首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Prokaryotic Diversity in Zostera noltii-Colonized Marine Sediments   总被引:2,自引:0,他引:2       下载免费PDF全文
The diversity of microorganisms present in a sediment colonized by the phanerogam Zostera noltii has been analyzed. Microbial DNA was extracted and used for constructing two 16S rDNA clone libraries for Bacteria and Archaea. Bacterial diversity was very high in these samples, since 57 different sequences were found among the 60 clones analyzed. Eight major lineages of the Domain Bacteria were represented in the library. The most frequently retrieved bacterial group (36% of the clones) was δ-Proteobacteria related to sulfate-reducing bacteria. The second most abundant group (27%) was γ-Proteobacteria, including five clones closely related to S-oxidizing endosymbionts. The archaeal clone library included members of Crenarchaeota and Euryarchaeota, with nine different sequences among the 15 analyzed clones, indicating less diversity when compared to the Bacteria organisms. None of these sequences was closely related to cultured Archaea organisms.  相似文献   

2.
The Lonar crater is an unusually well-preserved meteorite impact structure that is located in one of the largest volcanic provinces on Earth (i.e., the Deccan Traps in India). The diversity of endoliths in Lonar crater basalts or Deccan flood basalts is not known. Here, the phylogenetic diversity of endolithic Bacteria and Archaea inhabiting basalts retrieved from four discrete sampling sites on the Lonar crater walls and the lake-bed was assessed using culture-independent molecular methods. Taxonomic classification of 16S rRNA gene sequences from all four basalt samples revealed similarities as well as dissimilarities in the presence or absence of several prokaryotic taxa. Cluster analysis of Denaturing gradient gel electrophoresis fingerprints and UniFrac analysis of clone library sequences suggested substantial variations in bacterial and archaeal diversity between crater-wall and lake-bed sites. Although sequences affiliated to the bacterial phyla Actinobacteria, Acidobacteria and Chloroflexi were relatively more abundant in crater-wall basalts than in lake-bed basalts; the reverse was observed for sequences related to Proteobacteria, Firmicutes, Cyanobacteria and Bacteroidetes. Archaea in crater-wall and lake-bed basalt libraries were almost completely represented by Thaumarchaeota and Euryarchaeota, respectively. Diversity indices and richness estimates suggested the diversity of endolithic Bacteria to be higher than that of Archaea in the Lonar crater basalts. A substantial number of clone library sequences did not affiliate with extant Bacteria and Archaea. The detection of several putative lineages associated with C, N and S cycling suggests that the Lonar crater basalts are colonized by metabolically diverse prokaryotic communities involved in biogeochemical cycling of major elements.  相似文献   

3.
The prokaryotic cells distribution in the water column of the coastal saline meromictic Lake Faro (Messina, Italy) was investigated by microscopic counting techniques. Water samples were collected at a central station from the surface to the bottom, when waters were characterized by a marked stratification. A “red-water” layer, caused by a dense growth of photosynthetic sulfur bacteria, was present at a depth of 15 m, defining a transition area between oxic (mixolimnion) and anoxic (monimolimnion) layers. Fluorescently labeled 16S rRNA oligonucleotide, group-specific probes were used to determine the abundance of Bacteria and Archaea, and their subgroups, Green Sulfur Bacteria (GSB), Sulfate Reducing Bacteria (SRB), Cyanobacteria and Chromatium okenii, and Crenarchaeota and Euryarchaeota, as key elements of the microbial community. Bacteria decreased from surface to bottom, while Archaea increased with depth and reached the maximum value at 30 m, where they outnumbered the Bacteria. Bacteria and picophytoplankton prevailed in the mixolimnion. At the chemocline high numbers of prokaryotic cells were present, mainly represented by Cyanobacteria, Chromatium okenii and Euryarchaeota. GSB, SRB, and Crenarchaeota prevailed below the chemocline. Although Archaea constitute a minor fraction of microbial community, they could represent active contributors to the meromictic Lake Faro ecosystem.  相似文献   

4.
Microbial conversion of organic waste or harvested plant material into biogas has become an attractive technology for energy production. Biogas is produced in reactors under anaerobic conditions by a consortium of microorganisms which commonly include bacteria of the genus Clostridium. Since the genus Clostridium also harbors some highly pathogenic members in its phylogenetic cluster I, there has been some concern that an unintended growth of such pathogens might occur during the fermentation process. Therefore this study aimed to follow how process parameters affect the diversity of Bacteria in general, and the diversity of Clostridium cluster I members in particular. The development of both communities was followed in model biogas reactors from start-up during stable methanogenic conditions. The biogas reactors were run with either cattle or pig manures as substrates, and both were operated at mesophilic and thermophilic conditions. The structural diversity was analyzed independent of cultivation using a PCR-based detection of 16S rRNA genes and genetic profiling by single-strand conformation polymorphism (SSCP). Genetic profiles indicated that both bacterial and clostridial communities evolved in parallel, and the community structures were highly influenced by both substrate and temperature. Sequence analysis of 16S rRNA genes recovered from prominent bands from SSCP profiles representing Clostridia detected no pathogenic species. Thus, this study gave no indication that pathogenic clostridia would be enriched as dominant community members in biogas reactors fed with manure.  相似文献   

5.
To investigate the prokaryotic community structure and composition in an active hydrothermal site, named Black Point, off Panarea Island (Eolian Islands, Italy), we examined sediment and fluid samples, differing in temperature, by a massive parallel sequencing (Illumina) technique targeting the V3 region of the 16S rRNA gene. The used technique enabled us to detect a greater prokaryotic diversity than that until now observed and to reveal also microorganisms occurring at very low abundance (≤0.01 %). Most of sequences were assigned to Bacteria while Archaea were a minor component of the microbial community in both low- and high-temperature samples. Proteobacteria (mainly consisting of Alpha-, Gamma-, and Epsilonproteobacteria) dominated among all samples followed by Actinobacteria and Bacteroidetes. Analyzed DNA obtained from samples taken at different temperatures indicated the presence of members of different dominant genera. The main differences were observed between sediment samples where Rhodovulum and Thiohalospira prevailed at high temperature, while Thalassomonas and Sulfurimonas at low temperature. Chlorobium, Acinetobacter, Sulfurimonas, and Brevundimonas were abundant in both low- and high-temperature fluid samples. Euryarchaeota dominated the archaeal community in all samples. Classes of Euryarchaeota embracing hyperthermophilic members (Thermococci and Thermoplasmata) and of Crenarchaeota (Thermoprotei) were more abundant in high-temperature samples. A great number of sequences referred to Bacteria and Archaea still remained unaffiliated, indicating that Black Point site represents a rich source of so-far uncharted prokaryotic diversity.  相似文献   

6.
Ammonia oxidation is the first and rate-limiting step of nitrification, which is carried out by two groups of microorganisms: ammonia-oxidizing bacteria (AOB) and the recently discovered ammonia-oxidizing archaea (AOA). In this study, diversity and abundance of AOB and AOA were investigated in five rock samples from a deep-sea hydrothermal vent site at the Mid-Atlantic Ridge (MAR) of the South Atlantic Ocean. Both bacterial and archaeal ammonia monooxygenase subunit A (amoA) gene sequences obtained in this study were closely related to the sequences retrieved from deep-sea environments, indicating that AOB and AOA in this hydrothermal vent site showed typical deep ocean features. AOA were more diverse but less abundant than AOB. The ratios of AOA/AOB amoA gene abundance ranged from 1/3893 to 1/242 in all investigate samples, indicating that bacteria may be the major members responding to the aerobic ammonia oxidation in this hydrothermal vent site. Furthermore, diversity and abundance of AOA and AOB were significantly correlated with the contents of total nitrogen and total sulfur in investigated samples, suggesting that these two environmental factors exert strong influences on distribution of ammonia oxidizers in deep-sea hydrothermal vent environment.  相似文献   

7.
Microbial and functional diversity were assessed, from a serpentinization‐driven subterrestrial alkaline aquifer – Cabeço de Vide Aquifer (CVA) in Portugal. DGGE analyses revealed the presence of a stable microbial community. By 16S rRNA gene libraries and pyrosequencing analyses, a diverse bacterial composition was determined, contrasting with low archaeal diversity. Within Bacteria the majority of the populations were related to organisms or sequences affiliated to class Clostridia, but members of classes Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Deinococci, Gammaproteobacteria and of the phyla Bacteroidetes, Chloroflexi and Nitrospira were also detected. Domain Archaea encompassed mainly sequences affiliated to Euryarchaeota. Only form I RuBisCO – cbbL was detected. Autotrophic carbon fixation via the rTCA, 3‐HP and 3‐HP/4H‐B cycles could not be confirmed. The detected APS reductase alpha subunit – aprA sequences were phylogenetically related to sequences of sulfate‐reducing bacteria belonging to Clostridia, and also to sequences of chemolithoautothrophic sulfur‐oxidizing bacteria belonging to Betaproteobacteria. Sequences of methyl coenzyme M reductase – mcrA were phylogenetically affiliated to sequences belonging to Anaerobic Methanotroph group 1 (ANME‐1). The populations found and the functional key markers detected in CVA suggest that metabolisms related to H2, methane and/or sulfur may be the major driving forces in this environment.  相似文献   

8.
The population composition and biogeochemistry of sulfate-reducing bacteria (SRB) in the rhizosphere of the marsh grass Spartina alterniflora was investigated over two growing seasons by molecular probing, enumerations of culturable SRB, and measurements of SO42− reduction rates and geochemical parameters. SO42− reduction was rapid in marsh sediments with rates up to 3.5 μmol ml−1 day−1. Rates increased greatly when plant growth began in April and decreased again when plants flowered in late July. Results with nucleic acid probes revealed that SRB rRNA accounted for up to 43% of the rRNA from members of the domain Bacteria in marsh sediments, with the highest percentages occurring in bacteria physically associated with root surfaces. The relative abundance (RA) of SRB rRNA in whole-sediment samples compared to that of Bacteria rRNA did not vary greatly throughout the year, despite large temporal changes in SO42− reduction activity. However, the RA of root-associated SRB did increase from <10 to >30% when plants were actively growing. rRNA from members of the family Desulfobacteriaceae comprised the majority of the SRB rRNA at 3 to 34% of Bacteria rRNA, with Desulfobulbus spp. accounting for 1 to 16%. The RA of Desulfovibrio rRNA generally comprised from <1 to 3% of the Bacteria rRNA. The highest Desulfobacteriaceae RA in whole sediments was 26% and was found in the deepest sediment samples (6 to 8 cm). Culturable SRB abundance, determined by most-probable-number analyses, was high at >107 ml−1. Ethanol utilizers were most abundant, followed by acetate utilizers. The high numbers of culturable SRB and the high RA of SRB rRNA compared to that of Bacteria rRNA may be due to the release of SRB substrates in plant root exudates, creating a microbial food web that circumvents fermentation.  相似文献   

9.
Hydrothermal vent systems harbor rich microbial communities ranging from aerobic mesophiles to anaerobic hyperthermophiles. Among these, members of the archaeal domain are prevalent in microbial communities in the most extreme environments, partly because of their temperature‐resistant and robust membrane lipids. In this study, we use geochemical and molecular microbiological methods to investigate the microbial diversity in black smoker chimneys from the newly discovered Loki's Castle hydrothermal vent field on the Arctic Mid‐Ocean Ridge (AMOR) with vent fluid temperatures of 310–320 °C and pH of 5.5. Archaeal glycerol dialkyl glycerol tetraether lipids (GDGTs) and H‐shaped GDGTs with 0–4 cyclopentane moieties were dominant in all sulfide samples and are most likely derived from both (hyper)thermophilic Euryarchaeota and Crenarchaeota. Crenarchaeol has been detected in low abundances in samples derived from the chimney exterior indicating the presence of Thaumarchaeota at lower ambient temperatures. Aquificales and members of the Epsilonproteobacteria were the dominant bacterial groups detected. Our observations based on the analysis of 16S rRNA genes and biomarker lipid analysis provide insight into microbial communities thriving within the porous sulfide structures of active and inactive deep‐sea hydrothermal vents. Microbial cycling of sulfur, hydrogen, and methane by archaea in the chimney interior and bacteria in the chimney exterior may be the prevailing biogeochemical processes in this system.  相似文献   

10.
Denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments was used to explore the genetic diversity of hydrothermal vent microbial communities, specifically to determine the importance of sulfur-oxidizing bacteria therein. DGGE analysis of two different hydrothermal vent samples revealed one PCR band for one sample and three PCR bands for the other sample, which probably correspond to the dominant bacterial populations in these communities. Three of the four 16S rDNA fragments were sequenced. By comparison with 16S rRNA sequences of the Ribosomal Database Project, two of the DGGE-separated fragments were assigned to the genusThiomicrospira. To identify these ‘phylotypes’ in more detail, a phylogenetic framework was created by determining the nearly complete 16S rRNA gene sequence (approx. 1500 nucleotides) from three describedThiomicrospira species, viz.,Tms. crunogena, Tms. pelophila, Tms. denitrificans, and from a new isolate,Thiomicrospira sp. strain MA2-6. AllThiomicrospira species exceptTms. denitrificans formed a monophyletic group within the gamma subdivision of the Proteobacteria.Tms. denitrificans was assigned as a member of the epsilon subdivision and was distantly affiliated withThiovulum, another sulfur-oxidizing bacterium. Sequences of two dominant 16S rDNA fragments obtained by DGGE analysis fell into the gamma subdivisionThiomicrospira. The sequence of one fragment was in all comparable positions identical to the 16S rRNA sequence ofTms. crunogena. Identifying a dominant molecular isolate asTms. crunogena indicates that this species is a dominant community member of hydrothermal vent sites. Another ‘phylotype’ represented a newThiomicrospira species, phylogenetically in an intermediate position betweenTms. crunogena andTms. pelophila. The third ‘phylotype’ was identified as aDesulfovibrio, indicating that sulfate-reducing bacteria, as sources of sulfide, may complement sulfur- and sulfide-oxidizing bacteria ecologically in these sulfide-producing hydrothermal vents.  相似文献   

11.
Although the deep-sea sediments harbor diverse and novel bacteria with important ecological and environmental functions, a comprehensive view of their community characteristics is still lacking, considering the vast area and volume of the deep-sea sedimentary environments. Sediment bacteria vertical distribution and community structure were studied of the E272 site in the East Pacific Ocean with the molecular methods of 16S rRNA gene T-RFLP (terminal restriction fragment length polymorphism) and clone library analyses. Layered distribution of the bacterial assemblages was detected by both methods, indicating that the shallow sediments (40 cm in depth) harbored a diverse and distinct bacterial composition with fine-scale spatial heterogeneity. Substantial bacterial diversity was detected and nine major bacterial lineages were obtained, including Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Nitrospirae, Planctomycetes, Proteobacteria, and the candidate divisions OP8 and TM6. Three subdivisions of the Proteobacteria presented in our libraries, including the α-, γ- and δ-Proteobacteria. Most of our sequences have low similarity with known bacterial 16S rRNA genes, indicating that these sequences may represent as-yet-uncultivated novel bacteria. Most of our sequences were related to the GenBank nearest neighboring sequences retrieved from marine sediments, especially from deep-sea methane seep, gas hydrate or mud volcano environments. Several sequences were related to the sequences recovered from the deep-sea hydrothermal vent or basalt glasses-bearing sediments, indicating that our deep-sea sampling site might be influenced to certain degree by the nearby hydrothermal field of the East Pacific Rise at 13°N. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Culture‐dependent and culture‐independent methods were used in an investigation of the microbial diversity in a permafrost/massive ground ice core from the Canadian high Arctic. Denaturing gradient gel electrophoresis as well as Bacteria and Archaea 16S rRNA gene clone libraries showed differences in the composition of the microbial communities in the distinct core horizons. Microbial diversity was similar in the active layer (surface) soil, permafrost table and permafrost horizons while the ground ice microbial community showed low diversity. Bacteria and Archaea sequences related to the Actinobacteria (54%) and Crenarchaeota (100%) respectively were predominant in the active layer while the majority of sequences in the permafrost were related to the Proteobacteria (57%) and Euryarchaeota (76%). The most abundant phyla in the ground ice clone libraries were the Firmicutes (59%) and Crenarchaeota (82%). Isolates from the permafrost were both less abundant and diverse than in the active layer soil, while no culturable cells were recovered from the ground ice. Mineralization of [1‐14C] acetic acid and [2‐14C] glucose was used to detect microbial activity in the different horizons in the core. Mineralization was detected at near ambient permafrost temperatures (?15°C), indicating that permafrost may harbour an active microbial population, while the low microbial diversity, abundance and activity in ground ice suggests a less hospitable microbial habitat.  相似文献   

13.
Many parasitic bacteria live in the cytoplasm of multicellular animals, but only a few are known to regularly invade their nuclei. In this study, we describe the novel bacterial parasite “Candidatus Endonucleobacter bathymodioli” that invades the nuclei of deep‐sea bathymodiolin mussels from hydrothermal vents and cold seeps. Bathymodiolin mussels are well known for their symbiotic associations with sulfur‐ and methane‐oxidizing bacteria. In contrast, the parasitic bacteria of vent and seep animals have received little attention despite their potential importance for deep‐sea ecosystems. We first discovered the intranuclear parasite “Ca. E. bathymodioli” in Bathymodiolus puteoserpentis from the Logatchev hydrothermal vent field on the Mid‐Atlantic Ridge. Using primers and probes specific to “Ca. E. bathymodioli” we found this intranuclear parasite in at least six other bathymodiolin species from vents and seeps around the world. Fluorescence in situ hybridization and transmission electron microscopy analyses of the developmental cycle of “Ca. E. bathymodioli” showed that the infection of a nucleus begins with a single rod‐shaped bacterium which grows to an unseptated filament of up to 20 μm length and then divides repeatedly until the nucleus is filled with up to 80 000 bacteria. The greatly swollen nucleus destroys its host cell and the bacteria are released after the nuclear membrane bursts. Intriguingly, the only nuclei that were never infected by “Ca. E. bathymodioli” were those of the gill bacteriocytes. These cells contain the symbiotic sulfur‐ and methane‐oxidizing bacteria, suggesting that the mussel symbionts can protect their host nuclei against the parasite. Phylogenetic analyses showed that the “Ca. E. bathymodioli” belongs to a monophyletic clade of Gammaproteobacteria associated with marine metazoans as diverse as sponges, corals, bivalves, gastropods, echinoderms, ascidians and fish. We hypothesize that many of the sequences from this clade originated from intranuclear bacteria, and that these are widespread in marine invertebrates.  相似文献   

14.
Purpose

The aim of this study was to estimate the level of genomic and phenotypic diversity as well as the genus and species position of bacterial strains isolated from root nodules of Lembotropis nigricans (family Fabaceae).

Methods

The genomic diversity of studied L. nigricans nodule symbionts was examined by using BOX-PCR and AFLP (amplified fragment length polymorphism) fingerprinting techniques. To assign bacteria to the genus, numerical analysis of phenotypic features and comparative analysis of 16S rDNA sequences were performed. The comparative analysis of combined atpD, dnaK, gyrB, and rpoB gene sequences (multilocus sequence analysis, MLSA) was used to determine the most closely related species to the studied bacteria.

Results

Both BOX-PCR and AFLP techniques revealed a high level of genomic heterogeneity of L. nigricans nodulators. Among 33 studied bacteria, 32 genotypes were delineated by the AFLP method and 27 genotypes were identified by the BOX-PCR fingerprinting. The numerical analysis of 86 phenotypic characteristics of L. nigricans nodule isolates and reference rhizobia showed that studied bacteria belong to the genus Bradyrhizobium. Affiliation of L. nigricans nodule isolates to the genus Bradyrhizobium was supported by comparative analysis of 16S rDNA sequences and the concatenation of atpD, dnaK, gyrB, and rpoB gene sequences. MLSA indicated also that L. nigricans microsymbionts are members of Bradyrhizobium japonicum.

Conclusion

L. nigricans root nodule symbionts are members of Bradyrhizobium japonicum and exhibit high phenotypic and genomic diversity important for their survival in soil.

  相似文献   

15.
The prokaryotic community composition of activated sludge from a seawater‐processing wastewater treatment plant (Almeria, Spain) was investigated by using the rRNA approach, combining different molecular techniques such as denaturing gradient gel electrophoresis (DGGE), clone libraries and in situ hybridization (FISH and CARD‐FISH). Most of the sequences retrieved in the DGGE and the clone libraries were similar to uncultured members of different phyla. The most abundant sequence recovered from Bacteria in the clone library corresponded to a bacterium from the Deinococcus–Thermus cluster (almost 77% of the clones), and the library included members from other groups such as the Alpha, Gamma and Delta subclasses of Proteobacteria, the Bacteroidetes and Firmicutes. Concerning the archaeal clone library, we basically found sequences related to different orders of methanogenic Archaea, in correspondence with the recovered DGGE bands. Enumeration of DAPI (4′,6‐diamidino‐2‐phenylindole) stained cells from two different activated sludge samples after a mechanical flocculation disruption revealed a mean cell count of 1.6 × 109 ml?1. Around 94% of DAPI counts (mean value from both samples) hybridized with a Bacteria specific probe. Alphaproteobacteria were the dominant bacterial group (36% of DAPI counts), while Beta‐, Delta‐ and Gammaproteobacteria, Bacteroidetes, Actinobacteria and Firmicutes contributed to lower proportions (between 0.5–5.7% of DAPI counts). Archaea accounted only for 6% of DAPI counts. In addition, specific primers for amplification of the amoA (ammonia monooxygenase) gene were used to detect the presence of Beta, Gamma and archaeal nitrifiers, yielding positive amplifications only for Betaproteobacteria. This, together with negative in situ hybridizations with probes for well‐known nitrifiying bacteria, suggests that nitrification is performed by still undetected microorganisms. In summary, the combination of the three approaches provided different and complementary pictures of the real assemblage composition and allowed to get closer to the main microorganisms involved in key processes of seawater‐processing activated sludge.  相似文献   

16.
17.
The primary structures of the genes encoding the β-subunits of a type II topoisomerase (gyrase, gyrB) and a type IV topoisomerase (parE) were determined for 15 strains of thermophilic bacteria of the genus Geobacillus. The obtained sequences were used for analysis of the phylogenetic similarity between members of this genus. Comparison of the phylogenetic trees of geobacilli constructed on the basis of the 16S rRNA, gyrB, and parE gene sequences demonstrated that the level of genetic distance between the sequences of the genes encoding the β-subunits of type II topoisomerases significantly exceeded the values obtained by comparative analysis of the 16S rRNA gene sequences of Geobacillus strains. It was shown that, unlike the 16S rRNA gene analysis, comparative analysis of the gyrB and parE gene sequences provided a more precise determination of the phylogenetic position of bacteria at the species level. The data obtained suggest the possibility of using the genes encoding the β-subunits of type II topoisomerases as phylogenetic markers for determination of the species structure of geobacilli.  相似文献   

18.
The phylogenetic diversity of a microbial community involved in anaerobic oxidation of ammonium nitrogen in the DEAMOX process was studied. Analysis of clone libraries containing 16S rRNA gene inserts of Bacteria, (including Planctomycetes) and Archaea revealed the presence of nucleotide sequences of the microorganisms involved in the main reactions of the carbon, nitrogen, and sulfur cycles, including nitrifying, denitrifying, and ANAMMOX bacteria. In the bacterial clone library, 16S rRNA gene sequences of representatives of the phyla Proteobacteria, Bacteroidetes, Chloroflexi, Firmicutes, Verrucomicrobia, Lentisphaerae, Spirochaetales, and Planctomycetes, as well as of some new groups, were detected. In the archaeal clone library, nucleotide sequences of methanogens belonging to the orders Methanomicrobiales, Methanobacteriales, and Methanosarcinales were found. It is possible that both ANAMMOX bacteria and bacteria of the genus Nitrosomonas are involved in anaerobic ammonium oxidation in the DEAMOX reactor. Many sequences were similar to those from the clone libraries obtained previously from the ANAMMOX community of marine sediments. It is also probable that the DEAMOX reactions occur in natural ecosystems (in marine and freshwater sediments and the oceanic water column), thereby providing for the coupling of the nitrogen and sulfur cycles.  相似文献   

19.
Microbial diversity and methanogenic potential in formation water samples from a dissolved-in-water type gas field were investigated by using 16S rRNA gene libraries and culture-based methods. Two formation water samples (of 46 and 53°C in temperature) were obtained from a depth of 700 to 800 m. Coenzyme F420-autofluorescence indicated that 103–104 cells per ml of active methanogens were present, accounting for at least 10% of the total cell count. The 16S rRNA gene sequence analysis indicated that the diversity of Archaea and Bacteria of the two samples was quite limited; i.e., the archaeal libraries were dominated by the sequences related to Methanobacterium formicicum and Methanothermobacter thermautotrophicus, and the bacterial libraries were dominated by the sequences related to Hydrogenophilus and Deferribacter. Of the methanogenic substrates tested using the formation water-based medium, only H2–CO2 gave rise to methane formation. Those dominant archaeal and bacterial genera have the potential to use hydrogen for growth at the in situ temperatures, suggesting that the formation water of the Pliocene strata in the gas field has been provided with hydrogen, probably from underneath the strata, and thus on-going active methanogenesis has been occurring to date. An erratum to this article can be found at  相似文献   

20.
The Sorrento wetland hosts several Fe- and Mn-rich seeps that are reported to have appeared after the area was disturbed by recent attempts at development. Culture-independent and culture-based analyses were utilized to characterize the microbial community at the main site of the Fe and Mn seep. Several bacteria capable of oxidizing Mn(II) were isolated, including members related to the genera Bacillus, Lysinibacillus, Pseudomonas, and Leptothrix, but none of these were detected in clone libraries. Most probable number assays demonstrated that seep and wetland sites contained higher numbers of culturable Mn-oxidizing microorganisms than an upstream reference site. When compared with quantitative real time PCR (qPCR) assays of total bacteria, MPN analyses indicated that less than 0.01% of the total population (estimated around 109 cells/g) was culturable. Light microscopy and fluorescence in situ hybridization (FISH) images revealed an abundance of morphotypes similar to Fe- and Mn-oxidizing Leptothrix spp. and Gallionella spp. in seep and wetland sites. FISH allowed identification of Leptothrix-type sheath-forming organisms in seep samples but not in reference samples. Gallionella spp. and Leptothrix spp. cells numbers were estimated using qPCR with a novel primer set that we designed. Results indicated that numbers of Gallionella, Leptothrix or total bacteria were all significantly higher at the seep site relative to the reference site (where Gallionella was below detection). Interestingly, numbers of Leptothrix in the seep site were estimated at only 107 cells/g and were not statistically different in the late summer versus the late winter, despite dramatic changes in sheath abundance (as indicated by microscopy). qPCR also indicated that Gallionella spp. may represent up to 10% (3 × 108 cells/g) of the total bacteria in seep samples. These data corroborate clone library data from samples taken in October 2008, where 11 SSU rRNA sequences related to Gallionella spp. were detected out of 77 total sequences (roughly 10–15%), and where Leptothrix sequences were not detected. Analysis of this SSU rRNA clonal library revealed that a diverse microbial community was present at seep sites. At a 3% difference cutoff, 30 different operational taxonomic units were detected out of 77 sequences analyzed. Dominant sequence types clustered among the beta- and gamma- Proteobacteria near sequences related to the genera Ideonella, Rhodoferax, Methylotenera, Methylobacter, and Gallionella. Overall, results suggest that high metal concentrations at the seep sites have enriched for Fe- and Mn-oxidizing bacteria including organisms related to Gallionella and Leptothrix species, and that members of these genera coexist within a diverse microbial community.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号