed Plasmodium gallinaceum ookinetes in both intracellular and intercellular positions in the midgut epithelium of the mosquito Aedes aegypti. After epithelial cell invasion intracellular ookinetes lacked a parasitophorous vacuolar membrane and were surrounded solely by their own pellicle. Thus, the ookinete in the midgut epithelium of the mosquito differs from erythrocytic and hepatic stages in that the parasite in the vertebrate host is surrounded by a vacuole. The midgut epithelial cytoplasm around the apical end of invading ookinetes was replaced by fine granular material deprived of normal organelles. Membranous structure was observed within the fine granular area. Most ookinetes were seen intracellularly on the luminal side and intercellularly on the haemocoel side of the midgut epithelial cells. These observations suggest that the ookinete first enters into the midgut epithelial cell, then exits to the space between the epithelial cells and moves to the basal lamina where the ookinete develops to the oocyst.  相似文献   

9.
We observed Plasmodium gallinaceum ookinetes in both intracellular and intercellular positions in the midgut epithelium of the mosquito Aedes aegypti. After epithelial cell invasion intracellular ookinetes lacked a parasitophorous vacuolar membrane and were surrounded solely by their own pellicle. Thus, the ookinete in the midgut epithelium of the mosquito differs from erythrocytic and hepatic stages in that the parasite in the vertebrate host is surrounded by a vacuole. The midgut epithelial cytoplasm around the apical end of invading ookinetes was replaced by fine granular material deprived of normal organelles. Membranous structure was observed within the fine granular area. Most ookinetes were seen intracellularly on the luminal side and intercellularly on the haemocoel side of the midgut epithelial cells. These observations suggest that the ookinete first enters into the midgut epithelial cell, then exists to the space between the epithelial cells and moves to the basal lamina where the ookinete develops to the oocyst.  相似文献   

10.
11.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called "regenerative" cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

12.
To invade its definitive host, the mosquito, the malaria parasite must cross the midgut peritrophic matrix that is composed of chitin cross-linked by chitin-binding proteins and then develop into an oocyst on the midgut basal lamina. Previous evidence indicates that Plasmodium ookinete-secreted chitinase is important in midgut invasion. The mechanistic role of other ookinete-secreted enzymes in midgut invasion has not been previously examined. De novo mass spectrometry sequencing of a protein obtained by benzamidine affinity column of Plasmodium gallinaceum ookinete axenic culture supernatant demonstrated the presence of an ookinete-secreted plasmepsin, an aspartic protease previously only known to be present in the digestive vacuole of asexual stage malaria parasites. This plasmepsin, the ortholog of Plasmodium falciparum plasmepsin 4, was designated PgPM4. PgPM4 and PgCHT2 (the P. gallinaceum ortholog of P. falciparum chitinase PfCHT1) are both localized on the ookinete apical surface, and both are present in micronemes. Aspartic protease inhibitors (peptidomimetic and natural product), calpain inhibitors, and anti-PgPM4 monoclonal antibodies significantly reduced parasite infectivity for mosquitoes. These results suggest that plasmepsin 4, previously known only to function in the digestive vacuole of asexual blood stage Plasmodium, plays a role in how the ookinete interacts with the mosquito midgut interactions as it becomes an oocyst. These data are the first to delineate a role for an aspartic protease in mediating Plasmodium invasion of the mosquito and demonstrate the potential for plasmepsin 4 as a malaria transmission-blocking vaccine target.  相似文献   

13.
Ookinetes are motile invasive stages of the malaria parasite that enter the midgut epithelium of the mosquito vector via an intracellular route. Ookinetes often migrate through multiple adjacent midgut epithelial cells, which subsequently undergo apoptosis/necrosis and are extruded from the midgut epithelium into the midgut lumen. Hundreds of ookinetes may simultaneously invade the midgut epithelium, causing destruction of an appreciable proportion of the total number of midgut epithelial cells. However, there is little evidence that ookinete invasion of the midgut epithelium per se is detrimental to the survival of the mosquito vector implying that efficient mechanisms exist to restore the damaged midgut epithelium following malaria parasite infection. Proliferation and differentiation of precursor stem cells could replace the midgut epithelial cells destroyed and lost as a consequence of ookinete invasion. Although the existence of so-called “regenerative” cells within the mosquito midgut epithelium has long been recognized, there has been no previously published evidence for proliferation/differentiation of these putative precursor midgut epithelial cells in mature adult female mosquitoes. In the current study, examination of Giemsa-stained histological sections from Anopheles stephensi mosquito midguts infected with the human malaria parasite Plasmodium falciparum provided morphological evidence that regenerative cells undergo division and subsequent differentiation into normal columnar midgut epithelial cells. Furthermore, the number of these putatively proliferating/differentiating regenerative cells was significantly higher in P. falciparum-infected compared to uninfected mosquitoes, and was positively correlated with both the level of malaria parasite infection and midgut epithelial cell destruction. The loss of invaded midgut epithelial cells associated with intracellular migration by ookinetes, therefore, appears to trigger, and to be compensated by, proliferative regeneration of the mosquito midgut epithelium.  相似文献   

14.
15.
The transformation of malaria ookinetes into oocysts occurs in the mosquito midgut and is a major bottleneck for parasite transmission. The secreted ookinete surface protein, circumsporozoite- and thrombospondin-related adhesive protein (TRAP)-related protein (CTRP), is essential for this transition and hence constitutes a potential target for malaria transmission blockade. CTRP is a modular multidomain protein containing six tandem von Willebrand factor A-like (A) domains and seven tandem thrombospondin type I repeat-like (TS) domains. Here we present, to our knowledge, the first structure-function analysis of CTRP using genetically modified Plasmodium berghei parasites expressing mutant versions of the ctrp gene. Our data show that the A domains of CTRP are critical for ookinete gliding motility and oocyst formation whilst, unexpectedly, its TS domains are fully redundant. These results may have important implications for the design of CTRP-based transmission blocking strategies.  相似文献   

16.
17.
Recent debate in Plasmodium ookinete invasion has been centered on whether the parasite chooses a specific cell type to cross the midgut epithelium in the mosquito. A few publications have described the mosquito midgut being composed of complex surface-structures, histochemically and biochemically diverse cell types, and have proposed that Plasmodium gallinaceum ookinetes prefers a specific cell type (Ross cell) in Aedes aegypti for crossing the midgut epithelium. Two recent publications reported, however, that with differential interference contrast microscopy, all midgut epithelial cells in uninfected mosquitoes appear structurally similar and argued that ookinetes do not invade a specific cell type. These observations are discussed here in the context of the 'Ross cell' hypothesis.  相似文献   

18.
Knowledge of parasite-mosquito interactions is essential to develop strategies that will reduce malaria transmission through the mosquito vector. In this study we investigated the development of two model malaria parasites, Plasmodium berghei and Plasmodium gallinaceum, in three mosquito species Anopheles stephensi, Anopheles gambiae and Aedes aegypti. New methods to study gamete production in vivo in combination with GFP-expressing ookinetes were employed to measure the large losses incurred by the parasites during infection of mosquitoes. All three mosquito species transmitted P. gallinaceum; P. berghei was only transmitted by Anopheles spp. Plasmodium gallinaceum initiates gamete production with high efficiency equally in the three mosquito species. By contrast P. berghei is less efficiently activated to produce gametes, and in Ae. aegypti microgamete formation is almost totally suppressed. In all parasite/vector combinations ookinete development is inefficient, 500-100,000-fold losses were encountered. Losses during ookinete-to-oocyst transformation range from fivefold in compatible vector parasite combinations (P. berghei/An. stephensi), through >100-fold in poor vector/parasite combinations (P. gallinaceum/An. stephensi), to complete blockade (>1,500 fold) in others (P. berghei/Ae. aegypti). Plasmodium berghei ookinetes survive poorly in the bloodmeal of Ae. aegypti and are unable to invade the midgut epithelium. Cultured mature ookinetes of P. berghei injected directly into the mosquito haemocoele produced salivary gland sporozoites in An. stephensi, but not in Ae. aegypti, suggesting that further species-specific incompatibilities occur downstream of the midgut epithelium in Ae. aegypti. These results show that in these parasite-mosquito combinations the susceptibility to malarial infection is regulated at multiple steps during the development of the parasites. Understanding these at the molecular level may contribute to the development of rational strategies to reduce the vector competence of malarial vectors.  相似文献   

19.
The midgut epithelium of the mosquito malaria vector Anopheles is a hostile environment for Plasmodium, with most parasites succumbing to host defenses. This study addresses morphological and ultrastructural features associated with Plasmodium berghei ookinete invasion in Anopheles gambiae midguts to define the sites and possible mechanisms of parasite killing. We show by transmission electron microscopy and immunofluorescence that the majority of ookinetes are killed in the extracellular space. Dead or dying ookinetes are surrounded by a polymerized actin zone formed within the basal cytoplasm of adjacent host epithelial cells. In refractory strain mosquitoes, we found that formation of this zone is strongly linked to prophenoloxidase activation leading to melanization. Furthermore, we identify two factors controlling both phenomena: the transmembrane receptor frizzled-2 and the guanosine triphosphate-binding protein cell division cycle 42. However, the disruption of actin polymerization and melanization by double-stranded RNA inhibition did not affect ookinete survival. Our results separate the mechanisms of parasite killing from subsequent reactions manifested by actin polymerization and prophenoloxidase activation in the A. gambiae-P. berghei model. These latter processes are reminiscent of wound healing in other organisms, and we propose that they represent a form of wound-healing response directed towards a moribund ookinete, which is perceived as damaged tissue.  相似文献   

20.
Abstract Present understanding of the development of sexual stages of the human malaria parasites Plasmodium vivax and P.falciparum in the Anopheles vector is reviewed, with particular reference to the role of the mosquito midgut in establishing an infection. The sexual stages of the parasite, the gametocytes, are formed in human erythrocytes. The changes in temperature and pH encountered by the gametocyte induce gametogenesis in the lumen of the midgut. Macromolecules derived from mosquito tissue and second messenger pathways regulate events leading to fertilization. In An.tessellatus the movement of the ookinete from the lumen to the midgut epithelium is linked to the release of trypsin in the midgut and the peritrophic matrix is not a firm barrier to this movement. The passage of the P. vivax ookinete through the peritrophic matrix may take place before the latter is fully formed. The late ookinete development in P.falciparum requires chitinase to facilitate penetration of the peritrophic matrix. Recognition sites for the ookinetes are present on the midgut epithelial cells. N-acetyl glucosamine residues in the oligosaccharide side chains of An.tessellatus midgut glycoproteins and peritrophic matrix proteoglycan may function as recognition sites for P.vivax and P.falciparum ookinetes. It is possible that ookinetes penetrating epithelial cells produce stress in the vector. Mosquito molecules may be involved in oocyst development in the basal lamina, and encapsulation of the parasite occurs in vectors that are refractory to the parasite. Detailed knowledge of vector-parasite interactions, particularly in the midgut and the identification of critical mosquito molecules offers prospects for manipulating the vector for the control of malaria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号