首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
A selective semi-automated solid-phase extraction (SPE) of the non-steroidal anti-inflammatory drugs diclofenac sodium, indomethacin and phenylbutazone from urine prior to high-performance liquid chromatography was investigated. The drugs were recovered from urine buffered at pH 5.0 using C18 Bond-Elut cartridges as solid sorbent material and mixtures of methanol–aqueous buffer or acetonitrile–aqueous buffer as washing and elution solvents. The extracts were chromatographed on a reversed-phase ODS column using 10 mM acetate buffer (pH 4.0)–acetonitrile (58:42, v/v) as the mobile phase, and the effluent from the column was monitored at 210 nm with ultraviolet detection. Absolute recoveries of the anti-inflammatory drugs within the range 0.02–1.0 μg/ml were about 85% for diclofenac and indomethacin, and 50% for phenylbutazone without any interference from endogenous compounds of the urine. The within-day and between-day repeatabilities were in all cases less than 5% and 10%, respectively. Limits of detection were 0.007 μg/ml for diclofenac sodium and indomethacin and 0.035 μg/ml for phenylbutazone, whereas limits of quantitation were 0.02 μg/ml for diclofenac and indomethacin and 0.1 μg/ml for phenylbutazone.  相似文献   

2.
A reversed-phase high-performance liquid chromatographic (RP-HPLC) method has been developed and validated for the quantitative determination of paclitaxel in human urine. A comparison is made between solid-phase extraction (SPE) and liquid-liquid extraction (LLE) as sample pretreatment. The HPLC system consists of an APEX octyl analytical column and acetonitrile-methanol-0.2 μM ammonium acetate buffer pH 5 (4:1:5, v/v) as the mobile phase. Detection is performed by UV absorbance measurement at 227 nm. The SPE procedure involves extraction on Cyano Bond Elut columns. n-Butylchloride is the organic extraction fluid used for the LLE. The recoveries of paclitaxel in human urine are 79 and 75% for SPE and LLE, respectively. The accuracy for the LLE and SPE sample pretreatment procedures is 100.4 and 104.9%, respectively, at a 5 μg/ml drug concentration. The lower limit of quantitation is 0.01 μg/ml for SPE and 0.25 μg/ml for LLE. Stability data of paclitaxel in human urine are also presented.  相似文献   

3.
A high-performance liquid chromatographic analysis for the anti-AIDS drug 2',3'-dideoxyinosine (ddI) in rat plasma and urine, with a limit of detection of 0.2 μg/ml and requiring a sample size of 100 μl is described. Diluted plasma or urine samples were extracted using a C18 solid-phase extraction column. Retention of ddI on more polar solid-phase extraction columns was insufficient for sample clean-up. This method is useful for pharmacokinetic studies of ddI in small rodents.  相似文献   

4.
A simple, rapid and reproducible reversed-phase high-performance liquid chromatographic method for the simultaneous determination of benzoic acid (BA), phenylacetic acid (PAA) and their respective glycine conjugates hippuric acid (HA) and phenaceturic acid (PA) in sheep urine is described. The procedure involves only direct injection of a diluted urine sample, thus obviating the need for an extraction step or an internal standard. The compounds were separated on a Nova-Pak C18 column with isocratic elution with acetate buffer (25 mM, pH 4.5)—methanol (95:5). A flow-rate of 1.0 ml/min, a column temperature of 35°C and detection at 230 nm were employed. These conditions were optimized by investigating the effects of pH, molarity, methanol concentration in the mobile phase and column temperature on the resolution of the metabolites. The total analysis time was less than 15 min per sample. At a signal-to-noise ratio of 3 the detection limits for ten-fold diluted urine were 1.0 μg/ml for BA and HA and 5.0 μg/ml for PAA and PA with a 20-μl injection.  相似文献   

5.
A reversed-phase high-performance liquid chromatographic method for oxazepam in human urine samples has been developed. The sample preparation consists of an enzymatic hydrolysis with β-glucuronidase, followed by a solid-phase extraction process using Bond-Elut C2 cartridges. The mobile phase used was a methanol—water (60:40, v/v) mixture at a flow-rate of 0.50 ml/min. The column was a 3.5 cm × 4.6 mm I.D. C18 reversed-phase column. The detection system was based on a fluorescence post-column derivatization of oxazepam in mixtures of methanol and acetic acid. A linear range from 0.01 to 1 μg/ml of urine and a limit of detection of 4 ng/ml of urine were attained. Within-day recoveries and reproducibilities from urine samples spiked with 0.2 and 0.02 μg/ml oxazepam were 97.9 and 95.0 and 2.1 and 9.4%, respectively.  相似文献   

6.
High-temperature headspace solid-phase microextraction (SPME) with simultaneous (“in situ”) derivatisation (acetylation or silylation) is a new sample preparation technique for the screening of illicit drugs in urine and for the confirmation analysis in serum by GC–MS. After extraction of urine with a small portion of an organic solvent mixture (e.g., 2 ml of hexane–ethyl acetate) at pH 9, the organic layer is separated and evaporated to dryness in a small headspace vial. A SPME-fiber (e.g., polyacrylate) doped with acetic anhydride–pyridine (for acetylation) is exposed to the vapour phase for 10 min at 200°C in a blockheater. The SPME fiber is then injected into the GC–MS for thermal desorption and analysis. After addition of perchloric acid and extraction with n-hexane to remove lipids, the serum can be analysed after adjusting to pH 9 as described for urine. Very clean extracts are obtained. The various drugs investigated could be detected and identified in urine by the total ion current technique at the following concentrations: amphetamines (200 μg/l), barbiturates (500 μg/l), benzodiazepines (100 μg/l), benzoylecgonine (150 μg/l), methadone (100 μg/l) and opiates (200 μg/l). In serum all drugs could be detected by the selected ion monitoring technique within their therapeutic range. As compared to liquid–liquid extraction only small amounts of organic solvent are needed and larger amounts of the pertinent analytes could be transferred to the GC column. In contrast to solid-phase extraction (SPE), the SPME-fiber is reusable several times (as there is no contamination by endogenous compounds). The method is time-saving and can be mechanised by the use of a dedicated autosampler.  相似文献   

7.
A high-performance liquid chromatographic method is described for the determination in human urine of GI138870X, the sulphoxide metabolite of a novel dideoxynucleoside analogue, 2′-deoxy-3′-thiacytidine (lamivudine). GI138870X was extracted from human urine using Empore SDB RPS solid-phase extraction disks prior to reversed-phase chromatography with UV detection. The method has shown to be valid over the concentration range 0.5–100 μg/ml using a 0.5-ml sample volume.  相似文献   

8.
A method for simultaneous determination of 5-hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide in urine is described. These compounds are metabolites of N-methyl-2-pyrrolidone, a powerful and widely used organic solvent. 5-Hydroxy-N-methylpyrrolidone and 2-hydroxy-N-methylsuccinimide were purified from urine by adsorption to a C8 solid-phase extraction column and then elution by ethyl acetate–methanol (80:20). After evaporation, the samples were derivatised at 100°C for 1 h by bis(trimethylsilyl)trifluoroacetamide. Ethyl acetate was then added and the samples were analysed by gas chromatography–mass spectrometry in the electron impact mode. The extraction recovery for 5-hydroxy-N-methylpyrrolidone was about 80% while that for 2-hydroxy-N-methylsuccinimide was about 30%. The intra-day precision for 5-hydroxy-N-methylpyrrolidone was 2–4% and the between-day precision 4–21% (4 and 60 μg/ml). The intra-day precision for 2-hydroxy-N-methylsuccinimide was 4–8% and the between-day precision 6–7% (2 and 20 μg/ml). The detection limit was 0.2 μg/ml urine for both compounds. The method is applicable for analysis of urine samples from workers exposed to N-methyl-2-pyrrolidone.  相似文献   

9.
A rapid high-performance liquid chromatographic method was developed using a short silica column (30 mm×4.6 mm) with an aqueous methanol mobile phase consisting of methanol–water–NH4H2PO4 (94:5.96:0.04) adjusted to a final apparent pH of 5.0 and pumped at a flow-rate of 1 ml/min. Ultraviolet detection was carried out at a wavelength of 280 nm, and serum samples were prepared for HPLC analysis by extraction into dichloromethane after basification. Lamotrigine was eluted at 0.96 min. Within-day variation of the method was 4.46% at 0.75 μg/ml and 2.37% at 6.0 μg/ml, and day-to-day variation was 9.10% at 0.75 μg/ml and 7.28% at 6.0 μg/ml.  相似文献   

10.
A simple high-performance liquid chromatographic method was developed for the determination of vanillin and its vanillic acid metabolite in human plasma, red blood cells and urine. The mobile phase consisted of aqueous acetic acid (1%, v/v)–acetonitrile (85:15, v/v), pH 2.9 and was used with an octadecylsilane analytical column and ultraviolet absorbance detection. The plasma method demonstrated linearity from 2 to 100 μg/ml and the urine method was linear from 2 to 40 μg/ml. The method had a detection limit of 1 μg/ml for vanillin and vanillic acid using 5 μl of prepared plasma, red blood cells or urine. The method was utilized in a study evaluating the pharmacokinetic and pharmacodynamic effects of vanillin in patients undergoing treatment for sickle cell anemia.  相似文献   

11.
An improved high-performance liquid chromatographic method has been developed to measure human plasma concentrations of the analgesic nonsteroidal anti-inflammatory drug ketorolac for use in pharmacokinetic studies. Samples were prepared for analysis by solid-phase extraction using Bond-Elut PH columns, with nearly complete recovery of both ketorolac and the internal standard tolmetin. The two compounds were separated on a Radial-Pak C18 column using a mobile phase consisting of water–acetonitrile–1.0 mol/l dibutylamine phosphate (pH 2.5) (30:20:1) and detected at a UV wavelength of 313 nm. Using only 250 μl of plasma, the standard curve was linear from 0.05 to 10.0 μg/ml.  相似文献   

12.
13.
Sensitive high-performance liquid chromatographic assays have been developed for the quantification of stavudine (2′,3′-didehydro-3′-deoxythymidine, d4T) in human plasma and urine. The methods are linear over the concentration ranges 0.025–25 and 2–150 μg/ml in plasma and urine, respectively. An aliquot of 200 μl of plasma was extracted with solid-phase extraction using Oasis® cartridges, while urine samples were simply diluted 1/100 with HPLC water. The analytical column, mobile phase, instrumentation and chromatographic conditions are the same for both methods. The methods have been validated separately, and stability tests under various conditions have been performed. The detection limit is 12 ng/ml in plasma for a sample size of 200 μl. The bioanalytical assay has been used in a pharmacokinetic study of pregnant women and their newborns.  相似文献   

14.
A practical and sensitive high-performance liquid chromatographic method using normal solid-phase extraction has been developed for the determination of methotrexate (MTX) and its main metabolite 7-hydroxymethotrexate (7-OH-MTX) in human urine. A urine specimen followed by the addition of pH 5.0 acetate buffer was purified by solid-phase extraction on a Sep-Pak silica cartridge. The analyte was chromatographed on a reversed-phase Inertsil ODS-2 column using phosphate buffer-acetonitrile at pH 5.3 as the mobile phase, and the effluent from the column was monitored at 303 nm. A good linear relationship between peak height and concentration was found for both of MTX and 7-OH-MTX in the range 5 to 1000 ng/ml of human urine. The inter-day coefficients of variation for the assay (n=5) were 8.8% (5 ng/ml), 3.4% (50 ng/ml) and 2.0% (500 ng/ml) for MTX, and 7.2, 2.7 and 2.3% for 7-OH-MTX in urine, respectively. The present method should prove useful for the evaluation of urinary drug excretion in patients undergoing MTX low-dose therapy.  相似文献   

15.
A simple, specific, and sensitive high-performance liquid chromatographic (HPLC) method for the determination of riboflavin directly in urine samples using a fixed-wave-length spectrofluorometer is described. Centrifuged raw urine samples (50 μl) are injected onto a reversed-phase microparticulate C18 column. The eluent is 0.01 M KH2PO4 (pH 5.0)—methanol (65:35). This method is capable of differentiating riboflavin from riboflavin-5-phosphate, non-riboflavin fluorescing components in urine, and photo-degraded riboflavin. The method shows good reproducibility and is linear to at least 12 μg/ml. The sensitivity of this procedure, at the 95% confidence limit, determined by linear regression analysis, is estimated to be 0.05 μg/ml using peak height and 0.07 μg/ml using peak area. This HPLC method is compared to an automated fluorometric method for riboflavin. The coefficient of linear regression of this comparison is Y = 0.858 + 0.893X, where X is the HPLC method and Y is the fluorometric method.  相似文献   

16.
Human metabolism of the insecticide propoxur yields 2-isopropoxyphenol (IPP) which is excreted conjugated in urine. In this publication a sensitive and selective analytical method is described which permits the determination of IPP as a suitable parameter for biomonitoring. The clean-up of the hydrolysed urine samples consisted of steam distillation and solid-phase extraction using a reversed-phase column. IPP and the internal standard 2-ethoxyphenol were converted to their pentafluorobenzyl ethers. Excess of the derivatisation reagent was removed using deactivated silica gel. Separation and quantitative analysis was carried out by capillary gas chromatography and mass selective detection. Coefficients of variation were below 5% for concentrations from 6 to 300 μg/l. The detection limit was 0.5 μg/l. The method was checked by analysing six urine samples from pest controllers after indoor application of propoxur. The IPP concentrations ranged from 45 to 306 μg/g creatinine. IPP was not detected in urine specimens from 10 non-exposed persons. The sensitivity of the developed method permits the detection of latent exposure to propoxur.  相似文献   

17.
A chromatographic method was developed for the T-514 determination in Karwinskia leaves, stems and roots. A C18 analytical column and a mobile phase consisting of methanol and McIlvaine buffer (pH 3) were used. T-514 was detected using a diode array detector and the chromatograms were recorded at 269 and 410 nm. A linear dependence of a peak area on the T-514 concentration (r=0.9991) was obtained in the range of 0.126–12.6 μg/ml. Limits of T-514 quantification (signal-to-noise ratio 10) in plant samples were 126 ng/ml at 410 nm and 28 ng/ml at 269 nm. T-514 was extracted from the plant material with ethyl acetate. Optimal extraction conditions were studied: number of extraction steps, volume of extracting agent and extraction time. The extracts were cleaned up using solid-phase extraction (SPE). SPE recoveries of 99.9% and 98.4% were achieved for the T-514 concentrations of 1.4 μg/ml and 0.26 μg/ml, respectively.  相似文献   

18.
A column-switching high-performance liquid chromatographic method has been developed for the simple and sensitive analysis of BO-2727 (I) in human plasma and urine. Plasma samples were diluted with an equal volume of a stabilizer, and the mixture was directly injected onto the HPLC system. The analyte was enriched in a pre-treatment column, while endogenous components were eluted to waste. The analyte was then backflushed onto an analytical column and quantified with ultraviolet detection. Urinary concentrations were determined in a similar way except that the enriched analyte was eluted in the foreflush mode to a cation-exchange column used for chromatographic separation. The standard curves for the drug were linear in the range of 0.05–50 μg/ml in plasma and 0.5–100 μg/ml in urine. The limits of quantification for plasma and urine were found to be 0.05 μg/ml and 0.5 μg/ml, respectively. This method was used to support Phase I clinical pharmacokinetic studies.  相似文献   

19.
A sensitive and specific HPLC method has been developed for the assay of vigabatrin in human plasma and urine. The assay involves derivatization with 4-chloro-7-nitrobenzofurazan, solid-phase extraction on a silica column and isocratic reversed-phase chromatography with fluorescence detection. Aspartam was used as an internal standard. The assay was linear over the concentration range of 0.2–20.0 μg/ml for plasma and 1.0–15.0 μg/ml for urine with a lower limit of detection of 0.1 μg/ml using 0.1 ml of starting volume of the sample. Both the within-day and day-to-day reproducibilities and accuracies were less than 5.46% and 1.6%, respectively. After a single oral dose of 500 mg of vigabatrin, the plasma concentration and the cumulative urinary excretion of the drug were determined.  相似文献   

20.
A rapid and sensitive liquid chromatography–electrospray ionisation mass spectrometry (HPLC–ESI-MS) assay has been developed for the measurement of moclobemide and metabolites, Ro12-5637 and Ro12-8095, in human plasma. Sample preparation (0.5 ml plasma) involves solid-phase extraction using C18 cartridges. A Nova-Pak phenyl column (Waters, 4 μm, 150×2 mm I.D.) was employed for analyte separation with a mixture of 0.2 M ammonium formate buffer, pH 3.57 and acetonitrile as the mobile phase. The within- and between-day precisions of the assay were <18% and the limit of quantification for all analytes was 0.01 μg/ml. The total run-time was 6 min. The method described was used to measure moclobemide, Ro12-5637 and Ro12-8095 in human plasma following an oral 300 mg dose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号