首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The sink mobilizing abillity is partially determined by sugar uptake rates of storage cells. Two synthetic growth regulators (Pix and BAS 106W) were tested for their effect on sucrose uptake in root tissue discs or glucose uptake in cell cultures of sugar beet. In tissue discs, uptake at the plasmalemma was determined by incubating the discs for 1 h in the presence of 5 mM sucrose and at the tonoplast for 4 h in the presence of 40 mM sucrose. Cell cultures were incubated for 1 h in the presence of 1 mM glucose. Pix (10 mg l–1) caused a 20% stimulation of active sucrose uptake at the plasmalemma. Active sucrose uptake at the tonoplast was increased 67% by 100 mg l–1 Pix. No effect of BAS 106W was observed on sucrose uptake in tissue discs. In cell cultures, a 65% enhancement of active glucose uptake was observed with both Pix and BAs 106W. When the bioregulators were applied to the root medium of seedlings, Pix but not BAS 106W resulted in increased root/shoot ratio, translocation of 14C-assimilates, and allocation of more biomass to the root sink. The data suggested that sugar transport and translocation may be used as biochemical criteria for rapid screening of effective yield enhancing bioregulators.  相似文献   

2.
Summary Exudate can be obtained from incisions made in the bark of the stem of actively growing Ricinus plants. 14C-labelled assimilates from a fed leaf are rapidly detected in the exudate. This movement was both acropetal and basipetal from the fed leaf, at rates of over 100 cm h-1. Estimated rates within intact plants were 80–84 cm h-1.In contrast with xylem sap obtained from the same plant, the exudate obtained had an alkaline pH (8.2), a high dry matter content (10–12.5%), high sugar content (8–10%) which was predominantly sucrose; high potassium content (60–80 mM) and low calcium content (0.5–1.0 mM).It is concluded, on the basis of the present evidence, that the exudate is a true sample of the sieve tube sap undergoing translocation.  相似文献   

3.
Summary Translocation of 14C assimilates was studied on four different transport systems of Picea abies branches after induced activation in January. 14CO2 assimilation of terminal shoots for 48 h at 25° C resulted in phloem loading and basipetal transport of 14C photosynthate into the following, older shoot generations. 14C import was enhanced, when these older shoot generations were kept in the dark. Microautoradiographs of the labelled terminal shoots showed that 14C assimilates were exported from needles via sieve elements of the leaf traces and loaded into the latest increment of the axial secondary phloem. No 14C label appeared in the obliterated sieve cells or in the tracheids. In addition, 14C photosynthate accumulated densely in the chlorophyllous cells of the cortex and in cells of the resin ducts, indicating certain sink activity. In the darkened 2-year-old shoot, imported 14C photosynthate was concentrated in the functional secondary phloem, while some 14C label was unloaded into the latest xylem increment. When 6-year-old shoots were exposed to 14CO2 for 48 h in the light, 14C assimilates accumulated in the phloem of the leaf trace and in the latest increment of the axial secondary phloem. However, a substantial amount of radioactivity was unloaded into ray cells and phloem parenchyma cells. Thus, the presence of functioning phloem in needles and twigs of P. abies during winter allows long-distance translocation and radial distribution of assimilates according to existing source-sink relations.  相似文献   

4.
Asymmetrically labeled sucrose, 14C(fructosyl)sucrose, was used to determine whether sucrose undergoes extracellular hydrolysis during phloem translocation in the sugar beet, Beta vulgaris. In addition, the metabolism of various sugars accumulated and translocated was determined in various regious of the plant. These processes were studied in detached regions as well as in the intact, translocating plant in the source leaf, along the translocation path, and in a rapidly growing sink leaf and storage beet. The data show that, unlike sucrose accumulation into the sink tissue of sugarcane, sucrose is neither hydrolzyed prior to phloem loading or during transit, nor is it extracellularly hydrolyzed during accumulation into sink leaves or the storage beet.  相似文献   

5.
Bean plants, trimmed to a simplified “double source, double sink” translocation system (the paired primary leaves serving as the double source and the paired lateral leaflets of the immature first trifoliate leaf as the double sink) were used to study the magnitude and short-term time course of change in the allocation ratio (partition ratio) of assimilates translocated from the labeled primary leaf to its respective “near” and “far leaflet” sinks in response to an increase or decrease in the source strength of the opposite primary leaf (the “control” leaf). If the rates of net photosynthesis in the two primary leaves were similar, assimilates from the labeled source leaf partitioned to the leaflet sinks in the ratio of 5:1 or higher, the dominant sink being the leaflet “nearer” to the labeled source leaf. If the rate of net photosynthesis in the control leaf was increased substantially above that of the labeled source leaf, the rate of translocation from the labeled source to either the near leaflet sink or far leaflet sink remained unaffected, despite, presumably, a higher translocation rate from the control leaf, and hence a higher phloem pressure gradient (or increased cross-sectional area) in the transport pathway from the control leaf to the leaflet sinks. If the control leaf was excised, thus reducing the source leaf area by about a half, the translocation rate from the remaining source leaf rapidly doubled, the partition ratio becoming equal to unity. If the control leaf was darkened, the partition ratio adjusted to an intermediate value. Although export rates from the labeled source leaf were increased either by excising or darkening the control leaf, the rate of net photosynthesis in the labeled leaf remained constant.  相似文献   

6.
Translocation of C Sucrose in Sugar Beet during Darkness   总被引:1,自引:1,他引:0       下载免费PDF全文
Geiger DR  Batey JW 《Plant physiology》1967,42(12):1743-1749
The time-course of arrival of 14C translocate in a sink leaf was studied in sugar beet (Beta vulgaris L. cultivar Klein Wanzleben) for up to 480 minutes of darkness. Following darkening of the source leaf, translocation rapidly declined, reaching a rate approximately 25% of the light period rate by 150 minutes. Comparison of data from plants that were girdled 1 cm below the crown with data from ungirdled plants indicates that after about 150 minutes darkness the beet root becomes a source of translocate to the sink leaf. After about 90 minutes darkness, starch-like reserve polysaccharide from the source leaf begins to contribute 14C to ethanol soluble pools in that leaf. Because of a 15% isotope mass effect, sucrose, at isotopic saturation, reaches a specific activity which is about 85% of the level of the supplied CO2. The source leaf sucrose specific activity remains at the isotopic saturation level for about 150 minutes of darkness, after which time input from polysaccharide reserves causes the specific activity to drop to about 55% of that of the supplied CO2. Sucrose specific activity determinations, polysaccharide dissolution measurements, and pulse labeling experiments indicate that following partial depletion of the sucrose pool, source leaf polysaccharide contributes to dark translocation. Respired CO2 from the source leaf appears to be derived from a pool which, unlike sucrose, remains at a uniform specific activity.  相似文献   

7.
Sucrose in the free space of translocating maize leaf bundles   总被引:1,自引:1,他引:0       下载免费PDF全文
Following exposure of portions of mature maize (Zea mays L.) leaf strips to 14CO2, xylem exudate from the leaf strips contained [14C]sucrose. Sucrose was the only sugar in the xylem exudate which was obtained from the cut surface of the leaf strips by reducing the external pressure. The sucrose found in the xylem exudate apparently was obtained from the free space of the vascular bundles, its concentration amounting up to 0.25%. When [14C]glucose or [14C]fructose was supplied in the dark to one end of a maize leaf strip, each was taken up by the xylem, and transported to the opposite end. Xylem exudate from such leaf strips contained 14C-labeled sucrose in addition to the 14C-labeled hexose. The results of this study support the view that sucrose is loaded into the companion cell-sieve tube complexes from the apoplast of the vascular bundles in the maize leaf.  相似文献   

8.
Physiological and transport data are presented in support of a symplastic pathway of phloem unloading in importing leaves of Beta vulgaris L. (`Klein E multigerm'). The sulfhydryl reagent p-chloromercuribenzene sulfonic acid (PCMBS) at concentration of 10 millimolar inhibited uptake of exogenous [14C]sucrose by sink leaf tissue over sucrose concentrations of 0.1 to 5.0 millimolar. Inhibited uptake was 24% of controls. The same PCMBS treatment did not affect import of 14C-label into sink leaves during steady state labeling of a source leaf with 14CO2. Lack of inhibition of import implies that sucrose did not pass through the free space during unloading. A passively transported xenobiotic sugar, l-[14C]glucose, imported by a sink leaf through the phloem, was evenly distributed throughout the leaf as seen by whole-leaf autoradiography. In contrast, l-[14C]glucose supplied to the apoplast through the cut petiole or into a vein of a sink leaf collected mainly in the vicinity of the major veins with little entering the mesophyll. These patterns are best explained by transport through the symplast from phloem to mesophyll.  相似文献   

9.
We tested the possible cytokinin effect on the functioning of the active transport system involved in the assimilate loading into the phloem as a cause for the cytokinin sink and retention effect. This effect is manifested in the deceleration of substance export from and the stimulation of substance import to the sites of local phytohormone application to the mature detached leaf from untreated leaf areas. To affect the membrane mechanisms of the substance transport, we used leaf treatment with the phytotoxin fusicoccin, an enhancer of plasmalemmal H+-ATPase and a potential stimulator of assimilates export, and with the phytohormone ABA affecting transport, metabolism, and plant growth. However, fusicoccin did not enhance 14C-sucrose export from the leaf blade and did not interfere with the cytokinin-induced export deceleration. ABA reduced substantially 14C export from the leaf but eliminated the cytokinin effect on this process. Similar results were obtained for broad bean (Vicia faba L.) leaves with apoplastic phloem loading, involving H+-ATPase activity, and pumpkin (Cucurbita pepo L.) leaves with symplastic phloem loading, that is, occurring without sucrose transmembrane translocation and without H+-ATPase involvement. The conclusion is that the cytokinin-induced development of sink zones in source leaves is not related to the membrane mechanisms of the substance transport in the mesophyll–phloem system. The data obtained support the idea that the cause for the cytokinin sink and retention effect is the enhancement of elongation growth and total activation of metabolism in the mesophyll cells of the detached leaf.  相似文献   

10.
Mature leaves of corn plants (Zea mays L. cv. Prior) which were darkened for 48 h contain neither bundle-sheath starch nor glucose, and their sucrose content is below 5 M. In such leaves phloem export has ceased. When re-illuminated, photosynthetic sucrose production starts without delay, but the sucrose: glucose ratio is 1.25:1. Obviously, most of the new-formed sugar is utilized locally. Labeling with 14CO2 has shown that phloen export starts 30 to 40 min after the onset of photosynthesis, when the sucrose: glucose ratio has increased to 13:1. The first newly formed starch can be detected when phloem export is reactivated. Glucose content remains constantly low af about 2 M for at least 2 h, and it never exceeds 10 M. Radioactivity in the exporting veins is about five times higher after 2 to 7 h of re-illumination than in the 14-h-day plant. Therefore, phloem export is either intensified during the period of reactivation or exported assimilates are partly unloaded along their way. Comparison of photosynthetic activity of equal-sized leaf strips has shown that both accumulation of photosynthates and radioactivity of exporting veins are about three times higher in the detached strip than in the strip which remained attached to the mother plant.  相似文献   

11.
The import-export transition in sugar beet leaves (Beta vulgaris) occurred at 40 to 50% leaf expansion and was characterized by loss in assimilate import and increase in photosynthesis. The metabolism and partitioning of assimilated and translocated C were determined during leaf development and related to the translocation status of the leaf. The import stage was characterized by C derived from either 14C-translocate or 14C-photosynthate being incorporated into protein and structural carbohydrates. Marked changes in the C partitioning were temporally correlated with the import-export conversion. Exporting leaves did not hydrolyze accumulated sucrose and the C derived from CO2 fixation was preferentially incorporated into sucrose. Both source and sink leaves contained similar levels of acid invertase and sucrose synthetase activities (sucrose hydrolysis) while sucrose phosphate synthetase (sucrose synthesis) was detected only in exporting leaves. The results are discussed in terms of intracellular compartmentation of sucrose and sucrose-metabolizing enzymes in source and sink leaves.  相似文献   

12.
Accumulation of anthraquinones in Morinda citrifolia cell suspensions   总被引:1,自引:0,他引:1  
Cell suspensions of Morinda citrifolia were cultivated in a B5-medium containing 4% sucrose as the sole carbon source and 1 mg l-1 naphthyl acetic acid (NAA) or 1 mg l-1 2,4-dichloro-phenoxyacetic acid (2,4-D). Both auxins were able to support growth but only in the presence of NAA anthraquinone production was observed. 2,4-D inhibited the production in NAA cultures. Anthraquinone synthesis took place in the growth and the stationary phase and amounts of 0.2–0.4 mmol (about 100–200 mg) g-1 dry weight could be reached.Under both growth conditions sucrose was hydrolyzed extracellularly by invertase. From the resulting monosaccharides, glucose was taken up preferentially and an appreciable uptake of fructose only took place when medium glucose was exhausted. Sugar uptake rates were similar when cells were grown in NAA and in 2,4-D medium but the intracellular sugar contents (expressed on a dry weight basis) differed considerably. The presence of sucrose, glucose and fructose was demonstrated under both growth conditions. The amounts of sucrose and glucose were much lower in the 2,4-D cells than in the NAA-cells especially during the growth phase. Fructose contents were low and comparable, while in NAA cells an unknown sugar (possibly the sugar moiety of the glycosylated anthraquinones) was observed especially at the end of the growth phase and in the stationary phase. The differences in sugar concentrations were even larger due to the lower water contents of the NAA cells.Respiration of 2,4-D cells was much higher than that of NAA cells during the growth phase. A sharp increase in sugar contents (mainly sucrose) occurred in the 2,4-D cells at the end of the growth phase and corresponded with the fall in respiratory activity.A possible correlation between the lack of production of anthraquinones in 2,4-D cells and a less efficient growth metabolism in these cells is discussed.Abbreviations AQ anthraquinones - 2,4-D 2,4-dichloro-phenoxy-acetic acid - DW dry weight - FW fresh weight - NAA naphthyl acetic acid - pCPO p-chloro-phenoxy-acetic acid  相似文献   

13.
Conditions were defined for precocious differentiation and improved growth of corms at the base of gladiolus shoots. Shoots were derived from explants cultured on agar solidified media, and corm regeneration was obtained in subsequent liquid shake cultures. Benzyladenine (BA), at 10-7 M, was found to have a stimulating effect mainly when provided to the shoots prior to manifestation of corm growth. Paclobutrazol and sucrose promoted corm formation when supplemented to the liquid media. Paclobutrazol, at 10 mg l-1, shifted assimilate allocation towards the growing corm. A differential promotion of corm development by sucrose was not observed, and the concentration of sucrose at which the sugar demand for maximal shoot and corm growth is satisfied (60 g l-1) was unaltered by the presence of paclobutrazol. The rate of corm growth on shoots cultured in a liquid medium supplemented with paclobutrazol and a saturating sucrose concentration, was a function of the length of the shoot's leaf blades, and was similar in light and in dark.  相似文献   

14.
Assimilate partitioning was studied in the common pea (Pisum sativum L.) by feeding 14CO2 to whole plants and measuring radioactivity in different organs 48 hours after labeling. Two experimental protocols were used. For the first, one reproductive node was darkened with an aluminum foil, to prevent photosynthesis during labeling. The aim was to study assimilate translocation among nodes. The second was carried out to assess any priority among sinks. Whole plants were shaded, during labeling, to reduce carbon assimilation. Various developmental stages between the onset of flowering and the final stage in seed abortion of the last pod were chosen for labeling. When all photosynthetic structures at the first reproductive node were darkened at any stage of development after the formation of the first flower, the first pod was supplied with assimilates from other nodes. In contrast, later developed pods, when photosynthetic structures at their node were darkened, received assimilates from other nodes only when they were beyond their final stage in seed abortion. Reducing illumination to 30% did not change distribution of assimilated carbon between vegetative and reproductive structures, nor among pods. It appears that the relative proportion of 14C allocated to any one pod, compared to other pods, depends on the dry weight of that pod as a proportion of the total reproductive dry weight. When the plant was growing actively, following the start of the reproductive phase until a few days before the end of flowering, the top of the plant (i.e., all the organs above the last opened flower) had a higher sink strength and a higher relative specific activity than pods, suggesting that it was a more competitive sink for assimilates. The pattern of assimilate distribution described here provides an explanation for pod and seed abortion.  相似文献   

15.
The new fructosyltransferase (FTase) from Bacillus maceransEG-6 showed a broad acceptor specificity, and resulted in the formation of fructosylxyloside (FX) with d-xylose being the most effective acceptor. The optimal FTase concentration for FX production was 0.6 unit per g sucrose, which gave the highest transfer ratio, 83%, of fructosyl moiety from sucrose to d-xylose. Maximum yield of FX was 114 g l–1with 200 g sucrose l–1and 300 g d-xylose l–1.  相似文献   

16.
Transitions in carbohydrate metabolism and translocation rate were studied for evidence of control of export by the sugar beet (Beta vulgaris L. Klein E.) source leaf. Steady-state labeling was carried out for two consecutive 14-hour light periods and various quantities related to translocation were measured throughout two 24-hour periods. Starch accumulation following illumination was delayed. Near the end of the light period, starch stopped accumulating, whereas photosynthesis rate and sucrose level remained unchanged. At the beginning of the dark period there was a 75-minute delay before starch was mobilized. The rate of import to the developing sink leaves at night was similar to that during the day, whereas export decreased considerably at night.

Starch accumulation and degradation seemed to be initiated in response to the level of illumination. Cessation of starch accumulation before the end of the light period was initiated endogenously. Exogenous control appeared to be mediated by the level of sucrose in the source leaf while endogenous control seemed to be keyed to photoperiod or photosynthetic duration.

  相似文献   

17.
An efficient system for the in vitro plant and shootregeneration of Lilium longiflorum was developed andaccomplished using transverse thin cell layers (tTCL) of young stems.tTCLs were cut transversely along young stems from which the shoot-tipshad been removed. Sections were measured accurately using a graded gridand were cut in 4 mm × 4 mm × 1 mm cubes, eliminatingepidermal tissue, and were cultured on one-half MS medium containing 8 gl–1 agar, different sucrose concentrations (10, 20, 30 or 40g l–1), and with or without 1 mg l–1 activatedcharcoal (AC). Plants formed on the surface of tTCLs within 60 days onone-half MS medium containing 8 g l–1 agar and 20 gl–1 sucrose. Sections of 1 mm taken just below the apicalarea developed buds within 15 days, whereas the sections closer to thebase required about 45 days. Shoot regeneration was enhanced whensucrose concentration was used at 30 or 40 g l–1 after 60days of culture. No root formation occurred. Both shooting and rootingoccurred when sucrose was used at 20 g l–1. The plantletswere transferred to soil and grew well under greenhouseconditions.  相似文献   

18.
The partitioning of photosynthetically fixed carbon betweencarbohydrate fractions and the processes of export and storagewere compared in mature leaf blades and sheaths of the grassPoa pratensis L. Most of the fixed carbon was destined for exportfrom the leaf blade with only 1% of the carbon fixed duringthe photoperiod being stored after 24 h. Although most of theassimilates imported to the sheath from the blade were subsequentlyexported, there was some unloading and storage of assimilates.Autoradiography was used to compare the translocation of 14C-labelledassimilates through non-fed areas of leaf blade and sheath andrevealed that the veins in the sheath showed a greater capacityfor storage of assimilates compared to the leaf blade. Biphasickinetics of sucrose and glucose uptake were observed in segmentsof leaf blade and sheath. Although similar carriers for eachof the sugars appear to exist in the blade and sheath, the rateof uptake via these carriers was significantly lower in thesheath compared to the blade. Assuming that unloading proceedsvia a symplastic pathway, it would appear that the conversionof sucrose to starch in the sheath could be an important meansof regulating unloading and in determining sink strength ofthe sheath. It is concluded that although the net amount ofsugars unloaded in the sheath is small, the storage of assimilatesin the vein network could be an important means of bufferingchanges in sucrose concentration in the translocate during periodsof fluctuating assimilation. Key words: Poa pratensis, autoradiography, sugar uptake, leaf blade, leaf sheath  相似文献   

19.
Pruned source-sink transport systems from predarkened plants of Amaranthus caudatus L. and Gomphrena globosa L. were used to study the localization of 14C-labeled photosynthate imported into experimentally induced sink leaves by microautoradiography. During a 6-h (Amaranthus) or a 4-h (Gomphrena) transport period, 14C-assimilates were translocated acropetally from a mature source leaf provided with 14CO2, into a younger induced sink leaf (dark/-CO2). In addition, a young still-expanding source leaf exposed to 14CO2 exported 14C-assimilates basipetally into a mature induced sink leaf (dark/-CO2). Microautoradiographs showed that imported 14C-photosynthate was strongly accumulated in the sieve element/companion cell complexes of midveins, secondary veins, and minor veins of both the mature and the expanding sink leaf. Some label was also present in the vascular parenchyma and bundlesheath cells. In petioles, 14C-label was concentrated in the sieve element/companion cell complexes of all bundles indicating that assimilates were imported and distributed via the phloem. Moreover, a considerable amount of radioactivity unloaded from the sieve element/companion cell complexes of petiolar bundles, was densely located at sites of secondary wall thickenings of differen-tiating metaxylem vessels, and at sites of chloroplasts of the vascular parenchyma and bundle-sheath cells. These observations were more striking in petioles of Gomphrena than Amaranthus.Abbreviation se/cc sieve element/companion cell  相似文献   

20.
Distorted phytochrome action spectra in green plants   总被引:6,自引:0,他引:6  
A. M. Jose  E. Schäfer 《Planta》1978,139(1):25-28
An evaluation was made of the extent which a Münch-type pressure flow mechanism (i.e., osmotically-generated pressure flow) might contribute to phloem transport in soybean. Estimates of sucrose concentrations in source (leaf) and sink (root) sieve tubes were obtained by a negativestaining procedure. Water potential measurements of the leaf and of the nutrient solution allowed calculation of the turgor pressures in source and sink sieve tubes. The turgor difference between source and sink sieve tubes was compared to that required to drive translocation at the observed velocity between the source and sink, as measured by [14C] photosynthate movement. Sieve-tube conductivity was calculated from the sieve-tube dimensions, assuming an essentially unobstructed pathway. In three experiments, the sucrose concentration was consistently higher in source sieve tubes (an average of 11.5%) than in sink sieve tubes (an average of 5.3%). The ratio of these values (2.3:1) agreed reasonably well with an earlier ratio for source/sink sieve tube concentrations of 1.8:1, obtained by quantitative microautoradiography. The resulting calculated turgor difference (an average of 4.1 bars) was adequate to drive a pressure flow mechanism at the observed translocation velocities (calculated to require a turgor difference of 1.2 to 4.6 bars). No other force need be presumed to be involved.This work was presented in part at a joint U.S.-Australian Conference on Transport and Transfer Processes in Plants, Canberra, Australia, December 15–20, 1975; see Fisher (1976)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号