首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The chemical extraction of As and heavy metals from contaminated soils, sampled from the Geopoong and Keumpoong mines in South Korea, was investigated under subcritical conditions. Soil samples from the abandoned mines were heavily contaminated with As, Cd, Cu, Pb, and Zn. The extent of metal removed from the contaminated soils by extractants varied according to the chemical forms of the metals in the soils. When temperature increased, the extraction of As increased accordingly, showing 92-100% removal with 100 mM of NaOH at 300°C. In contrast, the extraction of cationic metals by citric acid and ethylenediaminetetraacetic acid (EDTA) decreased markedly at 200–300°C because their chelating ability was decreased via decarboxylation and dehydration at high temperatures. Furthermore, the extraction of cationic metals was significantly affected by solution pH. Our results suggest that chemical extraction of cationic metals under subcritical conditions may be affected by several factors, including character of metal, type of extracting reagent, existing forms of metal in the soil, temperature, and soil pH.  相似文献   

2.
The use of surfactants as a method for solubilization and removal of heavy metal contamination from soil has been reported before. Biosurfactants produced by some microorganisms are able to modify the surface of various metals and aggregate on interphases favoring the metal separation process from contaminated environments. We evaluated the feasibility of enhancing the removal of metal ions from mineral waste/contaminated soils using alternate cycles of treatment with rhamnolipid biosurfactants and bioleaching with a mixed bacterial culture of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans. Bioleaching alone removed 50% Zn and 19% Fe. When rhamnolipids were used at low concentration (0.4 mg/mL), 11% Fe and 25% Zn were removed, while at 1 mg/mL 19% Fe and 52% Zn removal were achieved. When using a cyclic treatment combining bioleaching and biosurfactants, metal removal reached up to 36% for Fe and 63% to 70% for Zn.  相似文献   

3.
This article reports the role of indigenous iron-oxidizing microorganisms in bioleaching of heavy metals from anaerobically digested sewage sludge in presence of toxic dyes namely, methylene blue (MB), Remazol black B (RBB) and mixture of both the dyes (DM). To achieve this goal, different concentrations of dyes (0, 500, 10,000, 15,000 and 25,000 mg/L) were added to the sewage sludge (initial pH ~ 7) and subsequently, the solubilization of heavy metals (Cu, Ni, Zn and Cr) was measured at time intervals of 48 h for 16 days. The results showed that an increase in dye concentration adversely affected the population of indigenous iron-oxidizing microorganisms, thereby decreased the bioleaching of metals. The metal solubilization from sludge is more adversely affected in presence of RBB and DM than MB. In majority of cases, the maximum metal solubilization was recorded at dye concentration of 5,000 mg/L. Two factor analyses (ANOVA) suggests the impact of both factors: dye concentration and dye type on metal leaching rate in sludge system.  相似文献   

4.
Bioleaching of heavy metals from contaminated soil was carried out using indigenous sulfur oxidizing bacterium Acidithiobacillus thiooxidans. Experiments were carried out by varying sulfur/soil ratio from 0.03 to 0.33 to evaluate the optimum ratio for efficient bioleaching of heavy metals from soil. The influence of sulfur/soil ratio on the bioleaching efficiency was assessed based on decrease in pH, increase in oxidation–reduction potential, sulfate production and solubilization of heavy metals from the soil. Decrease in pH, increase in oxidation–reduction potential and sulfate production was found to be better with the increase in sulfur/soil ratio. While the final pH of the system with different sulfur/soil ratio was in the range of 4.1–0.7, oxidation reduction potential varied from 230 to 629 mV; sulfate production was in the range of 2,786–8,872 mg/l. Solubilization of chromium, zinc, copper, lead and cadmium from the contaminated soil was in the range of 11–99%. Findings of the study will help to optimize the ratio of sulfur/soil to achieve effective bioleaching of heavy metals from contaminated soils.  相似文献   

5.
Plants offer the potential for selective removal and sequestration of toxic heavy metals from contaminated soil. Phytoextraction of metal ions involve their transport through the plant’s root system and into its shoots and leaves. This study investigates the thermodynamics of Eu(III) ion chemical interactions with Datura innoxia plant root materials under solution conditions of pH 4.0 and 5.0. Both changes in enthalpies (?H) and entropies (?S) of metal binding were elucidated from isotherms collected under varied temperature conditions using regularized regression data analysis and conditional affinity spectra. ?H values for binding to root materials at pH 4.0 and 5.0 were each calculated to be +30 kJ/mol. Values of ΔS for these same materials were found to be +170 and +153 J/mol K for solution conditions of pH 4.0 and 5.0, respectively. These results suggest binding to the root material to be entropically driven (?S° > 0 and ΔH > 0) through possible displacement of waters of solvation.  相似文献   

6.
Heavy metals that leach from contaminated soils under acid rain are of increasing concern. In this study, simulated acid rain (SAR) was pumped through columns of artificially contaminated purple soil. Column leaching tests and sequential extraction were conducted for the heavy metals Cu, Pb, Cd, and Zn to determine the extent of their leaching as well as to examine the transformation of their speciation in the artificially contaminated soil columns. Results showed that the maximum leachate concentrations of Cu, Pb, Cd, and Zn were less than those specified in the Chinese Quality Standards for Groundwater (Grade IV), thereby suggesting that the heavy metals that leached from the polluted purple soil receiving acid rain may not pose as risks to water quality. Most of the Pb and Cd leachate concentrations were below their detection limits. By contrast, higher Cu and Zn leachate concentrations were found because they were released by the soil in larger amounts as compared with those of Pb and Cd. The differences in the Cu and Zn leachate concentrations between the controls (SAR at pH 5.6) and the treatments (SAR at pH 3.0 and 4.5) were significant. Similar trends were observed in the total leached amounts of Cu and Zn. The proportions of Cu, Pb, Cd, and Zn in the EXC and OX fractions were generally increased after the leaching experiment at three pH levels, whereas those of the RES, OM, and CAR fractions were slightly decreased. Acid rain favors the leaching of heavy metals from the contaminated purple soil and makes the heavy metal fractions become more labile. Moreover, a pH decrease from 5.6 to 3.0 significantly enhanced such effects.  相似文献   

7.
Recently, heavy metals have been shown to have a stimulating effect on siderophore biosynthesis in various bacteria. In addition, several studies have found that siderophore production is greater in bacteria isolated from soil near plant roots. The aim of this study was to compare the production of siderophores by bacterial strains isolated from heavy metal-contaminated and uncontaminated soils. Chrome azurol sulphonate was used to detect siderophore secretion by several bacterial strains isolated from heavy metal-contaminated and rhizosphere-uncontaminated soils with both a qualitative disc diffusion method and a quantitative ultraviolet spectrophotometric method. Siderophore production by rhizosphere bacteria was significantly greater than by bacteria isolated from contaminated soil. The Pearson’s correlation test indicated a positive correlation between the amount of siderophore produced by bacteria isolated from the rhizosphere using the quantitative and qualitative detection methods and the amount of heavy metal in the soil. However, a significant negative correlation was observed between the amount of siderophore produced by bacteria isolated from heavy metal-contaminated soil and the amount of heavy metal (r value of ?0.775, P < 0.001).  相似文献   

8.
Cocoa shells for heavy metal removal from acidic solutions   总被引:3,自引:0,他引:3  
The development of economic and efficient processes for the removal of heavy metals present in acidic effluents from industrial sources or decontamination technologies has become a priority. The purpose of this work was to study the efficiency with which cocoa shells remove heavy metals from acidic solutions (pH 2) and to investigate how the composition of these solutions influences heavy metal uptake efficiency. Adsorption tests were conducted in agitated flasks with single-metal solutions (0.25 mM Al, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb and Zn), multi-metal solution (comprised of 0.25 mM of each of the cations above) and an effluent obtained from chemical leaching of metal-contaminated soil, in the presence of different cocoa shell concentrations (5–40 g/l). Results from the single-metal solution assays indicated that the fixation capacity of heavy metals by cocoa shells followed a specific order: Pb > Cr > Cd=Cu=Fe > Zn=Co > Mn=Ni=Al. Cocoa shells are particularly efficient in the removal of lead from very acidic solutions (qmax=6.2 mg Pb/g, pHi=2.0 and T=22 °C). The presence of other metals and cations in solution did not seem to affect the recovery of lead. It was also observed that the maximum metal uptake was reached in less than 2 h. This research has also demonstrated that the removal of metals caused a decline in solution proton concentration (pH increase) and release of calcium, magnesium, potassium and sodium from the cocoa shells.  相似文献   

9.
The aims of this paper were to assess the variation of heavy metal (Cu and Zn) fractions and mobility in abandoned metal mine soil due to batch experimental leaching. Four solutions with different pH levels were used in the experiments. The total and fractional concentrations of heavy metals in untreated and leached soils were determined. The Kruskal–Wallis test was applied to verify the differences in the Cu and Zn distribution in soils before and after leaching. In order to assess the mobility of heavy metals, mobility factors (MFs) were calculated. The research results showed that the original/untreated soil was mainly of a sandy texture and acidic in character. After batch leaching for 7 days, the distribution of heavy metals was dominant in the residual fraction (F5). Heavy metal fractions in F1, F2, F3, and F5 showed a decreasing trend, but an increasing trend in F4 was observed. Among the solutions applied having different pH values, HCl (pH 3) illustrated the strongest effect on decreasing heavy metals in short-term mobile fractions (F1 and F2). The MF of Zn decreased more than that of Cu after 7-day batch leaching.  相似文献   

10.
Dolomite collected from Surat Thani Province in Thailand was investigated for use as a sorbent for the removal of divalent heavy metal cations from an aqueous solution. The sorbent had a surface area of 2.46 m2/g and a pH of zero point charge (pHzpc) of 9.2. Batch sorption was used to examine the effect of the pH (pH 3–7) on the sorption capacity of Cd2+, Pb2+ and Zn2+, alone or together as an equimolar mixture at various concentrations. Alone, each heavy metal cation was adsorbed faster at a higher pH, where the sorption of Cd2+ and Pb2+ fitted a Langmuir isotherm, but Zn2+ sorption best fitted a Freundlich isotherm. Under equimolar competitive sorption, the sorption capacity of each cation was decreased by 75.8% (0.29–0.07 mM/g), 82.8% (0.53–0.09 mM/g), and 95.7% (0.84–0.04 mM/g) for Cd2+, Pb2+ and Zn2+, respectively, compared to that with the respective single cation. Desorption of these heavy metal cations from dolomite was low, with an average desorption level of 0.06–17.4%. Furthermore, since dolomite is readily available and rather cheap, it is potentially suitable for use as an efficient sorbent to sorb Cd2+ and Pb2+, and perhaps Zn2+, from contaminated water.  相似文献   

11.
Bacterial inoculation may influence Brassica juncea growth and heavy metal (Ni, Cr, and Cd) accumulation. Three metal tolerant bacterial isolates (BCr3, BCd33, and BNi11) recovered from mine tailings, identified as Pseudomonas aeruginosa KP717554, Alcaligenes feacalis KP717561, and Bacillus subtilis KP717559 were used. The isolates exhibited multiple plant growth beneficial characteristics including the production of indole-3-acetic acid, hydrogen cyanide, ammonia, insoluble phosphate solubilization together with the potential to protect plants against fungal pathogens. Bacterial inoculation improved seeds germination of B. juncea plant in the presence of 0.1 mM Cr, Cd, and Ni, as compared to the control treatment. Compared with control treatment, soil inoculation with bacterial isolates significantly increased the amount of soluble heavy metals in soil by 51% (Cr), 50% (Cd), and 44% (Ni) respectively. Pot experiment of B. juncea grown in soil spiked with 100 mg kg?1 of NiCl2, 100 mg kg?1 of CdCl2, and 150 mg kg?1 of K2Cr2O7, revealed that inoculation with metal tolerant bacteria not only protected plants against the toxic effects of heavy metals, but also increased growth and metal accumulation of plants significantly. These findings suggest that such metal tolerant, plant growth promoting bacteria are valuable tools which could be used to develop bio-inoculants for enhancing the efficiency of phytoextraction.  相似文献   

12.
A glasshouse pot experiment was conducted to study the effects of phytoextraction by Sedum plumbizincicola and application of rapeseed cake (RSC) on heavy metal accumulation by a subsequent rice (Oryza sativa L.) crop in a contaminated paddy soil collected from east China. After phytoextraction by S. plumbizincicola the soil and brown rice Cd concentrations effectively declined. After phytoextraction, RSC application reduced brown rice Cd concentrations in the subsequent rice crop to 0.23–0.28 mg kg?1, almost down to the standard limit (0.2 mg kg?1). After phytoextraction and then application of RSC, the soil solution pH, dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) concentrations increased during early stages of rice growth resulting directly and indirectly in lowering the bioavailability of the heavy metals. Thus the grain yield of the subsequent rice crop increased and the heavy metals in the brown rice declined significantly. In this contaminated acid soil, growing the hyperaccumulator S. plumbizincicola and rice in rotation together with RSC application may therefore be regarded as a viable strategy for safe grain production and bioremediation.  相似文献   

13.
With the aim of metal decontamination, migration and stabilization of multiply heavy metals in an aged contaminated soil under a constant 1 V cm?1 parallel-plate electric field were investigated through monitoring the metal migration in the anolyte, as well as analyzing their species distribution residual in soil. Besides anionic Cr(VI), cationic metals were also found in the anolyte, primarily by the concentration-gradient-driven diffusion of free ions, especially when the produced H+ considerably increased their levels in the soil. After 295 h, parts of Cu, Cr, Ni, and Zn were found to electro-migrate into the intermediate area, but no obvious Pb migration was observed, likely ascribed to its own great inertia and precipitation with the present Cr(VI). However, in the whole, only 5.3% of Zn and 2.7% of Ni were separated, while the release of other heavy metals was almost ignorable. Although Pb mobility in the soil near the anode even increased three times, the overall metal mobility in all sample locations was found to significantly reduce under the electric field, indicating an effective stabilization approach. Moreover, compared with the bottom soil, the top soil near the anode was found to have a lower pH, higher moisture, lower heavy metal concentrations, and less soil oxidant demand; these phenomena may be due to a faster electro-migration of charged ions, especially H+, in the top soil. Therefore, such a divergence may considered to improve the current simulation approach for a realistic estimation of the actual metal and H+ electro-migration rate and the associated behavior under an electric field.  相似文献   

14.
Eleven bacterial strains were isolated from soil samples collected from mine tailings. Bacterial strains were checked for tolerance against heavy metals (Cr, Cd, Ni), using the agar dilution method. All the strains showed multiple tolerances against heavy metals, but the most promising results appeared in strains BCr3, BCd33, and BNi11: they were tolerant to 15 mM of Cr6+, 7.5 mM of Cd2+, and 10 mM of Ni2+, respectively. The effect of heavy metals on bacterial growth was tested together with their ability to grow in different pH, NaCl, and temperature values. Bacterial isolates grew well between pH 7.5 and 8.5. The optimum temperature for maximum growth was between 35 and 37°C, and no significant change in bacterial growth was observed in the presence of 2% NaCl. In addition, the bioaccumulation potential of bacterial strains was investigated. Bacterial strains BCr3, BCd33, and BNi11 showed high bioaccumulation ability of Cr (68.7%), Cd (72.4%), and Ni (69.8%), respectively. All bacterial isolates were identified by 16S rRNA gene sequencing. Analysis of plasmid content revealed that all bacterial isolates contained a single plasmid. Further, polymerase chain reaction together with DNA sequence analysis was used to screen all bacterial strains for the presence metal tolerance genes (czcD, chrA, chrB, czcB, czcC, nccA, and cadA) on both plasmid and chromosomal genomes.  相似文献   

15.
An “ex situ” microbial method for the removal of heavy metals from soil is described. Elemental sulfur was added to generate the lixiviant in shaker flask experiments in which soil sampled from a polluted agricultural field was treated. The biotic oxidation of sulfur to sulfuric acid resulted in significant drop in pH of the bioleaching liquor from 6.94 to 1.8 after 50 days. In batches operated at very low (10 g/kg) sulfur concentrations, pH changed from 6.94 to 5.45. The 50 g/kg soil sulfur concentration was found to be most beneficial to the solubilization process because more than 95% of metals such as zinc (Zn), cadmium (Cd), and nickel (Ni) were recovered while approximately 67% of manganese (Mn) got solubilized. The least concentration of dissolved metals was lead (Pb) – (25%) and chromium (Cr) – (10%). Sulfate accumulation rose to 47% in samples spiked with 50 g/kg soil of sulfur. At lower sulfur concentrations, the sulfates generated were higher than the amount of sulfur added. The microbial process compared well to the abiotic process involving extraneous addition of sulfuric acid except that very high concentrations of acid had to be used. The treatment of the bioleaching wastewater promoted precipitation of the dissolved metals into insoluble hydroxides making discharge of the effluent into the environment safe. The leached soil recovered sufficiently for agricultural use after quick lime and animal manure was used to improve, stabilize, and restore its physical, chemical, and biological conditions.  相似文献   

16.
An investigation was carried out to evaluate the effect of heavy metal toxicity on growth, herb, oil yield and quality and metal accumulation in rose scented geranium (Pelargonium graveolens) grown in heavy metal enriched soils. Four heavy metals (Cd, Ni, Cr, and Pb) each at two levels (10 and 20 mg kg–1 soil) were tested on geranium. Results indicated that Cr concentration in soil at 20 mg kg–1 reduced leaves, stem and root yield by 70, 83, and 45%, respectively, over control. Root growth was significantly affected in Cr stressed soil. Nickel, Cr, and Cd concentration and accumulation in plant increased with higher application of these metals. Chromium, nickel and cadmium uptake was observed to be higher in leaves than in stem and roots. Essential oil constituents were generally not significantly affected by heavy metals except Pb at 10 and 20 ppm, which significantly increased the content of citronellol and Ni at 20 ppm increased the content of geraniol. Looking in to the higher accumulation of toxic metals by geranium and the minimal impact of heavy metals on quality of essential oil, geranium can be commercially cultivated in heavy metal polluted soil for production of high value essential oil.  相似文献   

17.
Microbial community composition and activity were characterized in soil contaminated with lead (Pb), chromium (Cr), and hydrocarbons. Contaminant levels were very heterogeneous and ranged from 50 to 16,700 mg of total petroleum hydrocarbons (TPH) kg of soil(-1), 3 to 3,300 mg of total Cr kg of soil(-1), and 1 to 17,100 mg of Pb kg of soil(-1). Microbial community compositions were estimated from the patterns of phospholipid fatty acids (PLFA); these were considerably different among the 14 soil samples. Statistical analyses suggested that the variation in PLFA was more correlated with soil hydrocarbons than with the levels of Cr and Pb. The metal sensitivity of the microbial community was determined by extracting bacteria from soil and measuring [(3)H]leucine incorporation as a function of metal concentration. Six soil samples collected in the spring of 1999 had IC(50) values (the heavy metal concentrations giving 50% reduction of microbial activity) of approximately 2.5 mM for CrO(4)2- and 0.01 mM for Pb2+. Much higher levels of Pb were required to inhibit [14C]glucose mineralization directly in soils. In microcosm experiments with these samples, microbial biomass and the ratio of microbial biomass to soil organic C were not correlated with the concentrations of hydrocarbons and heavy metals. However, microbial C respiration in samples with a higher level of hydrocarbons differed from the other soils no matter whether complex organic C (alfalfa) was added or not. The ratios of microbial C respiration to microbial biomass differed significantly among the soil samples (P < 0.05) and were relatively high in soils contaminated with hydrocarbons or heavy metals. Our results suggest that the soil microbial community was predominantly affected by hydrocarbons.  相似文献   

18.
In-situ remediation is a practical approach to remediate soils contaminated with heavy metals. The MnFe2O4 microparticles (MM) were prepared for the in-situ remediation of contaminated soils from a lead–zinc polymetallic mine in Inner Mongolia province, China. The effects of MM dosage, pH on remediation efficiency, were determined with static vibration leaching experiment, and the release risk of heavy metals of treated soil was studied by column leaching experiment. The results showed that the leached Cu, Pb, Zn, and As concentration decreased drastically with increasing MM dosage, when the dosage was lower than 10 g/kg. Moreover, the decrease of pH caused increase of leached concentration of Cu, Pb, Zn, but slight decrease of leached As concentration. For the amended soil, concentrations of leached heavy metals were lower than Grade III limit of Chinese Environmental Quality Standards for Ground and Surface water (GB3838-2002) under simulated acid rain leaching condition. In comparison with non-amended soils, the total amount of Cu, Pb, Zn, and As release from amended soils was reduced by 93.6%, 69.2%, 57.0%, and 99.7%, respectively. The MM is a kind of promising amendment for heavy metals contaminated soil.  相似文献   

19.
The present work deals with the biosorption performance of dried and non-growing biomasses of Exiguobacterium sp. ZM-2, isolated from soil contaminated with tannery effluents, for the removal of Cd2+, Ni2+, Cu2+, and Zn2+ from aqueous solution. The metal concentrations studied were 25 mg/l, 50 mg/l, 100 mg/l, 150 mg/l and 200 mg/l. The effect of solution pH and contact time was also studied. The biosorption capacity was significantly altered by pH of the solution. The removal of metal ions was conspicuously rapid; most of the total sorption occurred within 30 min. The sorption data have been analyzed and fitted to the Langmuir and Freundlich isotherm models. The highest Qmax value was found for the biosorption of Cd2+ at 43.5 mg/g in the presence of the non-growing biomass. Recovery of metals (Cd2+, Zn2+, Cu2+ and Ni2+) was found to be better when dried biomass was used in comparison to non-growing biomass. Metal removal through bioaccumulation was determined by growing the bacterial strain in nutrient broth amended with different concentrations of metal ions. This multi-metal resistant isolate could be employed for the removal of heavy metals from spent industrial effluents before discharging them into the environment.  相似文献   

20.
The present study relates to the use of cyanobacterium Nostoc muscorum as a model system for removal of heavy metals such as Pb and Cd from aquatic systems. The effects of various physicochemical factors on the surface binding and intracellular uptake of Pb and Cd were studied to optimize the metal removal efficiency of the living cells of N. muscorum. Results demonstrated that a significant proportion of Pb and Cd removal was mediated by surface binding of metals (85 % Pb and 79 % Cd), rather than by intracellular accumulation (5 % Pb and 4 % Cd) at the optimum level of cyanobacterial biomass (2.8 g L?1), metal concentration (80 μg mL?1), pH (pH 5.0–6.0), time (15–30 min), and temperature (30–40 °C). N. muscorum has maximum amounts of metal removal (q max) capacity of 833 and 666.7 mg g?1 protein for Pb and Cd, respectively. The kinetic parameters of metal binding revealed that adsorption of Pb and Cd by N. muscorum followed pseudo-second-order kinetics, and the adsorption behavior was better explained by both Langmuir and Freundlich isotherm models. The surface binding of both the metals was apparently facilitated by the carboxylic, hydroxyl, and amino groups as evident from Fourier transform infrared spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号