首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R. Lemberg  M. V. Gilmour 《BBA》1967,143(3):500-517
1. The ‘oxygenated’ compound of cytochrome c oxidase used in our experiments is more stable than the compound of previous reports. It is quantitatively reversible to ferrous oxidase.

2. It is best formed with an excess of O2 after reduction with a minimum amount of dithionite. It can also be formed at low O2 tension, but then contains some ferric oxidase.

3. Its formation from ferrocyanide-reduced oxidase remains incomplete and subsequent reduction by dithionite is also incomplete.

4. Cyanide does not inhibit its formation from ferrous oxidase. If only ferricytochrome a but no ferricytochrome a3 is reduced in the presence of cyanide by dithionite, there is no reaction with O2.

5. The anaerobic reduction of ‘oxygenated’ oxidase by dithionite is monophasic and fast. In contrast, that of ferric oxidase is biphasic, with an initial fast reduction of ferricytochrome a followed by a much slower reduction of ferricytochrome a3. The rate of cytochrome a, but not that of cytochrome a3 reduction depends on dithionite concentration.

6. In the presence of dissolved O2, the ferric oxidase reduction comes to a temporary standstill when one-third of the absorbance increase at 444 mμ has been reached.

7. Ethyl hydrogen peroxide reacting with ferrous oxidase forms a compound similar to the ‘oxygenated’ compound.

8. Hydrogen donors known to react with peroxidase-H2O2 complexes, particularly pyrogallol, accelerate the transformation of ‘oxygenated’ to ferric oxidase, though not at a rate comparable to that of cytochrome c.

9. These results strengthen the evidence for cytochromes a and a3 but indicate that this difference has disappeared in ‘oxygenated’ oxidase.  相似文献   


2.
J. A. Berden  E. C. Slater 《BBA》1970,216(2):237-249
1. Succinate-cytochrome c reductase activity was reconstituted by incubating a mixture of succinate dehydrogenase, cytochrome c1, ubiquinone-10, phospholipid and a preparation of cytochrome b, made by the method of .

2. Preparations of cytochrome b active in reconstitution contained 5–28% native cytochrome b, as adjudged by reducibility with succinate in the reconstituted preparation and by lack of reaction with CO. Preparations of cytochrome b containing no native cytochrome b according to this criterion were inactive in reconstitution.

3. With a fixed amount of cytochrome b, the activity of the reconstituted preparation increased with increasing amounts of cytochrome c1 until a ratio of about 2b (total): 1c1 (allowing for the cytochrome c1 present in the cytochrome b preparation) was reached.

4. The amount of antimycin necessary for maximal inhibition of the reconstituted enzyme is a function of the amount of the cytochrome b and is independent of the amount of cytochrome c1. It is equal to about one half the amount of native cytochrome b.

5. Preparations of intact or reconstituted succinate-cytochrome c reductase or of cytochrome b completely quench the fluorescence of added antimycin, until an amount of antimycin equal to onehalf the amount of native cytochrome b present was added. Antimycin added in excess of this amount fluoresces with normal intensity. The quenching is only partial in the presence of Na2S2O4. Denatured cytochrome b does not quench the fluorescence.

6. Since preparations of cytochrome b active in reconstitution contained cytochrome c1 in an amount exceeding one half the amount of native cytochrome b present in the preparation, there is no evidence that native cytochrome b has been resolved from cytochrome c1. The stimulatory action of cytochrome c1 may be due to the restoration of a damaged membrane conformation.

7. Based on the assumption that the bc1 segment of the respiratory chain contains 2b:1c1:1 antimycin-binding sites, the specific quenching of antimycin fluorescence by binding to cytochrome b enables an accurate determination of the absorbance coefficients of cytochromes b and c1. These are 25.6 and 20.1 mM−1×cm−1 for the wavelength pairs 563–577 nm and 553–539 nm, respectively, in the difference spectrum reduced minus oxidized.  相似文献   


3.
D. F. Wilson  Britton Chance 《BBA》1967,131(3):421-430
The azide inhibition of the succinate oxidase activity of rat-liver mitochondria is specific for active (State 3) respiration with no observable inhibition of resting (State 4) respiration. In the range of azide concentrations which inhibit State 3 to rates less than those of State 4, a negative control of respiration by ADP and inorganic phosphate is observed. The inhibition is specific for a site between cytochromes a and a3, causing a crossover between these two cytochromes with cytochrome a becoming reduced and cytochrome a3 remaining highly oxidized. Trapped steady-state difference spectra at liquid nitrogen temperatures show that the reduced cytochrome a in the azide-inhibited system has an band at 596 mμ, 6 m μ displaced from its usual position at 602 mμ.

The azide inhibition is released by uncouplers of oxidative phosphorylation such that the uncoupled respiration requires up to ten times as much azide as does coupled (State 3) respiration for comparable inhibition. The release of inhibition by uncouplers occurs with no change in the steady-state concentration of reduced cytochrome a596 and the increased respiration is attributed to an increased rate of oxidation of the cytochrome a596. This cytochrome is postulated to be either an intermediate in electron transport and energy conservation reactions or an azide compound of such an intermediate.  相似文献   


4.
W. Bandlow  K. Wolf  F. Kaudewitz  E.C. Slater 《BBA》1974,333(3):446-459
1. A chromosomal respiration-deficient mutant of the petite-negative yeast Schizosaccharomyces pombe was isolated. Its mitochondria show respiration rates of about 7% of the wild-type respiration with NADH and succinate as substrate, and 45% with ascorbate in the presence of tetramethyl-p-phenylenediamine. Oxidation of NADH and succinate is insensitive to antimycin and cyanide and that of ascorbate is much less sensitive to cyanide than the wild type.

2. The amounts of cytochromes c1 and aa3 are similar in the mutant and wild type. Cytochrome b-566 could not be detected in low-temperature spectra after reduction with various substrates or dithionite. A b-558 is, however, present.

3. The b-cytochromes in the mutant are not reduced by NADH or succinate during the steady state even after addition of ubiquinone-1. QH2-3: cytochrome c reductase activity is very low and succinate oxidation is highly stimulated by phenazine methosulphate.

4. Antimycin does not bind to either oxidized or reduced mitochondrial particles of the mutant.

5. In contrast to the b-cytochromes of the wild type, b-558 in the mutant reacts with CO.

6. Cytochromes aa3, c and c1 are partly reduced in aerated submitochondrial particles isolated from the mutant and the EPR signal of Cu (II), measured at 35°K, is detectable only after the addition of ferricyanide. In the mutant, a signal with a trough at g = 2.01 is found, in addition to the signal at g = 1.98 found in the wild type.

7. The ATPase activity of particles isolated from the mutant is much lower than in the wild type but is still inhibited by oligomycin.  相似文献   


5.
1. The effect of low oxygen concentration on the oxidation-reduction states of cytochrome c and of pyridine nucleotide, on Ca2+ uptake, on the energy-linked reduction of pyridine nucleotide by succinate, and on the rate of oxygen consumption have been examined under various metabolic conditions, using pigeon heart mitochondria.

2. The oxygen concentration required to provide half-maximal reduction of cytochrome c (p50c) ranges from 0.27 to 0.03 μM (0.2-0.02 Torr) depending upon the metabolic activity. There is a linear increase of the p50c value with increasing respiratory rate.

3. The fraction of the normoxic respiration that is observed at p50c is 70–90% under State 4 conditions, but is 30% under State 3 conditions.

4. The oxygen requirement for half-maximal reduction of pyridine nucleotide (p50PN) varies less than p50c, being 0.08 μM in State 3 and 0.06 μM in the uncoupled state.

5. The ability of the mitochondria to exhibit an energy-linked reduction of pyridine nucleotide by succinate disappears at an oxygen concentration of 0.09 μM (0.06 Torr). Below this oxygen concentration, endogenous Ca2+ begins to be released from the mitochondria. Thus, the critical oxygen concentration for bioenergetic function of mitochondria corresponds approximately to 50% reduction of pyridine nucleotide (p50PN).  相似文献   


6.
1. In membranes prepared from dark grown cells of Rhodopseudomonas capsulata, five cytochromes of b type (E0 at pH 7.0 +413±5, +270±5, +148±5, +56±5 and −32±5 mV) can be detected by redox titrations at different pH values. The midpoint potentials of only three of these cytochromes (b148, b56, and b−32) vary as a function of pH with a slope of 30 mV per pH unit.

2. In the presence of a Co/N2 mixture, the apparent E0 of cytochrome b270 shifts markedly towards higher potentials (+355 mV); a similar but less pronounced shift is apparent also for cytochrome b150. The effect of CO on the midpoint potential of cytochrome b270 is absent in the respiration deficient mutant M6 which possesses a specific lesion in the CO-sensitive segment of the branched respiratory chain present in the wild type strain.

3. Preparations of spheroplasts with lysozyme digestion lead to the release of a large amount of cytochrome c2 and of virtually all cytochrome cc′. These preparations show a respiratory chain impaired in the electron pathway sensitive to low KCN concentration, in agreement with the proposed role of cytochrome c2 in this branch; on the contrary, the activity of the CO-sensitive branch remains unaffected, indicating that neither cytochrome c2 nor the CO-binding cytochrome cc′ are involved in this pathway.

4. Membranes prepared from spheroplasts still possess a CO-binding pigment characterized by maxima at 420.5, 543 and 574 nm and minima at 431, 560 nm in CO-difference spectra and with an band at 562.5 nm in reduced minus oxidized difference spectra. This membrane-bound cytochrome, which is coincident with cytochrome b270, can be classified as a typical cytochrome “o” and considered the alternative CO-sensitive oxidase.  相似文献   


7.
Linda Yu  Jian-Hua Dong  Chang-An Yu 《BBA》1986,852(2-3):203-211
Cytochrome c1 from a photosynthetic bacterium Rhodobacter sphaeroides R-26 has been purified to homogeneity. The purified protein contains 30 nmol heme per mg protein, has an isoelectric point of 5.7, and is soluble in aqueous solution in the absence of detergents. The apparent molecular weight of this protein is about 150 000, determined by Bio Gel A-0.5 m column chromatography; a minimum molecular weight of 30 000 is obtained by sodium dodecylsulfate polyacrylamide gel electrophoresis. The absorption spectrum of this cytochrome is similar to that of mammalian cytochrome c1, but the amino acid composition and circular dichroism spectral characteristics are different. The heme moiety of cytochrome c1 is more exposed than is that of mammalian cytochrome c1, but less exposed than that of cytochrome c2. Ferricytochrome c1 undergoes photoreduction upon illumination with light under anaerobic conditions. Such photoreduction is completely abolished when p-chloromercuriphenylsulfonate is added to ferricytochrome c1, suggesting that the sulfhydryl groups of cytochrome c1 are the electron donors for photoreduction. Purified cytochrome c1 contains 3 ± 0.1 mol of the p-chloromercuriphenylsulfonate titratable sulfhydryl groups per mol of protein. In contrast to mammalian cytochrome c1, the bacterial protein does not form a stable complex with cytochrome c2 or with mammalian cytochrome c at low ionic strength. Electron transfer between bacterial ferrocytochrome c1 and bacterial ferricytochrome c2, and between bacterial ferrocytochrome c1 and mammalian ferricytochrome c proceeds rapidly with equilibrium constants of 49 and 3.5, respectively. The midpoint potential of purified cytochrome c1 is calculated to be 228 mV, which is identical to that of mammalian cytochrome c1.  相似文献   

8.
A. K. Ghosh  S. N. Bhattacharyya 《BBA》1971,245(2):335-346
1. Mitochondria isolated from Saccharomyces Carlsbergensis are found to have three phosphorylation sites in the respiratory chain for the oxidation of NADH and NAD+-linked substrates and two for succinate oxidation. Freshly isolated mitochondria exist in an inhibited state with no respiratory control, but on ageing for 2–3 h a good coupled state is obtained. -Ketogultarate and -glycerophosphate are poorly oxidized in these mitochondria.

2. Exogenous NADH is a very good substrate for yeast mitochondrial respiration and apparently has a very low Km. However, one-third of the added NADH is not available for oxidation probably due to some form of compartmentation. Studies of both oxygen uptake and the redox changes of cytochrome b show complete oxidation of two-third of the added NADH.

3. Difference spectra of yeast mitochondria at liquid-nitrogen temperatures show all the characteristic peaks of cytochromes a (600 nm), b (558, 525 and 428 nm), c1 (552 nm) and c (545 and 516 nm).

4. The reduction of cytochrome b by dicumarol in antimycin A inhibited mitochondria provides evidence for an energy conservation site on the substrate side of cytochrome b.

5. In the absence of added ADP, the oxidation of malate and pyruvate occurs in the yeast mitochondria in a new respiratory state (State X) where the oxygen uptake occurs at State 4 rate but the redox level of the flavins, cytochrome b and c are similar to State 3. State X respiration is believed to be due to depletion of the high energy intermediate C I caused by the substrate anions accumulation.

6. The responses of yeast mitochondria to Ca2+ are qualitatively similar to those in rat liver mitochondria, particularly with respect to respiratory stimulation, membrane alkalinization and its accumulation in the mitochondria with succinate as the substrate in the presence and absence of acetate.  相似文献   


9.
Carla A.M. Marres  E.C. Slater 《BBA》1977,462(3):531-548
1. The polypeptide composition of purified QH2:cytochrome c oxidoreductase prepared by three different methods from beef-heart mitochondria has been determined. Polyacrylamide gel electrophoresis in the presence of dodecyl sulphate resolves eight intrinsic polypeptide bands; when, in addition, 8 M urea is present and a more highly cross-linked gel is used, the smallest polypeptide band is resolved into three different bands.

2. The identity of several polypeptide bands has been established by fractionation. The two heaviest polypeptides (bands 1 and 2) represent the so-called core proteins, band 3 the hemoprotein of cytochrome b, band 4 the hemoprotein of cytochrome c1, band 5 the Rieske Fe-S protein, band 6 a polypeptide associated with cytochrome c1 and identified with the so-called oxidation factor, and band 7 a polypeptide associated with cytochrome b.

3. The validity of molecular weight estimates for the polypeptides of the enzyme based on their mobility on dodecyl sulphate gels has been examined. The polypeptides of bands 1, 2 and 3 showed anomalous migration rates. The molecular weights of the other polypeptides have been estimated from their relative mobilities on either dodecyl sulphate gels or 8 M urea-dodecyl sulphate gels as 29 000, 24 000, 12 000, 8000, 6000, 5000 and 4000, respectively.

4. The stoicheiometry of the different polypeptides in the intact complex was determined using separate staining factors for the individual polypeptide bands.  相似文献   


10.
Tissue culture cells of virus-transformed and untransformed cell lines had low contents of cytochromes in the respiratory chain, measured per cell or per mg protein of the cells, in comparison to the cytochrome contents of liver cells in vivo.

In the virus-transformed cells the contents of cytochromes aa3, b and possibly c1 were significantly lower than those in the untransformed cells, while the content of cytochrome c was found to be the same or even increased in the transformed cells. Thus, a markedly high ratio of cytochromes c/aa3 was observed in the transformed cells.

Polarographic measurements of the oxygen uptake have shown a generally low rate of both endogenous respiration and respiration in the presence of glucose and vitamin K3 in the transformed cells.

The present study indicates that there is a quantitative and possibly qualitative alteration of the respiratory chain components in the transformed cells.  相似文献   


11.
R. Wever  B. F. Van Gelder 《BBA》1974,368(3):311-317
1. The photodissociation reaction of the cytochrome c oxidase-CO compound in the presence of azide was studied by EPR at 15°K. Addition of CO in the dark to cytochrome c oxidase, partially reduced (2 electrons per 4 metal ions) in the presence of azide brings about a decrease in intensity of the azide-induced low-spin heme signal at g = 2.9, 2.2 and 1.67 and an increase in intensity of both the low-spin heme signal at g = 3 and the copper signal at g = 2. Subsequent illumination with white light at room temperature of this sample causes an enhancement of the azide-induced signal at g = 2.9, and a decrease in intensity of both signals at g = 3 and g = 2. It is shown that these changes in the EPR spectrum are reversible.

2. These results demonstrate that upon photodissociation, CO is replaced by azide wheras upon incubation in the dark CO expels azide from its binding site in cytochrome c oxidase.

3. Concomitantly with the binding of CO and dissociation of the azide molecule, and vice versa, electron redistributions occur as inferred from the changes in the intensity of the copper signal at g = 2.

4. The results are explained in a model of cytochrome c oxidase with either a common binding site (cytochrome a3)* for CO and azide or in a model with anti-cooperative interaction between two different sites of binding.

5. Similar types of experiments with cyanide instead of azide show that cyanide is more firmly bound to partially reduced cytochrome c oxidase than CO and azide. The affinity of ligands for partially reduced enzyme decreases in the sequence: cyanide, CO (dark), azide and CO (illuminated).  相似文献   


12.
J.Peter Kusel  Bayard T. Storey 《BBA》1973,305(3):570-580
Highly purified mitochondrial preparations from the trypanosomatid hemoflagellate, Crithidia fasciculata (A.T.C.C. No.11745), were examined by low-temperature difference spectroscopy. The cytochrome a+a3 maximum of hypotonically-treated mitochondria reduced with succinate, was shifted from 605 nm at room temperature to 601 nm at 77 °K. The Soret maximum, found at 445 nm at 23 °C, was split at 77 °K into two approximately equally absorbing species with maxima at 438 and 444 nm. A prominent shoulder observed at 590 nm with hypotonically-treated mitochondria was not present in spectra of isotonic controls.

The cytochrome b maxima observed in the presence of succinate plus antimycin A were shifted from the 431 and 561 nm positions observed at 23 °C to 427 and 557 nm at 77 °K. Multiple b cytochromes were not apparent.

Unlike other soluble c-type cytochromes, the maximum of cytochrome c555 was not shifted at 77 °K although it was split to give a 551 nm shoulder adjacent to the 555 nm maximum. This lack of a low-temperature blue shift was true for partially purified hemoprotein preparations as well as in situ in the mitochondrial membrane.

Using cytochrome c555-depleted mitochondria, a cytochrome c1 pigment was observed with a maximum at 420 nm and multiple maxima at 551, 556, and 560 nm. After extraction of non-covalently bound heme, the pyridine hemochromogen difference spectrum of cytochrome c555-depleted preparations exhibited an maximum at 553 nm at room temperature.

The reduced rate of succinate oxidation by cytochrome c555-depleted mitochondria and the ferricyanide requirement for the reoxidation of cytochrome c1, even in the presence of antimycin, indicated that cytochrome c555-mediated electron transfer between cytochromes c1 and a+a3 in a manner analagous to that of cytochrome c in mammalian mitochondria.  相似文献   


13.
Eugene Mochan  Hans Degn 《BBA》1969,189(3):354-359
1. Ferricytochrome c acts as a catalyst in the peroxidation of ferrocytochrome c thereby giving rise to an autocatalytic reaction.

2. The rate of the peroxidation reaction is proportional to the concentration of H2O2 and ferricytochrome c but is independent of the concentration of ferrocytochrome c in the concentration ranges studied.

3. Integration of the rate equation, d[c3+]/dt = k[c3+][H2O2], gives a theoretical expression which fits the experimental time courses for the ferrocytochrome c peroxidation reaction.

4. No direct spectral evidence was found for the formation of a catalytically active ferricytochrome c-H2O2 derivative. Kinetic evidence is presented, however, which indicates the existence of such an intermediate.

5. Ferricytochrome c was more susceptible than ferrocytochrome c to an apparent degradation reaction caused by excess H2O2, thus supporting the idea that the cytochrome c heme iron is more accessible in the oxidized form.  相似文献   


14.
D. F. Wilson 《BBA》1967,131(3):431-440
Azide inhibition of coupled mitochondrial transport is accompanied by spectral changes which indicate that the cytochrome a3 is oxidized and cytochrome a reduced. The cytochrome a absorption band is shifted to shorter wavelengths in the azideinhibited system. This shift in the absorption band can be reversed by conditions leading to reduction of cytochrome a3 such as uncouplers and anaerobiosis, or terminal inhibitors such as sulfide, cyanide or CO.

Titrations of the azide-induced spectral changes indicate the binding of one azide molecule in the complex, and that the dissociation constant is experimentally indistinguishable from the uncompetitive inhibitor constants for inhibition of State 3 respiration. The azide inhibition is postulated to involve the formation of a reduced cytochrome a azide compound which is unstable in the presence of reduced cytochrome a3.  相似文献   


15.
K.A. Davis  Y. Hatefi  K.L. Poff  W.L. Butler 《BBA》1973,325(3):341-356

1. 1. Three b-type cytochromes (b557.5, b560, and b562.5), plus a chromophore with an absorption peak at 558 nm at 77 °K, have been found to be associated with the electron transport system of bovine heart mitochondria. The reduced minus oxidized spectra of these components at 77 °K, as well as that of cytochrome c1, have been recorded with a wavelength accuracy of ± 0.1 nm and presented to the nearest 0.5 nm. All the major and β absorption peaks of cytochromes b557.5, b560, b562.5, c1 and c have been shown by fourth derivative analysis to be present in the dithionite-reduced minus oxidized spectra of mitochondria and submitochondrial particles.

2. 2. The distribution of the above components has been studied in the four electron transfer complexes of the respiratory chain. Cytochromes b560, b562.5 and c1, as well as chromophore-558, were found to fractionate into Complex III (reduced ubiquinone-cytochrome c reductase), whereas cytochrome b557.5 was found in Complex II (succinate-ubiquinone reductase).

3. 3. Cytochrome b560 was readily reduced by NADH or succinate, but b562.5 was not reduced by substrates unless the preparation was treated with antimycin A. In antimycin-treated preparations pre-reduction of c1 with ascorbate inhibited the subsequent reduction of b562.5 by substrates. These results indicate that b560 and b562.5 correspond, respectively, to bK and bT previously described by Chance et al.14 (1970, Proc. Natl. Acad. Sci. U.S. 66, 1175–1182).

4. 4. Similar to b560, chromophore-558 can be reduced by substrates in the absence or presence of antimycin A. However, in antimycin-treated preparations, pre-reduction of c1 inhibits its subsequent reduction by substrates. This property is similar to that of b562.5.

5. 5. Cytochrome b557.5, which occurs in Complex II, appears to have a low mid-point potential. It can be reduced with dithionite and oxidized by fumarate or ubiquinone. CO treatment of dithionite-reduced b557.5 neither modified the spectrum of this cytochrome nor diminished the extent of b557.5 reoxidation by fumarate.

6. 6. Antimycin A treatment does not appear to alter the spectra of the above cytochromes. However, small amounts (< 4%) of ethanol or methanol, which are usually added to particles as solvent for antimycin A, have a pronounced effect on the peaks of cytochrome c1. The spectrum of cytochrome c1 at 77 °K as modified by 3% (v/v) ethanol is shown.

Abbreviations: ETP, non-phosphorylating electron transport particle preparation; ETPH, phosphorylating electron transport particle preparation; TMPD, tetramethylphenylenediamine; Complexes I, preparations of NADH-ubiquinone reductase; Complexes II, succinate-ubiquinone reductase; Complexes III, reduced ubiquinone-cytochrome c reductase; Complexes I-III, NADH-cytochrome c reductase; Complexes II-III, succinate-cytochrome c reductase  相似文献   


16.
M  rten K. F. Wikstr  m  Jan A. Berden 《BBA》1972,283(3):403-420
1. The effect of oxidizing equivalents on the redox state of cytochrome b in the presence of antimycin has been studied in the presence and absence of various redox mediators.

2. The antimycin-induced extra reduction of cytochrome b is always dependent on the initial presence of an oxidant such as oxygen. After removal of the oxidant this effect remains or is partially (under some conditions even completely) abolished depending on the redox potential of the substrate used and the leak through the antimycin-inhibited site.

3. The increased reduction of cytochrome b induced by oxidant in the presence of antimycin involves all three spectroscopically resolvable b components (b-562, b-566 and b-558.

4. Redox mediators with an actual redox potential of less than 100–170 mV cause the oxidation of cytochrome b reduced under the influence of antimycin and oxidant.

5. Redox titrations of cytochrome b with the succinate/fumarate couple were performed aerobically in the presence of cyanide. In the presence of antimycin two b components are separated potentiometrically, one with an apparent midpoint potential above 80 mV (at pH 7.0), outside the range of the succinate/fumurate couple, and one with an apparent midpoint potential of 40 mV and an n value of 2. In the absence of antimycin cytochrome b titrates essentially as one species with a midpoint potential of 39 mV (at pH 7.0) and n = 1.14.

6. The increased reducibility of cytochrome b induced by antimycin plus oxidant is considered to be the result of two effects: inhibition of oxidation of ferrocytochrome b by ferricytochrome c1 (the effect of antimycin), and oxidation of the semiquinone form of a two-equivalent redox couple such as ubiquinone/ubiquinol by the added oxidant, leading to a decreased redox potential of the QH2/QH couple and reduction of cytochrome b.  相似文献   


17.
Ken-ichiro Takamiya  Shigemi Obata 《BBA》1986,852(2-3):198-202
The photosynthetic membranes from Rhodopseudomonas palustris contained one species of membrane-bound c-type cytochrome, presumably cytochrome c1, and a b-type cytochrome with two heme centers. The molecular weight and midpoint potential of cytochrome c1 were 30000 and 275 mV, respectively. The peak of the reduced-minus-oxidized difference spectrum of cytochrome c1 was at 552 nm. Molecular weight of the b-type cytochrome was 32000 and the cytochrome had two midpoint potentials of 60 mV and −55 mV. The peaks of the reduced-minus-oxidized difference spectra of the high and low midpoint potential heme centers were at 560 and 562 nm, respectively. These results suggested that there was a cytochrome b-c1 complex in Rps. palustris.  相似文献   

18.
Bayard T. Storey 《BBA》1973,292(3):592-602

1. 1. Cycles of oxidation followed by reduction at pH 7.2 have been induced in uncoupled anaerobic mung bean mitochondria treated with succinate and malonate by addition of oxygen-saturated medium. Under the conditions used, cytochromes b557, b553, c549 (corresponding to c1 in mammalian mitochondria) and ubiquinone are completely oxidized in the aerobic state, but become completely reduced in anaerobiosis.

2. 2. The time course of the transition from fully oxidized to fully reduced in anaerobiosis was measured for cytochromes c549, b557, and b553. The intramitochondrial redox potential (IMPh) was calculated as a function of time for each of the three cytochromes from the time course of the oxidized-to-reduced transition and the known midpoint potentials of the cytochromes at pH 7.2. The three curves so obtained are superimposable, showing that the three cytochromes are in redox equilibrium under these conditions during the oxidized-to-reduced transition.

3. 3. This result shows that the slow reduction of cytochrome b557 under these conditions, heretofore considered anomalous, is merely a consequence of its more negative midpoint potential of +42 mV at pH 7.2, compared to +75 mV for cytochrome b553 and +235 mV for cytochrome c549. Cytochrome b557 is placed on the low potential side of coupling site II and transfers electrons to cytochrome c549 via the coupling site.

4. 4. The time course of the transition from fully oxidized to fully reduced was also measured for ubiquinone. Using the change in intramitochondrial potential IMPh with time obtained from the three cytochromes, the change in redox state of ubiquinone with IMPh was calculated. When replotted as IMPh versus the logarithm of the ratio (fraction oxidized)/(fraction reduced), two redox components with n = 2 were found. The major component is ubiquinone with a midpoint potential Em7.2 = + 70 mV. The minor component has a midpoint potential Em7.2 = − 12 mV; its nature is unknown.

Abbreviations: IMPh, intramitochondrial potential, referred to the normal hydrogen electrode; Em7.2, midpoint potential at pH 7.2  相似文献   


19.
MT113, a nonphotosynthetic mutant of Rhodobacter capsulatus previously characterized as lacking cytochrome c2 is shown to lack also cytochrome c1, the Rieske iron-sulfur cluster and the antimycin sensitive semiquinone Qc, all components of the cytochrome bc1 complex. Although MT113 contained b-type cytochromes and other iron-sulfur clusters at nearly wild-type level, it lacks c-type cytochromes. Based on antibody detection, c2 apoprotein was absent in MT113, however the apoproteins corresponding to the cytochromes b and c1 and the Rieske iron-sulfur cluster were present in reduced amounts. Genetic analysis indicated that the lesion appears to be due to a single mutation which is not localized in the structural genes of cytochrome c2 or the bc1 complex. These data taken together suggest that the pleiotropic mutation in MT113 might be related to the biosynthesis of c-type cytochromes.  相似文献   

20.
The low-spin ferric cyanide complex of beef heart cytochrome aa3 can be partially reduced by stoichiometric additions of ferrous cytochrome c or by similar additions of N,N,N′,N′-tetramethyl-p-phenylene diamine. In both cases the initial ratio of cytochrome c oxidized: cytochrome a reduced or Wurster's Blue: cytochrome a reduced approximates the value 2. It is concluded that the binding of a single HCN prevents the reduction of both cytochrome a3 and its associated EPR-invisible Cu atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号