首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 918 毫秒
1.
The water-oxidizing complex (WOC), also known as the oxygen-evolving complex (OEC), of photosystem II in oxygenic photosynthetic organisms efficiently catalyzes water oxidation. It is, therefore, responsible for the presence of oxygen in the Earth's atmosphere. The WOC is a manganese–calcium (Mn4CaO5(H2O)4) cluster housed in a protein complex. In this review, we focus on water exchange chemistry of metal hydrates and discuss the mechanisms and factors affecting this chemical process. Further, water exchange rates for both the biological cofactor and synthetic manganese water splitting are discussed. The importance of fully unveiling the water exchange mechanism to understand the chemistry of water oxidation is also emphasized here. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

2.
A novel method for the electrodeposition of highly active water oxidation catalysts is described. The manganese oxide (MnOx) films are electrodeposited on fluorine tin oxide (FTO) glass substrate at high temperature (120 °C) from an ionic liquid electrolyte (ethylammonium nitrate). A range of analytical techniques, including X‐ray absorption spectroscopy (XAS), X‐ray diffraction (XRD), and energy‐dispersive X‐ray analyzer (EDX), indicate that the valence state of manganese in the deposited films can be controlled by changing the electrolyte composition. Along with the different phase compositions, a number of different morphologies including nanowires, nanoparticles, nanofibers as well as highly open and dense structures are obtained by varying the acidity of the electrolyte. The effect of morphology and chemical composition on the catalytic activity towards water oxidation is investigated. The film composed of Mn3O4 shows low catalytic activities, while the films composed of birnessite‐like manganese oxide phase and Mn2O3 exhibit high catalytic activities for water oxidation. The catalytic activities are also affected by the surface morphology, i.e., a higher surface area and more open structure shows a higher catalytic activity. High rates of oxygen production are observed from MnOx films prepared in a neutral electrolyte.  相似文献   

3.
Abstract

Some of the prospects of using fungi, principally white-rot fungi, for cleaning contaminated land are surveyed. That white-rot fungi are so effective in degrading a wide range of organic molecules is due to their release of extra-cellular lignin-modifying enzymes, with a low substrate-specificity, so they can act upon various molecules that are broadly similar to lignin. The enzymes present in the system employed for degrading lignin include lignin-peroxidase (LiP), manganese peroxidase (MnP), various H2O2 producing enzymes and laccase. The degradation can be augmented by adding carbon sources such as sawdust, straw and corn cob at polluted sites.  相似文献   

4.
Strain S-36, a marine Pseudomonas sp., was grown under manganese limitation in continuous culture. At dilution rates below a maximal growth rate of 0.066 h-1, the rate at which the organism fixed CO2 into macromolecules was equal to the cell carbon production rate. In addition, the total amount of cell carbon or CO2 fixed at steady-state was in proportion to the amount of energy available from the oxidation of Mn2+ in the medium. These data suggest that the organism can grow by obtaining the energy for CO2 fixation from manganese oxidation.  相似文献   

5.
Bacillus sp. strain SG-1 is a marine bacterial species isolated from a near-shore manganese sediment sample. Its mature dormant spores promote the oxidation of Mn2+ to MnO2. By quantifying the amounts of immobilized and oxidized manganese, it was established that bound manganese was almost instantaneously oxidized. When the final oxidation of manganese by the spores was partly inhibited by NaN3 or anaerobiosis, an equivalent decrease in manganese immobilization was observed. After formation of a certain amount of MnO2 by the spores, the oxidation rate decreased. A maximal encrustment was observed after which no further oxidation occurred. The oxidizing activity could be recovered by reduction of the MnO2 with hydroxylamine. Once the spores were encrusted, they could bind significant amounts of manganese, even when no oxidation occurred. Purified spore coat preparations oxidized manganese at the same rate as intact spores. During the oxidation of manganese in spore coat preparations, molecular oxygen was consumed and protons were liberated. The data indicate that a spore coat component promoted the oxidation of Mn2+ in a biologically catalyzed process, after adsorption of the ion to incipiently formed MnO2. Eventually, when large amounts of MnO2 were allowed to accumulate, the active sites were masked and further oxidation was prevented.  相似文献   

6.
Cooper IB  Barry BA 《Biophysical journal》2008,95(12):5843-5850
In oxygenic photosynthesis, photosystem II (PSII) is the multisubunit membrane protein responsible for the oxidation of water to O2 and the reduction of plastoquinone to plastoquinol. One electron charge separation in the PSII reaction center is coupled to sequential oxidation reactions at the oxygen-evolving complex (OEC), which is composed of four manganese ions and one calcium ion. The sequentially oxidized forms of the OEC are referred to as the Sn states. S1 is the dark-adapted state of the OEC. Flash-induced oxygen production oscillates with period four and occurs during the S3 to S0 transition. Chloride plays an important, but poorly understood role in photosynthetic water oxidation. Chloride removal is known to block manganese oxidation during the S2 to S3 transition. In this work, we have used azide as a probe of proton transfer reactions in PSII. PSII was sulfate-treated to deplete chloride and then treated with azide. Steady state oxygen evolution measurements demonstrate that azide inhibits oxygen evolution in a chloride-dependent manner and that azide is a mixed or noncompetitive inhibitor. This result is consistent with two azide binding sites, one at which azide competes with chloride and one at which azide and chloride do not compete. At pH 7.5, the Ki for the competing site was estimated as 1 mM, and the Ki′ for the uncompetitive site was estimated as 8 mM. Vibrational spectroscopy was then used to monitor perturbations in the frequency and amplitude of the azide antisymmetric stretching band. These changes were induced by laser-induced charge separation in the PSII reaction center. The results suggest that azide is involved in proton transfer reactions, which occur before manganese oxidation, on the donor side of chloride-depleted PSII.  相似文献   

7.
Redox transitions induced by seasonal changes in water column O2 concentration can have important effects on solutes exchange across the sediment–water interface in systems polluted with acid mine drainage (AMD), thus influencing natural attenuation and bioremediation processes. The effect of such transitions was studied in a mesocosm experiment with water and sediment cores from an acidic reservoir (El Sancho, SW Spain). Rates of aerobic organic matter mineralization and oxidation of reduced inorganic compounds increased under oxic conditions (OX). Anaerobic process, like Fe(III) and sulfate reduction, also increased due to higher O2 availability and penetration depth in the sediment, resulting in higher regeneration rates of their corresponding anaerobic e? acceptors. The contribution of the different processes to oxygen uptake changed considerably over time. pH decreased due to the precipitation of schwertmannite and the release of H+ from the sediment, favouring the dissolution of Al-hydroxides and hydroxysulfates at the sediment surface. The increase in dissolved Al was the main contributor to water column acidity during OX. Changes in organic matter degradation rates and co-precipitation and dissolution of dissolved organic carbon and nitrogen with redox-sensitive Fe(III) compounds affected considerably C and N cycling at the sediment–water interface during redox transitions. The release of NO2? and NO3? during the hypoxic period could be attributed to ammonium oxidation coupled to ferric iron reduction (Feammox). Considering the multiple effects of redox transitions at the sediment–water interface is critical for the successful outcome of natural attenuation and bioremediation of AMD impacted aquatic environments.  相似文献   

8.
9.

In the wetland rhizosphere, high densities of lithotrophic Fe(II)-oxidizing bacteria (FeOB) and a favorable environment (i.e., high Fe(II) availability and microaerobic conditions) suggest that these organisms are actively contributing to the formation of Fe plaque on plant roots. We manipulated the presence/absence of an Fe(II)-oxidizing bacterium (Sideroxydans paludicola, strain BrT) in axenic hydroponic microcosms containing the roots of intact Juncus effusus (soft rush) plants to determine if FeOB affected total rates of rhizosphere Fe(II) oxidation and Fe plaque accumulation. Our experimental data highlight the importance of both FeOB and plants in influencing short-term rates of rhizosphere Fe oxidation. Over time scales ca. 1 wk, the FeOB increased Fe(II) oxidation rates by 1.3 to 1.7 times relative to FeOB-free microcosms. Across multiple experimental trials, Fe(II) oxidation rates were significantly correlated with root biomass, reflecting the importance of radial O 2 loss in supporting rhizosphere Fe(II) oxidation. Rates of root Fe(III) plaque accumulation (time scales: 3 to 6 wk) were ~ 70 to 83% lower than expected based on the short-term Fe(II) oxidation rates and were unaffected by the presence/absence of FeOB. Decreasing rates of Fe(II) oxidation and Fe(III) plaque accumulation with increasing time scales indicate changes in rates of Fe(II) diffusion and radial O 2 loss, shifts in the location of Fe oxide accumulation, or temporal changes in the microbial community within the microcosms. The microcosms used herein replicated many of the environmental characteristics of wetland systems and allowed us to demonstrate that FeOB can stimulate rates of Fe(II) oxidation in the wetland rhizosphere, a finding that has implications for the biogeochemical cycling of carbon, metals, and nutrients in wetland ecosystems.  相似文献   

10.
A polynuclear manganese complex functions in Photosystem II both to accumulate oxidizing equivalents and to bind water and catalyze its four-electron oxidation. Recent electron paramagnetic resonance (EPR) spectroscopic studies of the manganese complex show that four manganese ions are required to account for its magnetic properties. The exchange couplings between manganese ions in the S2 state are characteristic of a Mn4O4 cubane-like structure. Based on this structure for the manganese complex in the S2 state, as well as a consideration of the known properties of the manganese complex in Photosystem II and the coordination chemistry of manganese, structures are proposed for the five intermediate oxidation states of the manganese complex. A molecular mechanism for the formation of an O-O bond and the displacement of O2 from the S4 state is suggested.  相似文献   

11.

The increase in the open circuit potential of passive metals in natural waters due to biofilm formation at the metal surface, termed ennoblement, has been reported for nearly 30 years. Although its occurrence is undoubtedly associated with microbial colonization, the underlying mechanism of ennoblement remains controversial. Recent work produced in the authors’ laboratory has provided convincing experimental evidence that ennoblement can be caused by deposition of biomineralized manganese produced by manganese‐oxidizing biofilms. The purpose of this study was to determine the effects of environmental factors on the rate and extent of ennoblement of 316L stainless steel exposed to natural waters. This was accomplished by exposing corrosion coupons to four freshwater systems over a 4‐yearperiod. The rate and extent of ennoblement observed in these locations was correlated with dissolved manganese concentrations, the mass of accumulated manganese oxides, organic carbon concentration, dissolved oxygen concentration, flow, conditions, temperature, and pH in these environments.  相似文献   

12.
陆地生态系统甲烷产生和氧化过程的微生物机理   总被引:8,自引:0,他引:8  
张坚超  徐镱钦  陆雅海 《生态学报》2015,35(20):6592-6603
陆地生态系统存在许多常年性或季节性缺氧环境,如:湿地、水稻土、湖泊沉积物、动物瘤胃、垃圾填埋场和厌氧生物反应器等。每年有大量有机物质进入这些环境,在缺氧条件下发生厌氧分解。甲烷是有机质厌氧分解的最终产物。产生的甲烷气体可通过缺氧-有氧界面释放到大气,产生温室效应,是重要的温室气体。产甲烷过程是缺氧环境中有机质分解的核心环节,而甲烷氧化是缺氧-有氧界面的重要微生物过程。甲烷的产生和氧化过程共同调控大气甲烷浓度,是全球碳循环不可分割的组成部分。对陆地生态系统甲烷产生和氧化过程的微生物机理研究进展进行了概要回顾和综述。主要内容包括:新型产甲烷古菌即第六和第七目产甲烷古菌和嗜冷嗜酸产甲烷古菌的发现;短链脂肪酸中间产物互营氧化过程与直接种间电子传递机制;新型甲烷氧化菌包括厌氧甲烷氧化菌和疣微菌属好氧甲烷氧化菌的发现;甲烷氧化菌生理生态与环境适应的新机制。这些研究进展显著拓展了人们对陆地生态系统甲烷产生和氧化机理的认识和理解。随着新一代土壤微生物研究技术的发展与应用,甲烷产生和氧化微生物研究领域将面临更多机遇和挑战,对未来发展趋势做了展望。  相似文献   

13.
Particles prepared from spinach chloroplast membranes with Triton X-100 inhibited the superoxide-mediated reduction of nitro-blue tetrazolium by riboflavin. This superoxide dismutase-like activity was of two kinds, one inactivated by heating and inhibited by H2O2 and the other insensitive to both of these treatments; both activities were destroyed by washing with concentrated Tris buffer or with EDTA. Attempts at reconstitution with transition metal ions suggested that two different forms of bound manganese may be responsible and it is proposed that the inhibition by H2O2 is indicative of three different oxidation states of particle-bound manganese. The possibility that the photosynthetic water-splitting system and superoxide dismutase have evolved from a single precursor is discussed.  相似文献   

14.
Abstract

Electrometric studies were carried out on the interaction of heavy metal ions such as manganese, chromium, nickel, copper, zinc, cadmium and lead with the extracted organic matter, humic and fulvic acid from the sludge in a sewage oxidation pond. The distribution of heavy metals was between 60 and 97%, which is associated with the solid waste (sludge) of the oxidation pond. The adsorption/removal efficiency of metal ions onto the sludge ash was more than 90% and 97%, respectively, in the pure system. To obtain the ash, the sludge was burnt at 500°C, treated with nitric acid (1+1) to leach out all the metals and then filtered; the residue left on the filter paper was the pure ash. Both this and that coated with organic matter were studied. The adsorption isotherm for metals, humic/fulvic acids and metal-humic/fulvic acid complexes in the metal-free sludge ash and in the organic matter in the pure system were studied using the Freundlich relationship. Good agreement was found suggesting that sediment and humic/fulvic acids have an important role in the mobility, dispersion and sedimentation of metal ions in an aquatic environment. More of these heavy metals are removed in the pure system than in the natural system. This may be due to the lesser availability of humic and fulvic acids in the lagoons during the short detention time of sewage in suspension in the oxidation pond, whereas the sludge which has settled to the bottom of the pond for several years contains rich decomposed organic matter in the form of humic and fulvic acids containing heavy metals. Such pure systems could be useful for the effective removal of heavy metals.  相似文献   

15.
Boreal forests occupy nearly one fifth of the terrestrial land surface and are recognised as globally important regulators of carbon (C) cycling and greenhouse gas emissions. Carbon sequestration processes in these forests include assimilation of CO2 into biomass and subsequently into soil organic matter, and soil microbial oxidation of methane (CH4). In this study we explored how ecosystem retrogression, which drives vegetation change, regulates the important process of soil CH4 oxidation in boreal forests. We measured soil CH4 oxidation processes on a group of 30 forested islands in northern Sweden differing greatly in fire history, and collectively representing a retrogressive chronosequence, spanning 5000 years. Across these islands the build-up of soil organic matter was observed to increase with time since fire disturbance, with a significant correlation between greater humus depth and increased net soil CH4 oxidation rates. We suggest that this increase in net CH4 oxidation rates, in the absence of disturbance, results as deeper humus stores accumulate and provide niches for methanotrophs to thrive. By using this gradient we have discovered important regulatory controls on the stability of soil CH4 oxidation processes that could not have not been explored through shorter-term experiments. Our findings indicate that in the absence of human interventions such as fire suppression, and with increased wildfire frequency, the globally important boreal CH4 sink could be diminished.  相似文献   

16.
Oxidation of arsenic(III) by the bacterial community of a contaminated sediment (from the Estaque marina, Marseille, France) was studied using microcalorimetry. A low, but reproducible, heat output was detectable during microbial As(III) oxidation. The heat produced was of the same order of magnitude as the heat value calculated from the standard molar enthalpy change for the As(III) oxidation by oxygen. Parameters associated with the biogeochemical cycles of arsenic, iron and carbon were studied in parallel. Amendment with arsenite delayed CO2 production and increased the rate of Fe(II) oxidation in the sediment. These results suggest a correlation between arsenic and iron biogeochemical cycles and mineralization of organic matter.

Supplemental materials are available for this article. Go to the publisher's online edition of Geomicrobiology Journal to view the supplemental file.  相似文献   

17.
In this paper a few calcium-manganese oxides and calcium-manganese minerals are studied as catalysts for water oxidation. The natural mineral marokite is also studied as a catalyst for water oxidation for the first time. Marokite is made up of edge-sharing Mn3+ in a distorted octahedral environment and eight-coordinate Ca2+ centered polyhedral layers. The structure is similar to recent models of the oxygen evolving complex in photosystem II. Thus, the oxygen evolving complex in photosystem II does not have an unusual structure and could be synthesized hydrothermally. Also in this paper, oxygen evolution is studied with marokite (CaMn2O4), pyrolusite (MnO2) and compared with hollandite (Ba0.2Ca0.15K0.3Mn6.9Al0.2Si0.3O16), hausmannite (Mn3O4), Mn2O3.H2O, CaMn3O6.H2O, CaMn4O8.H2O, CaMn2O4.H2O and synthetic marokite (CaMn2O4). I propose that the origin of the oxygen evolving complex in photosystem II resulted from absorption of calcium and manganese ions that were precipitated together in the archean oceans by protocyanobacteria because of changing pH from ~5 to ~8-10. As reported in this paper, amorphous calcium-manganese oxides with different ratios of manganese and calcium are effective catalysts for water oxidation. The bond types and lengths of the calcium and manganese ions in the calcium-manganese oxides are directly comparable to those in the OEC. This primitive structure of these amorphous calcium-manganese compounds could be changed and modified by environmental groups (amino acids) to form the oxygen evolving complex in photosystem II.  相似文献   

18.
The properties of plaques were different on the root surface of Potamogeton crispus planted in sediments from two different shallow lakes. Lake Tangxunhu sediment, with low pH, contained low organic matter, whereas Lake Yuehu sediment, with high pH, had high calcium deposits mixed with high organic matter. The contents of mineral elements in sediment of Lake Tangxunhu was lower than that of Lake Yuehu, except for iron (Fe) content, but the contents of mineral elements extracted by sodium dithionite–sodium citrate–sodium bicarbonate (DCB) from root plaques were higher in Lake Tangxunhu than those in Lake Yuehu, except for Fe. These element distributions on P. crispus root plaques were characterized by scanning electron microscope combined with energy-dispersive X-ray spectrometer and were consistent with the contents of mineral elements in sediment. The root plaque of P. crispus planted in Lake Tangxunhu sediment mainly contained silicon (Si) and Fe, and the content of Si was greater than Fe, which may be contributed to the formation of poly-silicic-ferric in the natural conditions. However, the root plaque of P. crispus planted in the sediment with higher calcium content of Lake Yuehu was rich in Fe, Si, phosphorus (P), and calcium (Ca). Due to oxygen secretion by plant roots, the root plaque has more Fe3(PO4)2 and a certain amount of Ca3(PO4)2. The ratio of magnesium (Mn) to Fe extracted by DCB from root plaque in Lake Tangxunhu sediment was 0.031 and 0.010 in Lake Yuehu sediment. In Lake Tangxunhu sediment, lower content of organic matter results in weak reducibility. Enhanced oxidation ability by oxygen secretion of P. crispus root could oxidize low-valent Fe and Mn into iron–manganese oxide, which leads to formation of iron–manganese plaque on the root surface. However, this case is different in Lake Yuehu sediment, where Fe and Mn can be reduced in high organic sediment and low-valent Mn can precipitate in the sediment in which pH is >8. Thus, low-valent Fe in Lake Yuehu sediment moves to the root surface of P. crispus, where it oxidizes into Fe oxide, i.e., Fe plaque.  相似文献   

19.
A dissimilatory Fe(III)- and Mn(IV)-reducing microorganism was isolated from freshwater sediments of the Potomac River, Maryland. The isolate, designated GS-15, grew in defined anaerobic medium with acetate as the sole electron donor and Fe(III), Mn(IV), or nitrate as the sole electron acceptor. GS-15 oxidized acetate to carbon dioxide with the concomitant reduction of amorphic Fe(III) oxide to magnetite (Fe3O4). When Fe(III) citrate replaced amorphic Fe(III) oxide as the electron acceptor, GS-15 grew faster and reduced all of the added Fe(III) to Fe(II). GS-15 reduced a natural amorphic Fe(III) oxide but did not significantly reduce highly crystalline Fe(III) forms. Fe(III) was reduced optimally at pH 6.7 to 7 and at 30 to 35°C. Ethanol, butyrate, and propionate could also serve as electron donors for Fe(III) reduction. A variety of other organic compounds and hydrogen could not. MnO2 was completely reduced to Mn(II), which precipitated as rhodochrosite (MnCO3). Nitrate was reduced to ammonia. Oxygen could not serve as an electron acceptor, and it inhibited growth with the other electron acceptors. This is the first demonstration that microorganisms can completely oxidize organic compounds with Fe(III) or Mn(IV) as the sole electron acceptor and that oxidation of organic matter coupled to dissimilatory Fe(III) or Mn(IV) reduction can yield energy for microbial growth. GS-15 provides a model for how enzymatically catalyzed reactions can be quantitatively significant mechanisms for the reduction of iron and manganese in anaerobic environments.  相似文献   

20.
Helminthosporol was isolated as a natural plant growth-regulator produced by Helminthosporium sativum and its structure was assigned as I. Oxidation of I with chromium trioxide-pyridine complex gave helminthosporal (II). The glycol (III), obtained by the reduction of I or II, yielded I by the oxidation with activated manganese dioxide. I spontaneously changed into helminthosporic acid (IV), when the former in organic solvent was let to stand in the air.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号