首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some modern laminated find calcified stromatolitic structures are partially or completely formed by eukaryotes. Diatom populations in freshwater environments with elevated ionic concentrations contribute to calcite precipitation, and the formation of distinctive mineral-rich stromatolitic laminae. Two types of stromatolite-forming diatom populations were observed. In the first example, in stromatolites growing on a quarry ledge near Laegerdorf, North Germany, calcite crystals with biogenic imprints form around polysaccharide stalks of the diatom Gomphonema olivaceum var. calcarea (Cleve) Cleve-Euler. These individually precipitated crystals eventually become cemented together in layers, forming rigid, laminated stromatolitic deposits which drape over the quarry ledge. In the second example, in stromatolites forming in a shallow stream near Cuatro Ciénegas, Coahuila, Mexico, diatomaceous laminae also form by the accumulation of carbonate particles in a matrix of diatoms and their extracellular polysaccharide products. These laminae become thick enough to drape over individual stromatolite heads. The diatoms responsible for these deposits are Amphora aff. A. katii Selva, Nitzschia denticula Grun., and six other species. At Cuatro Ciénegas, in addition to the diatomaceous laminae, carbonate-rich cyanobacterial layers, dominated by two cyanobacterial species with different fabrics and porosities, are also present and contribute substantially to the growth of the stromatolites. In both the Laegerdorf and Cuatro Ciénegas examples, entire stromatolites or thick laminations on stromatolites are built by a small number of diatom species which produce copious amounts of extracellular stalk, gel, and sheath material, a propertuy they share with cyanobacterial stromatolite builders.  相似文献   

2.
Euglena-, diatom-, and algae-dominated biofilms are the principal producers of iron-rich biolaminates that result in biosedimentary structures, or stromatolites, in an acid mine drainage (AMD) environment in Indiana. These structures are considered trace fossils because they are produced by organism-sediment interactions and record physicochemical conditions of the environment. Our purpose was to link the biofilm types to specific micro- and micromorphological features and the physicochemical conditions under which they were formed. Analyses revealed that Euglena-dominated biofilm produced thin, porous microlaminae by trapping, binding, and relocating AMD precipitates as the biofilm kept pace with chemical sedimentation. More massive microlaminae were produced by high rates of chemical sedimentation brought on by increased discharge and dilution of acidity. Diatom- and algae-dominated biofilms produced thick, mm–cm-scale, porous, spongelike micro- to macrolaminae through oxygenic photosynthesis and/or metal uptake in extracellular polymeric substances, which promoted mineral precipitation on cell walls to create a rigid, porous structure. The variations in biolaminate textures within the stromatolites record seasonal changes in the microbial populations and physicochemical conditions of the AMD environment. These iron-rich stromatolites represent trace fossils that record morphological biosignatures of eukaryote-dominated microbial biofilms and may serve as appropriate proxies in the search for similar evidence of eukaryotic life in other iron-rich paleoenvironments, such as those on early Earth and Mars.  相似文献   

3.
Jagadish S. Patil 《Biofouling》2013,29(3-4):189-206
Abstract

Diatoms, which are early autotrophic colonisers, are an important constituent of the biofouling community in the marine environment. The effects of substratum and temporal variations on the fouling diatom community structure in a monsoon-influenced tropical estuary were studied. Fibreglass and glass coupons were exposed every month for a period of 4 days and the diatom population sampled at 24 h intervals, over a period of 14 months. The planktonic diatom community structure differed from the biofilm community. Pennate diatoms dominated the biofilms whilst centric diatoms were dominant in the water column. Among the biofilm diatoms, species belonging to the genera Navicula, Amphora, Nitzschia, Pleurosigma and Thalassionema were dominant. On certain occasions, the influence of planktonic blooms was also seen on the biofilm community. A comparative study of biofilms formed on the two substrata revealed significant differences in density and diversity. However species composition was almost constant. In addition to substratum variations, the biofilm diatom community structure also showed significant seasonal variations, which were attributed to physico-chemical and biological changes in both the water and substratum. Temporal variations in the tychopelagic diatoms of the water were also observed to exert an influence on the biofilm diatom community. Variations in diatom communities may determine the functional ecosystem of the benthic environment.  相似文献   

4.
5.
Rapidly deposited Thalassionema-Thalassiothrix pennate diatom oozes previously have been described in Upper Miocene-Lower Pliocene sediment beneath the frontal boundary of the eastern equatorial Pacific. Here we document a new occurrence of Thalassionema-Thalassiothrix ooze in Upper Miocene-Lower Pliocene sediment beneath the frontal boundary of the subarctic North Pacific. The ooze is a 6 m interval of siliceous sediment at Ocean Drilling Program (ODP) sites 885/886 that was rapidly deposited between approximately 5.0 and 5.9 Ma. Bulk sediment in this interval may contain greater than 85% pennate diatom tests. There are also abundant laminae and pockets that are composed entirely of Thalassionema and Thalassiothrix diatoms. The presence of a rapidly deposited ooze dominated by pennate diatoms indicates unusual past conditions in the overlying surface waters. Time coincident deposition of such oozes at two distinct frontal boundary locations of the Pacific suggests that the unusual surface water conditions were causally linked to large-scale oceanographic change. This same oceanographic change most likely involved (1) addition of nutrients to the ocean, or (2) redistribution of nutrients within the ocean. The occurrence and origin of pennate diatom oozes may be a key component to an integrative understanding of late Neogene paleoceanography and biogeochemical cycling.  相似文献   

6.
Lipophilic pigments were examined in microbial mat communities dominated by cyanobacteria in the intertidal zone and by diatoms in the subtidal and sublittoral zones of Hamelin Pool, Shark Bay, Western Australia. These microbial mats have evolutionary significance because of their similarity to lithified stromatolites from the Proterozoic and Early Paleozoic eras. Fucoxanthin, diatoxanthin, diadinoxanthin, β-carotene, and chlorophylls a and c characterized the diatom mats, whereas cyanobacterial mats contained myxoxanthophyll zeaxanthin, echinenone, β-carotene, chlorophyll a and, in some cases, sheath pigment. The presence of bacteriochlorophyll a with in the mats suggest a close association of photosynthetic bacteria with diatoms and cyanobacteria. The high carotenoids: chlorophyll a ratios (0.84–2.44 wt/wt) in the diatom mats suggest that carotenoids served a photoprotective function in this high light environment. By contrast, cyanobacterial sheath pigment may have largely supplanted the photoprotective role of carotenoids in the intertidal mats.  相似文献   

7.
Some modern laminated and calcified stromatolitic structures are partially or completely formed by eukaryotes. Diatom populations in freshwater environments with elevated ionic concentrations contribute to calcite precipitation, and the formation of distinctive mineral-rich stromatolitic laminae. Two types of stromatolite-forming diatom populations were observed. In the first example, in stromatolies growing on a quarry ledge near Laegerdorf, North Germany, calcite crystals with biogenic imprints form around polysaccharide stalks of the diatom Gomphonema olivaceum var. calcarea (Cleve) Cleve-Euler. These individually precipitated crystals eventunally become cemented together in layers, forming rigid, laminated stromatolitic deposits which drape over the quarry ledge. In the second example, in stromatolites forming in a shallow stream near Cuatro Ciénegas, Coahuila, Mexico, diatomaceous laminae also form by the accumulation of carbonate particles in a matrix of diatoms and their extracellular polysaccharide products. These laminae become thick enough to drape over individual stromatolite heads. The diatoms responsible for these deposits are Amphora aff. A. Katii Selva, Nitzschia denticula Grun., and six other species. At Cuatro Ciénegas, in addition to the diatomaceous laminae, carbonate-rich cyanobacterial layers, dominated by two cyanobacterial species with different fabrics and porosities, are also present and contribute substantially to the growth of the stromatolites. In both the Laegerdorf and Cuatro Ciénegas examples, entire stromatolites or thick laminations on stromatolites are built by a small number of diatom species which produce copious amounts of extracellular stalk, gel, and sheath material, a property they share with cyanobacterial stromatolite builders.  相似文献   

8.
Photoautotrophic biofilms play an important role in various aquatic habitats and are composed of prokaryotic and/or eukaryotic organisms embedded in extracellular polymeric substances (EPS). We have isolated diatoms as well as bacteria from freshwater biofilms to study organismal interactions between representative isolates. We found that bacteria have a strong impact on the biofilm formation of the pennate diatom Achnanthidium minutissimum. This alga produces extracellular capsules of insoluble EPS, mostly carbohydrates (CHO), only in the presence of bacteria (xenic culture). The EPS themselves also have a strong impact on the aggregation and attachment of the algae. In the absence of bacteria (axenic culture), A. minutissimum did not form capsules and the cells grew completely suspended. Fractionation and quantification of CHO revealed that the diatom in axenic culture produces large amounts of soluble CHO, whereas in the xenic culture mainly insoluble CHO were detected. For investigation of biofilm formation by A. minutissimum, a bioassay was established using a diatom satellite Bacteroidetes bacterium that had been shown to induce capsule formation of A. minutissimum. Interestingly, capsule and biofilm induction can be achieved by addition of bacterial spent medium, indicating that soluble hydrophobic molecules produced by the bacterium may mediate the diatom/bacteria interaction. With the designed bioassay, a reliable tool is now available to study the chemical interactions between diatoms and bacteria with consequences for biofilm formation.  相似文献   

9.
In Lake Suigetsu, central Japan, greenish/light‐brown granules identified as cytoplasmic masses had been preserved in siliceous cell walls of freshwater diatoms in annual layers of lacustrine muds since the early Holocene. The lacustrine muds consisted of alternating dark‐colored (rich in diatom valves, clay, and organic matter) and light‐colored (mainly diatom valves) laminae. The greenish/light‐brown granules were predominately preserved in frustules of the genus Aulacoseira preserved in the dark‐colored laminae. The dark‐colored laminae were inferred to have formed annually under stratified water caused by surface water warming in summer that caused the formation of an organic‐rich anoxic layer on the lake bottom that favored granule preservation. The good preservation of cytoplasmic masses in dark‐colored laminae suggested a cause for diatom assemblage periodicity, a phenomenon that was commonly noted in temperate lakes: the cells containing these masses could be potential seed stocks for subsequent spring blooms. Frustules of the most abundant granule‐containing species, Aulacoseira nipponica (Skvortzow) Tuji, in the dark‐colored laminae of the Early Holocene muds were abundant in the overlying light‐colored laminae, suggesting that these species reproduced abundantly in springtime yielding a massive diatom bloom.  相似文献   

10.
Biogeochemical cycles and sedimentary records in lakes are related to climate controls on hydrology and catchment processes. Changes in the isotopic composition of the diatom frustules (δ18Odiatom and δ13Cdiatom) in lacustrine sediments can be used to reconstruct palaeoclimatic and palaeoenvironmental changes. The Lago Chungará (Andean Altiplano, 18°15′S, 69°10′W, 4520 masl) diatomaceous laminated sediments are made up of white and green multiannual rhythmites. White laminae were formed during short-term diatom super-blooms, and are composed almost exclusively of large-sized Cyclostephanos andinus. These diatoms bloom during mixing events when recycled nutrients from the bottom waters are brought to the surface and/or when nutrients are introduced from the catchment during periods of strong runoff. Conversely, the green laminae are thought to have been deposited over several years and are composed of a mixture of diatoms (mainly smaller valves of C. andinus and Discostella stelligera) and organic matter. These green laminae reflect the lake's hydrological recovery from a status favouring the diatom super-blooms (white laminae) towards baseline conditions. δ18Odiatom and δ13Cdiatom from 11,990 to 11,530 cal years BP allow us to reconstruct shifts in the precipitation/evaporation ratio and changes in the lake water dissolved carbon concentration, respectively. δ18Odiatom values indicate that white laminae formation occurred mainly during low lake level stages, whereas green laminae formation generally occurred during high lake level stages. The isotope and chronostratigraphical data together suggest that white laminae deposition is caused by extraordinary environmental events. El Niño-Southern Oscillation and changes in solar activity are the most likely climate forcing mechanisms that could trigger such events, favouring hydrological changes at interannual-to-decadal scale. This study demonstrates the potential for laminated lake sediments to document extreme pluriannual events.  相似文献   

11.
Although benthic diatoms are used to assess river water quality, there are few data on the rate at which diatom assemblages react to changes in water quality. The aim of this study was to assess the reaction time of diatoms and to discuss the changes occurring during water quality improvement on the basis of their autecological characteristics. In order to simulate this improvement, diatom-dominated biofilms grown on artificial sandstone substrata were transferred from several polluted rivers to an unpolluted river. They were sampled three times: before transfer and 1 and 2 months after transfer. The ecology and growth-forms of the taxa explained most of the changes in species composition observed during the experiment. Adnate diatoms gradually replaced motile and stalked taxa. Gomphonema parvulum, a stalked diatom positioned vertically in the biofilm, is adapted for light and space competition in high-density algal biofilms. When transferred to an unpolluted site, this growth-form is less competitive and does not tolerate the high grazing pressure. Fistulifera saprophila is a single celled motile diatom, living in organic matrices. When the artificial substrata were transferred to the unpolluted site, this particular ecological niche disappeared quickly. On the other hand, Achnanthidium minutissimum, which is considered to be cosmopolitan and an early colonizer, increased during the first month of transfer and then decreased. It was gradually replaced by A. biasolettianum, which was the taxon best suited to this pristine stream. The changes observed differed between treatments depending on the species composition and architecture of the biofilms. In particular, biofilms dominated by stalked and motile diatoms were more quickly modified than those dominated by small motile diatoms. The diatom index reflects these changes, and its values showed that about 60 days following a water quality improvement were necessary for transferred diatom assemblages to reach diatom index values similar as those at the unpolluted river.  相似文献   

12.
The Cuyahoga River is a heavily polluted tributary of Lake Erie located in N. E. Ohio (USA).One hundred seventy taxa of diatoms were identified from seven locations along the Cuyahoga River. The most frequently collected diatoms from each station were Cyclotella meneghiniana, Gomphonema parvulum, Navicula cryptocephala, N. cryptocephala var. veneta, N. lanceolata, N. menisculus, N. minima, N. minuscula, N. pelliculosa, Nitzschia amphibia, N. ovalis, N. palea, and Rhoicosphenia curvata.In the most heavily damaged region of the river these widely-distributed taxa were the only frequently collected diatoms.The relatively undamaged section of the river contained 94% more taxa than the most heavily damaged section. Chief among these additional taxa were Achnanthes lanceolata, A. lanceolata var. dubia, Cocconeisplacentula, Fragilaria vaucheriae, Melosira varians, Meridion circulare, Navicula mutica var. tropica, N. symetrica, Nitzschia dissipata, Stephanodiscus astraea, and Synedra rumpens.The degree of similarity between diatom assemblages along the Cuyahoga River as measured by a modification of Sørensen's index of similarity in species-frequency of occurrence composition was related to the degree of chemical-physical water quality similarities and to the extent of similarity between areas of geologic and biologic substrates. The most dissimilar diatom assemblages usually occurred between locations that were the most dissimilar with respect to chemical-physical water quality conditions rather than to dissimilarities with respect to sediment-substrate composition.  相似文献   

13.
Olaveson  M. M.  Nalewajko  C. 《Hydrobiologia》2000,433(1-3):39-56
Our study separates the effects of elevated protons (at pH <3) and elevated metals (Al, Cd, Cu, Fe, Ni, Zn) on the growth of E. mutabilis Schmitz, a pioneering phototroph in acid mine drainage (AMD) and E. gracilis Klebs, a closely-related species rarely found in severely AMD-impacted sites. Both species were acid tolerant, growing optimally at pH 2.5–7. At pH values typical of AMD (pH 2.5–4) in the absence of elevated metals, E. gracilis outcompeted E. mutabilis (growth rates of 1.0 and 0.8 div d–1, respectively). Relative metal toxicities were evaluated based on the Effective Exposure causing 50% growth reduction (= EE50). With total metal additions similar to AMD levels, E. mutabilis demonstrated significantly greater tolerance to all metals, except Cu. E. gracilis showed two-fold higher tolerance to Cu2+ than E. mutabilis (EE50 of 91.6 vs. 45.7 pmol cell–1). The EE50 for Zn2+ was similar for both species (368 pmol cell–1 for E. gracilis and 423 pmol cell–1 for E. mutabilis). With Cd and Ni, E. mutabilis tolerated an order of magnitude higher exposure than E. gracilis(EE50 of 1.6 vs. 0.2 pmol Cd2+ cell–1; EE50 of 942 vs. 87 pmol Ni2+ cell–1). Al and Fe were tolerated at high total metal concentrations (up to 100 mM) by E. mutabilis, but toxicity was evident with E. gracilisat much lower levels. E. mutabilis grew at double the Al3+ exposure tolerated by E. gracilis (EE50 of 398 vs. 188 pmol Al3+ cell–1). There was an 18-fold difference in Fe tolerance levels between E. mutabilis and E. gracilis with EE50s of 8773 and 502 pmol Fe2+ cell–1, respectively. We conclude that differential metal tolerance, particularly to Fe2+, accounts for the mutually exclusive distribution of E. gracilis and E. mutabilis in AMD-impacted habitats.  相似文献   

14.
Laboratory experiments were carried out to investigate byssal thread production by the intertidal mytilid mussel Hormomya mutabilis in response to effluent from the predatory crab Eriphia smithii and the starfish Coscinasterias acutispina. During the early period of the experiment, large H. mutabilis exposed to crab effluent produced a significantly smaller number of functional byssal threads than mussels in crab-free water. No significant difference in the diameter of threads produced in the two treatments was detected. The number of functional byssal threads produced by small H. mutabilis exposed to crab effluent did not differ significantly from that of mussels in crab-free water. However, small H. mutabilis exposed to crab effluent tended to discard fewer byssal bundles, that is, they shifted their attaching sites less frequently than similar mussels in crab-free water. In the presence of waterborne cues from the crab, H. mutabilis tended to reduce both the secretion of byssal threads and movement across the substratum. No significant differences in behaviour were observed between large mussels exposed to effluent from the starfish and those unexposed. The adaptive significance of the responses shown by H. mutabilis is discussed in terms of protection against predators differing in foraging behaviour. Electronic Publication  相似文献   

15.
Wang P  Shen H  Xie P 《Microbial ecology》2012,63(2):369-382
Diatom blooms occur in many water bodies worldwide, causing significant ecological and social concerns. In order to understand the mechanisms of diatom blooms formation, the effects of varying phosphorus (P) concentration and hydrodynamics on the growth of diatoms were studied by combining results from field observations and laboratory experiments. The field investigation showed that spring diatom blooms (Cyclotella meneghiniana and Stephanodiscus hantzschii) occurred in Lake Taihu and Hanjiang River with similar environmental factors such as water temperature, pH, and dissolved oxygen in 2008. Concentrations of total phosphorus (TP), total nitrogen, and ammonia nitrogen (NH4-N) in Lake Taihu were significantly higher than the concentrations in the Hanjiang River. Laboratory experiments were conducted to evaluate growth and physiological responses of four lotic diatoms (Cyclotella atomus, Fragilaria crotonensis, Nitzschia palea, and S. hantzschii, isolated from the Hanjiang River) and three lentic diatoms (C. meneghiniana, Melosira varians, and Stephanodiscus minutulus, isolated from Lake Taihu, Lake Donghu, and Guanqiao Pond, respectively) to various P concentrations under small-scale turbulent and standing conditions. Our results showed that, with turbulence, lotic diatoms C. atomus, F. crotonensis, N. palea, and S. hantzschii demonstrated a significant increase in affinity for P compared with lentic diatoms C. meneghiniana, M. varians, and S. minutulus. Moreover, lotic diatoms C. atomus, F. crotonensis, and N. palea had higher growth rates and photosynthetic efficiencies with small-scale turbulence than with standing conditions both in P-limited and P-replete conditions. Lotic species S. hantzschii and three lentic diatoms (C. meneghiniana, M. varians, and S. minutulus) grew well under standing conditions. Our results may explain our field observation that the occurrence of diatom blooms in lakes is often associated with higher TP concentrations whereas in rivers, diatom blooms occur at a wide range of TP concentrations under flows. Therefore, different hydrodynamics and nutrient concentrations determined the dominant diatom species, according to their habitat-dependent physiological characteristics.  相似文献   

16.
Acid mine drainage (AMD) is a significant environmental issue worldwide. On the West Coast of the South Island, New Zealand, many AMD-affected streams occur within close proximity to naturally acidic streams, enabling us to compare the response of communities in naturally and anthropogenic acidified systems. We investigated epiphytic diatom communities in 39 streams along an AMD gradient that included naturally acidic and circum-neutral reference streams. There was a wide range in taxonomic richness in reference streams and those moderately impacted by AMD (8–33 taxa). Taxonomic richness was greatly reduced in severely impacted streams (1–5 taxa) at a threshold of pH 3.4 and was dominated by Pinnularia cf. acidophila (69–100% relative abundance). Community composition differed between circum-neutral reference streams and moderately and severely impacted streams. However, naturally acidic and moderately impacted streams had similar diatom communities primarily composed of Eunotia and Frustulia species. Our results indicate that diatom communities are strongly structured by pH and able to tolerate moderate conductivity and metal concentrations. This is a challenge for researchers and water managers attempting to incorporate diatoms into AMD monitoring in regions with naturally acidic streams.  相似文献   

17.
The present study investigated the influence of abiotic conditions on microbial mat communities from Shark Bay, a World Heritage area well known for a diverse range of extant mats presenting structural similarities with ancient stromatolites. The distributions and stable carbon isotopic values of lipid biomarkers [aliphatic hydrocarbons and polar lipid fatty acids (PLFAs)] and bulk carbon and nitrogen isotope values of biomass were analysed in four different types of mats along a tidal flat gradient to characterize the microbial communities and systematically investigate the relationship of the above parameters with water depth. Cyanobacteria were dominant in all mats, as demonstrated by the presence of diagnostic hydrocarbons (e.g. n‐C17 and n‐C17:1). Several subtle but important differences in lipid composition across the littoral gradient were, however, evident. For instance, the shallower mats contained a higher diatom contribution, concordant with previous mat studies from other locations (e.g. Antarctica). Conversely, the organic matter (OM) of the deeper mats showed evidence for a higher seagrass contribution [high C/N, 13C‐depleted long‐chain n‐alkanes]. The morphological structure of the mats may have influenced CO2 diffusion leading to more 13C‐enriched lipids in the shallow mats. Alternatively, changes in CO2 fixation pathways, such as increase in the acetyl COA‐pathway by sulphate‐reducing bacteria, could have also caused the observed shifts in δ13C values of the mats. In addition, three smooth mats from different Shark Bay sites were analysed to investigate potential functional relationship of the microbial communities with differing salinity levels. The C25:1 HBI was identified in the high salinity mat only and a lower abundance of PLFAs associated with diatoms was observed in the less saline mats, suggesting a higher abundance of diatoms at the most saline site. Furthermore, it appeared that the most and least saline mats were dominated by autotrophic biomass using different CO2 fixation pathways.  相似文献   

18.
The diatom community growing on cobbles and sand substrata along the Cuarto River (Córdoba, Argentina) was studied during 2000 and 2001. Multivariate analyses of the data (PCA and CCA) showed distinct differences in water chemistry and substrata types between the upstream sites (sites 1–10) and downstream sites (sites 11–19). Sites 1–10 supported an epilithic diatom community associated with low water conductivity and gravel substrata. This consisted of adnate Achnanthes (A. biasolettiana, A. minutissima), as well as stalked (Gomphonema aff. angustum, Reimeria uniseriata, Fragilaria capucina var. rumpens) or prostrate (Nitzschia lacuum) taxa. Downstream sites were associated with high conductivity, fast flowing waters and finer substrata (sand, silt), and were colonised by prostrate diatoms, including several species of Navicula (N. pupula, N. mutica, N. veneta, N. insociabilis) and Nitzschia (N. umbonata, N. palea). Variations in water flow caused significant changes in the diatom communities of the river. During periods of low flow (winter and autumn), chain forming (Diatoma vulgaris, D. moniliformis) or stalked (Synedra ulna) taxa partially replaced the former community of Navicula and Nitzschia in the downstream sites. High flow (in summer) led to diatoms of large size being replaced by smaller size diatoms, such as Achnanthes lanceolata, Navicula mutica, Hantzschia amphioxys and Amphora montana. The severe effect of floods in the lower part of the Cuarto led to these taxa having a much higher proportion in the lower stretch of the river, taking advantage of the subaerial conditions created by the floods. Local episodes of water pollution were associated with a transient shift towards the dominance of Navicula pupula, Synedra ulna, Nitzschia lacuum and Reimeria uniseriata during winter, when inputs were least diluted because of the low flow.  相似文献   

19.
The morphological characteristics of diatoms are useful for studying their taxonomy. However, the distinction between closely related diatom taxa can be very difficult, especially when the morphological characters are modified by environmental constraints. In the present study, 13 fresh water diatoms were identified morphologically and cultured under axenic conditions. To check this, PCR primers specific for multilocus genes were designed to amplify and screen 13 fresh water diatom monocultures. Multilocus PCR primers (DRR3, scfcpA, Lhcf11, SIT1, SIT3, SIT4, LOC101218388, COI-5P, rbcL, rbcL-3P, LSU D2/D3, UPA, psaA, and 18S rRNA) were tested. It was found that psaA gene, a plant pigment chlorophyll-based PCR marker, amplified in all the diatoms. Out of 13 diatom amplicons, only two fresh water diatoms DNA were sequenced. This included Cyclotella meneghiniana and Sellaphora pupula. The Sanger sequencing results thus established that morphologically identified diatom, Sellaphora pupula, exhibited close phylogeny to Sellaphora whereas fresh water Cyclotella meneghiniana has close lineage to marine diatom Thallosiosira.  相似文献   

20.
SUMMARY. 1. Lough Augher, Co. Tyrone, Northern Ireland, underwent eutrophication as a result of untreated effluent disposal by a local creamery, from 1900 until 1972–73, when primary sewage treatment began. When this remedial action met with limited success the effluent was redirected to the River Blackwater, downstream of the lake 2. A sediment core taken in July 1981 shows an unambiguous record of the diatom response to this eutrophication; the species succession represents a clear eutrophication gradient, with a shift from mesotrophic plankton forms (Aulacoseira ambigua, Asterionella formosa, Fragilaria crotonensis, Diatoma tenue var. elongatum) to a variety of small Stephanodiscus spp. typical of very eutrophic conditions (S. parvus, S. hantzschii). The succession is in reasonable agreement with that predicted by changing Si:P ratios. 3. A second, short core, taken in September 1985, shows dramatic changes in the diatom plankton after 1981, with resurgences and rapid increases of species present early in the lake's eutrophication, and representative of mesotrophic conditions. There is clear agreement between the biostratigraphic record of the two cores, for the time period during which they overlap, c. 1970–81. 4. The available chemical data post-dates the re-direction of the creamery effluent. However, it indicates that the phosphorus concentration is in equilibrium with the loading, and has stabilized following effluent re-direction. There were no significant differences for chlorophyll a and total phosphorus between the years for which data are available. The mean concentrations were 10, 14 and 10 g 1?1 chlorophyll a, and 61, 63 and 58 g TP 1?1 in 1978, 1979 and 1982 respectively. 5. A Correspondence Analysis Joint-plot is used to summarize the biostratigraphy of the two cores. It serves as an ecological summary of the responses of the plankton diatoms to changing nutrient concentrations and ratios, following redirection of the creamery effluent, and demonstrates clearly the new direction taken by the planktonic diatoms. Although the phosphorus and chlorophyll a data suggest that the lake returned quickly to an equilibrium state, the diatom community continued to change. suggesting a time-lag effect and non-equilibrium responses by the planktonic diatoms to their nutrient environment. 6. The potential value of palaeolimnological approaches to long- and medium-term monitoring of diatom plankton changes should not be underestimated; they may provide an important time component for limnological restoration projects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号