首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of membraneless organelles (MLOs) by phase separation has emerged as a new way of organizing the cytoplasm and nucleoplasm of cells. Examples of MLOs forming via phase separation are nucleoli in the nucleus and stress granules in the cytoplasm. The main components of these MLOs are macromolecules such as RNAs and proteins. In order to assemble by phase separation, these proteins and RNAs have to undergo many cooperative interactions. These cooperative interactions are supported by specific molecular features within phase-separating proteins, such as multivalency and the presence of disordered domains that promote weak and transient interactions. However, these features also predispose phase-separating proteins to aberrant behavior. Indeed, evidence is emerging for a strong link between phase-separating proteins, MLOs, and age-related diseases. In this review, we discuss recent progress in understanding the formation, properties, and functions of MLOs. We pay special attention to the emerging link between MLOs and age-related diseases, and we explain how changes in the composition and physical properties of MLOs promote their conversion into an aberrant state. Furthermore, we discuss the key role of the protein quality control machinery in regulating the properties and functions of MLOs and thus in preventing age-related diseases.  相似文献   

2.
Rationally and efficiently modifying the amino-acid sequence of proteins to control their ability to undergo liquid–liquid phase separation (LLPS) on demand is not only highly desirable, but can also help to elucidate which protein features are important for LLPS. Here, we propose a computational method that couples a genetic algorithm to a sequence-dependent coarse-grained protein model to evolve the amino-acid sequences of phase-separating intrinsically disordered protein regions (IDRs), and purposely enhance or inhibit their capacity to phase-separate. We validate the predicted critical solution temperatures of the mutated sequences with ABSINTH, a more accurate all-atom model. We apply the algorithm to the phase-separating IDRs of three naturally occurring proteins, namely FUS, hnRNPA1 and LAF1, as prototypes of regions that exist in cells and undergo homotypic LLPS driven by different types of intermolecular interaction, and we find that the evolution of amino-acid sequences towards enhanced LLPS is driven in these three cases, among other factors, by an increase in the average size of the amino acids. However, the direction of change in the molecular driving forces that enhance LLPS (such as hydrophobicity, aromaticity and charge) depends on the initial amino-acid sequence. Finally, we show that the evolution of amino-acid sequences to modulate LLPS is strongly coupled to the make-up of the medium (e.g. the presence or absence of RNA), which may have significant implications for our understanding of phase separation within the many-component mixtures of biological systems.  相似文献   

3.
The complex cellular milieu can spontaneously demix, or phase separate, in a process controlled in part by intrinsically disordered (ID) proteins. A protein''s propensity to phase separate is thought to be driven by a preference for protein–protein over protein–solvent interactions. The hydrodynamic size of monomeric proteins, as quantified by the polymer scaling exponent (v), is driven by a similar balance. We hypothesized that mean v, as predicted by protein sequence, would be smaller for proteins with a strong propensity to phase separate. To test this hypothesis, we analyzed protein databases containing subsets of proteins that are folded, disordered, or disordered and known to spontaneously phase separate. We find that the phase-separating disordered proteins, on average, had lower calculated values of v compared with their non-phase-separating counterparts. Moreover, these proteins had a higher sequence-predicted propensity for β-turns. Using a simple, surface area-based model, we propose a physical mechanism for this difference: transient β-turn structures reduce the desolvation penalty of forming a protein-rich phase and increase exposure of atoms involved in π/sp2 valence electron interactions. By this mechanism, β-turns could act as energetically favored nucleation points, which may explain the increased propensity for turns in ID regions (IDRs) utilized biologically for phase separation. Phase-separating IDRs, non-phase-separating IDRs, and folded regions could be distinguished by combining v and β-turn propensity. Finally, we propose a new algorithm, ParSe (partition sequence), for predicting phase-separating protein regions, and which is able to accurately identify folded, disordered, and phase-separating protein regions based on the primary sequence.  相似文献   

4.
The formation of membrane-less organelles and compartments by protein phase separation is an important way in which cells organize their cytoplasm and nucleoplasm. In vitro phase separation assays with purified proteins have become the standard way to investigate proteins that form membrane-less compartments. By now, various proteins have been purified and tested for their ability to phase separate and form liquid condensates in vitro. However, phase-separating proteins are often aggregation-prone and difficult to purify and handle. As a consequence, the results from phase separation assays often differ between labs and are not easily reproduced. Thus, there is an urgent need for high-quality proteins, standardized procedures, and generally agreed-upon practices for protein purification and conducting phase separation assays. This paper provides protocols for protein purification and guides the user through the practicalities of in vitro protein phase separation assays, including best-practice approaches and pitfalls to avoid. We believe that this compendium of protocols and practices will provide a useful resource for scientists studying the phase behavior of proteins.  相似文献   

5.
Post-translational modifications (PTMs) are required for proper folding of many proteins. The low capacity for PTMs hinders the production of heterologous proteins in the widely used prokaryotic systems of protein synthesis. Until now, a systematic and comprehensive study concerning the specific effects of individual PTMs on heterologous protein synthesis has not been presented. To address this issue, we expressed 1488 human proteins and their domains in a bacterial cell-free system, and we examined the correlation of the expression yields with the presence of multiple PTM sites bioinformatically predicted in these proteins. This approach revealed a number of previously unknown statistically significant correlations. Prediction of some PTMs, such as myristoylation, glycosylation, palmitoylation, and disulfide bond formation, was found to significantly worsen protein amenability to soluble expression. The presence of other PTMs, such as aspartyl hydroxylation, C-terminal amidation, and Tyr sulfation, did not correlate with the yield of heterologous protein expression. Surprisingly, the predicted presence of several PTMs, such as phosphorylation, ubiquitination, SUMOylation, and prenylation, was associated with the increased production of properly folded soluble proteins. The plausible rationales for the existence of the observed correlations are presented. Our findings suggest that identification of potential PTMs in polypeptide sequences can be of practical use for predicting expression success and optimizing heterologous protein synthesis. In sum, this study provides the most compelling evidence so far for the role of multiple PTMs in the stability and solubility of heterologously expressed recombinant proteins.  相似文献   

6.
Post‐translational modifications (PTMs) of proteins are central in any kind of cellular signaling. Modern mass spectrometry technologies enable comprehensive identification and quantification of various PTMs. Given the increased numbers and types of mapped protein modifications, a database is necessary that simultaneously integrates and compares site‐specific information for different PTMs, especially in plants for which the available PTM data are poorly catalogued. Here, we present the Plant PTM Viewer (http://www.psb.ugent.be/PlantPTMViewer), an integrative PTM resource that comprises approximately 370 000 PTM sites for 19 types of protein modifications in plant proteins from five different species. The Plant PTM Viewer provides the user with a protein sequence overview in which the experimentally evidenced PTMs are highlighted together with an estimate of the confidence by which the modified peptides and, if possible, the actual modification sites were identified and with functional protein domains or active site residues. The PTM sequence search tool can query PTM combinations in specific protein sequences, whereas the PTM BLAST tool searches for modified protein sequences to detect conserved PTMs in homologous sequences. Taken together, these tools help to assume the role and potential interplay of PTMs in specific proteins or within a broader systems biology context. The Plant PTM Viewer is an open repository that allows the submission of mass spectrometry‐based PTM data to remain at pace with future PTM plant studies.  相似文献   

7.
Many of the compounds considered for use in pharmaceutical formulations demonstrate incompatibilities with other components at high enough concentrations, including pairs of polymers, polymers and salts, or even proteins in combination with polymers, salts, or other proteins. Freeze concentration can force solutions into a region where incompatibilities between solutes will manifest as the formation of multiple phases. Such phase separation complicates questions of the stability of the formulation as well as labile components, such as proteins. Yet, phase separation events are difficult to identify by common formulation screening methods. In this report, we use the osmotic virial expansion model of Edmond and Ogston (1) to describe phase-separating behavior of ternary aqueous polymer solutions. Second osmotic virial coefficients of polyethylene glycol 3350 (PEG) and dextran T500 were measured by light scattering. Assuming an equilibrium between ice and water in the freeze-concentrated solution, a degree of freeze concentration can be estimated, which, when combined with the phase separation spinodal, describes a "phase separation envelope" in which phase separation tendencies can be expected in the frozen solution. The phase separation envelope is bounded at low temperatures by the glass transition temperature of the freeze-concentrated solution. Scanning electron microscopic images and infrared spectroscopy of protein structure are provided as experimental evidence of the phase separation envelope in a freeze-dried system of PEG, dextran, and hemoglobin.  相似文献   

8.
Biomolecules undergo liquid-liquid phase separation (LLPS), resulting in the formation of multicomponent protein-RNA membraneless organelles in cells. However, the physiological and pathological role of post-translational modifications (PTMs) on the biophysics of phase behavior is only beginning to be probed. To study the effect of PTMs on LLPS in silico, we extend our transferable coarse-grained model of intrinsically disordered proteins to include phosphorylated and acetylated amino acids. Using the parameters for modified amino acids available for fixed-charge atomistic force fields, we parameterize the size and atomistic hydropathy of the coarse-grained-modified amino acid beads and, hence, the interactions between the modified and natural amino acids. We then elucidate how the number and position of phosphorylated and acetylated residues alter the protein’s single-chain compactness and its propensity to phase separate. We show that both the number and the position of phosphorylated threonines/serines or acetylated lysines can serve as a molecular on/off switch for phase separation in the well-studied disordered regions of Fused in Sarcoma (FUS) and DDX3X, respectively. We also compare modified residues to their commonly used PTM mimics for their impact on chain properties. Importantly, we show that the model can predict and capture experimentally measured differences in the phase behavior for position-specific modifications, showing that the position of modifications can dictate phase separation. In sum, this model will be useful for studying LLPS of post-translationally modified intrinsically disordered proteins and predicting how modifications control phase behavior with position-specific resolution.  相似文献   

9.
Alterations to the global levels of certain types of post-translational modifications (PTMs) are commonly observed in neurodegenerative diseases. The net influence of these PTM changes to the progression of these diseases can be deduced from cellular and animal studies. However, at the molecular level, how one PTM influences a given protein is not uniform and cannot be easily generalized from systemic observations, thus requiring protein-specific interrogations. Given that protein aggregation is a shared pathological hallmark in neurodegeneration, it is important to understand how these PTMs affect the behavior of amyloid-forming proteins. For this purpose, protein semisynthesis techniques, largely via native chemical and expressed protein ligation, have been widely used. These approaches have thus far led to our increased understanding of the site-specific consequences of certain PTMs to amyloidogenic proteins’ endogenous function, their propensity for aggregation, and the structural variations these PTMs induce toward the aggregates formed.  相似文献   

10.
11.
Identification of post-translational modifications (PTMs) is important to understanding the biological functions of proteins. MS/MS is a useful tool to identify PTMs. Most existing search tools are restricted to take only a few types of PTMs as input. Here we describe a new algorithm, called MOD(i) (pronounced "mod eye"), that rapidly searches for all known types of PTMs at once without limiting a multitude of modified sites in a peptide. MOD(i) introduces the notion of a tag chain, a combination structure made from multiple sequence tags, that effectively localizes modified regions within a spectrum and overcomes de novo sequencing errors common in tag-based approaches. MOD(i) showed its performance competence by identifying various types of PTMs in analysis of PTM-rich proteins such as glyceraldehyde-3-phosphate dehydrogenase and lens protein. We demonstrated that MOD(i) innovatively manages the computational complexity of identifying multiple PTMs in a peptide, which may exist in a greater variety than usually expected. In addition, it is suggested that MOD(i) has great potential to discover novel modifications.  相似文献   

12.
Membrane domains ("rafts") have received great attention as potential platforms for proteins in signaling and trafficking. Because rafts are believed to form by cooperative lipid interactions but are not directly accessible in vivo, artificial phase-separating lipid bilayers are useful model systems. Giant unilamellar vesicles (GUVs) offer large free-standing bilayers, but suitable methods for incorporating proteins are still scarce. Here we report the reconstitution of two water-insoluble SNARE proteins into GUVs without fusogenic additives. Following reconstitution, protein functionality was assayed by confocal imaging and fluorescence auto- and cross-correlation spectroscopy. Incorporation into GUVs containing phase-separating lipids revealed that, in the absence of other cellular factors, both proteins exhibit an intrinsic preference for the liquid-disordered phase. Although the picture from detergent resistance assays on whole cells is ambiguous, reconstitutions of components of the exocytic machinery into GUVs by this new approach should yield insight into the dynamics of protein complex associations with hypothesized liquid-ordered phase microdomains, the correspondence between detergent-resistant membranes and liquid-ordered phase, and the mechanism of SNARE-mediated membrane fusion.  相似文献   

13.
Liquid–liquid phase separation of RNA-binding proteins underlies the formation of membraneless organelles, whose composition is dynamic and whose existence may be transient. These organelles are involved in regulation of RNA processing and translation and, if they behave abnormally, in pathologies. Because disorder phenomena are essential in their formation and dynamics, established methodology is insufficient for characterizing their structure. In this review, we consider the current and potential contribution of NMR and EPR spectroscopy to the understanding of structure and dynamics of phase-separating RNA-binding proteins in, both, their dispersed and condensed state in vitro. We discuss which experiments are applicable under what conditions and which information can be obtained from them. Because for these phenomena, the accessible information depends crucially on metastable phase equilibria, we also consider aspects of sample preparation for NMR and EPR experiments.  相似文献   

14.
Post-translational modifications (PTMs) are vital cellular control mechanism, which affect protein properties, including folding, conformation, activity and consequently, their functions. As a result they play a key role in various disease conditions, including cancer and diabetes. Proteomics as a rapidly growing field has witnessed tremendous advancement during the last decade, which has led to the generation of prodigious quantity of data for various organisms' proteome. PTMs being biologically and chemically dynamic process, pose greater challenges for its study. Amidst these complexities connecting the modifications with physiological and cellular cascade of events are still very challenging. Advancement in proteomic technologies such as mass spectrometry and microarray provides HT platform to study PTMs and help to decipher role of some of the very essential biological phenomenon. To enhance our understanding of various PTMs in different organisms, and to simplify the analysis of complex PTM data, many databases, software and tools have been developed. These PTM databases and tools contain crucial information and provide a valuable resource to the research community. This article intends to provide a comprehensive overview of various PTM databases, software tools, and analyze critical information available from these resources to study PTMs in various biological organisms.  相似文献   

15.
A number of oxidative protein modifications have been well characterized during the past decade. Presumably, reversible oxidative posttranslational modifications (PTMs) play a significant role in redox signaling pathways, whereas irreversible modifications including reactive protein carbonyl groups are harmful, as their levels are typically increased during aging and in certain diseases. Despite compelling evidence linking protein carbonylation to numerous disorders, the underlying molecular mechanisms at the proteome remain to be identified. Recent advancements in analysis of PTMs by mass spectrometry provided new insights into the mechanisms of protein carbonylation, such as protein susceptibility and exact modification sites, but only for a limited number of proteins. Here we report the first proteome-wide study of carbonylated proteins including modification sites in HeLa cells for mild oxidative stress conditions. The analysis relied on our recent strategy utilizing mass spectrometry-based enrichment of carbonylated peptides after DNPH derivatization. Thus a total of 210 carbonylated proteins containing 643 carbonylation sites were consistently identified in three replicates. Most carbonylation sites (284, 44.2%) resulted from oxidation of lysine residues (aminoadipic semialdehyde). Additionally, 121 arginine (18.8%), 121 threonine (18.8%), and 117 proline residues (18.2%) were oxidized to reactive carbonyls. The sequence motifs were significantly enriched for lysine and arginine residues near carbonylation sites (±10 residues). Gene Ontology analysis revealed that 80% of the carbonylated proteins originated from organelles, 50% enrichment of which was demonstrated for the nucleus. Moreover, functional interactions between carbonylated proteins of kinetochore/spindle machinery and centrosome organization were significantly enriched. One-third of the 210 carbonylated proteins identified here are regulated during apoptosis.  相似文献   

16.
Hao P  Guo T  Sze SK 《PloS one》2011,6(2):e16884
Protein post-translational modifications (PTMs) are regulated separately from protein expression levels. Thus, simultaneous characterization of the proteome and its PTMs is pivotal to an understanding of protein regulation, function and activity. However, concurrent analysis of the proteome and its PTMs by mass spectrometry is a challenging task because the peptides bearing PTMs are present in sub-stoichiometric amounts and their ionization is often suppressed by unmodified peptides of high abundance. We describe here a method for concurrent analysis of phosphopeptides, glycopeptides and unmodified peptides in a tryptic digest of rat kidney tissue with a sequence of ERLIC and RP-LC-MS/MS in a single experimental run, thereby avoiding inter-experimental variation. Optimization of loading solvents and elution gradients permitted ERLIC to be performed with totally volatile solvents. Two SCX and four ERLIC gradients were compared in details, and one ERLIC gradient was found to perform the best, which identified 2929 proteins, 583 phosphorylation sites in 338 phosphoproteins and 722 N-glycosylation sites in 387 glycoproteins from rat kidney tissue. Two hundred low-abundance proteins with important functions were identified only from the glyco- or phospho-subproteomes, reflecting the importance of the enrichment and separation of modified peptides by ERLIC. In addition, this strategy enables identification of unmodified and corresponding modified peptides (partial phosphorylation and N-glycosylation) from the same protein. Interestingly, partially modified proteins tend to occur on proteins involved in transport. Moreover, some membrane or extracellular proteins, such as versican core protein and fibronectin, were found to have both phosphorylation and N-glycosylation, which may permit an assessment of the potential for cross talk between these two vital PTMs and their roles in regulation.  相似文献   

17.
K Weber  U Plessmann    W Ulrich 《The EMBO journal》1989,8(11):3221-3227
The giant body muscle cells of the nematode Ascaris lumbricoides show a complex three dimensional array of intermediate filaments (IFs). They contain two proteins, A (71 kd) and B (63 kd), which we now show are able to form homopolymeric filaments in vitro. The complete amino acid sequence of B and 80% of A have been determined. A and B are two homologous proteins with a 55% sequence identity over the rod and tail domains. Sequence comparisons with the only other invertebrate IF protein currently known (Helix pomatia) and with vertebrate IF proteins show that along the coiled-coil rod domain, sequence principles rather than actual sequences are conserved in evolution. Noticeable exceptions are the consensus sequences at the ends of the rod, which probably play a direct role in IF assembly. Like the Helix IF protein the nematode proteins have six extra heptads in the coil 1b segment. These are characteristic of nuclear lamins from vertebrates and invertebrates and are not found in vertebrate IF proteins. Unexpectedly the enhanced homology between lamins and invertebrate IF proteins continues in the tail domains, which in vertebrate IF proteins totally diverge. The sequence alignment necessitates the introduction of a 15 residue deletion in the tail domain of all three invertebrate IF proteins. Its location coincides with the position of the karyophilic signal sequence, which dictates nuclear entry of the lamins. The results provide the first molecular support for the speculation that nuclear lamins and cytoplasmic IF proteins arose in eukaryotic evolution from a common lamin-like predecessor.  相似文献   

18.
《Biophysical journal》2021,120(21):4682-4697
Phase separation and transitions among different molecular states are ubiquitous in living cells. Such transitions can be governed by local equilibrium thermodynamics or by active processes controlled by biological fuel. It remains largely unexplored how the behavior of phase-separating systems with molecular transitions differs between thermodynamic equilibrium and cases in which the detailed balance of the molecular transition rates is broken because of the presence of fuel. Here, we present a model of a phase-separating ternary mixture in which two components can convert into each other. At thermodynamic equilibrium, we find that molecular transitions can give rise to a lower dissolution temperature and thus reentrant phase behavior. Moreover, we find a discontinuous thermodynamic phase transition in the composition of the droplet phase if both converting molecules attract themselves with similar interaction strength. Breaking the detailed balance of the molecular transition leads to quasi-discontinuous changes in droplet composition by varying the fuel amount for a larger range of intermolecular interactions. Our findings showcase that phase separation with molecular transitions provides a versatile mechanism to control properties of intracellular and synthetic condensates via discontinuous switches in droplet composition.  相似文献   

19.
Vimentin and keratin are coexpressed in many cells, but they segregate into two distinct intermediate filament (IF) networks. To understand the molecular basis for the sorting out of these IF subunits, we genetically engineered cDNAs encoding hybrid IF proteins composed of part vimentin and part type I keratin. When these cDNAs were transiently expressed in cells containing vimentin, keratin, or both IFs, the hybrid IF proteins all recognized one or the other or both networks. The ability to distinguish networks was dependent upon which segments of IF proteins were present in each construct. Constructs containing sequences encoding either helix 1B or helix 2B seemed to be the most critical in conferring IF recognition. At least for type I keratins, recognition was exerted at the level of dimer formation with wild-type type II keratin, as demonstrated by anion exchange chromatography. Interestingly, despite the fact that swapping of helical domains was not as deleterious to IF structure/function as deletion of helical domains, keratin/vimentin hybrids still caused structural aberrations in one or more of the cytoplasmic IF network. Thus, sequence diversity among IF proteins seems to influence not only coiled-coil but also higher ordered associations leading to 10-nm filament formation and/or IF interactions with other cellular organelles/proteins.  相似文献   

20.
Proteomic applications have been increasingly used to study posttranslational modifications of proteins (PTMs). For the purpose of identifying and localizing specific but unknown PTMs on huge proteins, improving their sequence coverage is fundamental. Using liquid chromatography coupled to mass spectrometry (LC–MS/MS), peptide mapping of the native apolipoprotein-B-100 was performed to further document the effects of oxidation. Apolipoprotein-B-100 is the main protein of low-density lipoprotein particles and its oxidation could play a role in atherogenesis. Because it is one of the largest human proteins, the sequence recovery rate of apolipoprotein-B-100 only reached 1% when conventional analysis parameters were used. The different steps of the peptide mapping process—from protein treatment to data analysis—were therefore reappraised and optimized. These optimizations allowed a protein sequence recovery rate of 79%, a rate which has never been achieved previously for such a large human protein. The key points for improving peptide mapping were optimization of the data analysis software; peptide separation by LC; sample preparation; and MS acquisition. The new protocol has allowed us to increase by a factor of 4 the detection of modified peptides in apolipoprotein-B-100. This approach could easily be transferred to any study of PTMs using LC–MS/MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号