首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insights into the geography of life have played a fundamental role in motivating major developments in evolutionary biology. The focus here is on outlining some of these major developments, specifically in the context of paleontology, by emphasizing the significance of geographic isolation and allopatric speciation, punctuated equilibria, and the Turnover Pulse Hypothesis to evolutionary theory. One of the major debates in evolution concerns the relative contributions of abiotic and biotic factors to macroevolution, and each one of these developments increasingly suggested that it was climatic and geologic factors, rather than competition, that played the primary role in motivating macroevolution. New technical developments, including in the area of Geographic Information Systems, allow continued detailed testing of the relative roles that biotic as opposed to abiotic factors play in causing evolution, and some of the work in this area will also be described.  相似文献   

2.
Hominin evolution in the African Pliocene and Pleistocene was accompanied and mediated by changes in the abiotic and biotic spheres. It has been hypothesized that such environmental changes were catalysts of hominin morphological evolution and speciations. Whereas there is little doubt that ecological changes were relevant to shaping the trajectories of mammalian evolution, testing specific hypotheses with data from the fossil record has yielded ambiguous results regarding environmental disruption as a primary catalyst. Proposed mechanisms for abiotic and biotic causes of evolution are not always consistent with the timing and trends exhibited by the African fossil record of hominins and other mammals. Analyses of fossil and genetic data suggest that much of hominin evolution, and by extension mammalian evolution, was autocatalytic, driven by feedback loops within a species or lineage, irrespective of changes in the external environment.  相似文献   

3.
The goal of this research was to illuminate the relationship between students’ acceptance and understanding of macroevolution. Our research questions were: (1) Is there a relationship between knowledge of macroevolution and acceptance of the theory of evolution?; (2) Is there a relationship between the amount of college level biology course work and acceptance of evolutionary theory and knowledge of macroevolution?; and (3) Can college student acceptance of the theory of evolution and knowledge of macroevolution change over the course of a semester? The research participants included 667 students from a first-semester biology course and 74 students from the evolutionary biology course. Data were collected using both the MATE (a measure of the acceptance of evolutionary theory) and the MUM (a measure of understanding of macroevolution). Pre-instruction data were obtained for the introductory biology course, and pre- and post-data were obtained for the evolutionary biology course. Analysis revealed acceptance of evolution (as measured by the MATE) was correlated to understanding of macroevolution, and the number of biology courses was significantly correlated to acceptance and knowledge of macroevolution. Finally, there was a statistically significant change in students’ understanding of macroevolution and acceptance of evolution after the one-semester evolutionary biology course. Significance of these findings is discussed.  相似文献   

4.
Hierarchy theory recognises that ecological and evolutionary units occur in a nested and interconnected hierarchical system, with cascading effects occurring between hierarchical levels. Different biological disciplines have routinely come into conflict over the primacy of different forcing mechanisms behind evolutionary and ecological change. These disconnects arise partly from differences in perspective (with some researchers favouring ecological forcing mechanisms while others favour developmental/historical mechanisms), as well as differences in the temporal framework in which workers operate. In particular, long‐term palaeontological data often show that large‐scale (macro) patterns of evolution are predominantly dictated by shifts in the abiotic environment, while short‐term (micro) modern biological studies stress the importance of biotic interactions. We propose that thinking about ecological and evolutionary interactions in a hierarchical framework is a fruitful way to resolve these conflicts. Hierarchy theory suggests that changes occurring at lower hierarchical levels can have unexpected, complex effects at higher scales due to emergent interactions between simple systems. In this way, patterns occurring on short‐ and long‐term time scales are equally valid, as changes that are driven from lower levels will manifest in different forms at higher levels. We propose that the dual hierarchy framework fits well with our current understanding of evolutionary and ecological theory. Furthermore, we describe how this framework can be used to understand major extinction events better. Multi‐generational attritional loss of reproductive fitness (MALF) has recently been proposed as the primary mechanism behind extinction events, whereby extinction is explainable solely through processes that result in extirpation of populations through a shutdown of reproduction. While not necessarily explicit, the push to explain extinction through solely population‐level dynamics could be used to suggest that environmentally mediated patterns of extinction or slowed speciation across geological time are largely artefacts of poor preservation or a coarse temporal scale. We demonstrate how MALF fits into a hierarchical framework, showing that MALF can be a primary forcing mechanism at lower scales that still results in differential survivorship patterns at the species and clade level which vary depending upon the initial environmental forcing mechanism. Thus, even if MALF is the primary mechanism of extinction across all mass extinction events, the primary environmental cause of these events will still affect the system and result in differential responses. Therefore, patterns at both temporal scales are relevant.  相似文献   

5.
Biotic interactions are known to affect the composition of species assemblages via several mechanisms, such as competition and facilitation. However, most spatial models of species richness do not explicitly consider inter‐specific interactions. Here, we test whether incorporating biotic interactions into high‐resolution models alters predictions of species richness as hypothesised. We included key biotic variables (cover of three dominant arctic‐alpine plant species) into two methodologically divergent species richness modelling frameworks – stacked species distribution models (SSDM) and macroecological models (MEM) – for three ecologically and evolutionary distinct taxonomic groups (vascular plants, bryophytes and lichens). Predictions from models including biotic interactions were compared to the predictions of models based on climatic and abiotic data only. Including plant–plant interactions consistently and significantly lowered bias in species richness predictions and increased predictive power for independent evaluation data when compared to the conventional climatic and abiotic data based models. Improvements in predictions were constant irrespective of the modelling framework or taxonomic group used. The global biodiversity crisis necessitates accurate predictions of how changes in biotic and abiotic conditions will potentially affect species richness patterns. Here, we demonstrate that models of the spatial distribution of species richness can be improved by incorporating biotic interactions, and thus that these key predictor factors must be accounted for in biodiversity forecasts.  相似文献   

6.
Macroevolution is more than repeated rounds of microevolution   总被引:1,自引:0,他引:1  
SUMMARY Arguments over macroevolution versus microevolution have waxed and waned through most of the twentieth century. Initially, paleontologists and other evolutionary biologists advanced a variety of non-Darwinian evolutionary processes as explanations for patterns found in the fossil record, emphasizing macroevolution as a source of morphologic novelty. Later, paleontologists, from Simpson to Gould, Stanley, and others, accepted the primacy of natural selection but argued that rapid speciation produced a discontinuity between micro- and macroevolution. This second phase emphasizes the sorting of innovations between species. Other discontinuities appear in the persistence of trends (differential success of species within clades), including species sorting, in the differential success between clades and in the origination and establishment of evolutionary novelties. These discontinuities impose a hierarchical structure to evolution and discredit any smooth extrapolation from allelic substitution to large-scale evolutionary patterns. Recent developments in comparative developmental biology suggest a need to reconsider the possibility that some macroevolutionary discontinuites may be associated with the origination of evolutionary innovation. The attractiveness of macroevolution reflects the exhaustive documentation of large-scale patterns which reveal a richness to evolution unexplained by microevolution. If the goal of evolutionary biology is to understand the history of life, rather than simply document experimental analysis of evolution, studies from paleontology, phylogenetics, developmental biology, and other fields demand the deeper view provided by macroevolution.  相似文献   

7.
Ecophylogenetics can be viewed as an emerging fusion of ecology, biogeography and macroevolution. This new and fast-growing field is promoting the incorporation of evolution and historical contingencies into the ecological research agenda through the widespread use of phylogenetic data. Including phylogeny into ecological thinking represents an opportunity for biologists from different fields to collaborate and has provided promising avenues of research in both theoretical and empirical ecology, towards a better understanding of the assembly of communities, the functioning of ecosystems and their responses to environmental changes. The time is ripe to assess critically the extent to which the integration of phylogeny into these different fields of ecology has delivered on its promise. Here we review how phylogenetic information has been used to identify better the key components of species interactions with their biotic and abiotic environments, to determine the relationships between diversity and ecosystem functioning and ultimately to establish good management practices to protect overall biodiversity in the face of global change. We evaluate the relevance of information provided by phylogenies to ecologists, highlighting current potential weaknesses and needs for future developments. We suggest that despite the strong progress that has been made, a consistent unified framework is still missing to link local ecological dynamics to macroevolution. This is a necessary step in order to interpret observed phylogenetic patterns in a wider ecological context. Beyond the fundamental question of how evolutionary history contributes to shape communities, ecophylogenetics will help ecology to become a better integrative and predictive science.  相似文献   

8.
Studying the macroevolution of the songs of Passeriformes (perching birds) has proved challenging. The complexity of the task stems not just from the macroevolutionary and macroecological challenge of modeling so many species, but also from the difficulty in collecting and quantifying birdsong itself. Using machine learning techniques, we extracted songs from a large citizen science dataset, and then analyzed the evolution, and biotic and abiotic predictors of variation in birdsong across 578 passerine species. Contrary to expectations, we found few links between life‐history traits (monogamy and sexual dimorphism) and the evolution of song pitch (peak frequency) or song complexity (standard deviation of frequency). However, we found significant support for morphological constraints on birdsong, as reflected in a negative correlation between bird size and song pitch. We also found that broad‐scale biogeographical and climate factors such as net primary productivity, temperature, and regional species richness were significantly associated with both the evolution and present‐day distribution of bird song features. Our analysis integrates comparative and spatial modeling with newly developed data cleaning and curation tools, and suggests that evolutionary history, morphology, and present‐day ecological processes shape the distribution of song diversity in these charismatic and important birds.  相似文献   

9.
The changes in species' geographical distribution demanded by climate change are often critically limited by the availability of key interacting species. In such cases, species' persistence will depend on the rapid evolution of biotic interactions. Understanding evolutionary limits to such adaptation is therefore crucial for predicting biological responses to environmental change. The recent poleward range expansion of the UK brown argus butterfly has been associated with a shift in female preference from its main host plant, rockrose (Cistaceae), onto Geraniaceae host plants throughout its new distribution. Using reciprocal transplants onto natural host plants across the UK range, we demonstrate reduced fitness of females from recently colonised Geraniaceae‐dominated habitat when moved to ancestral rockrose habitats. By contrast, individuals from ancestral rockrose habitats show no reduction in fitness on Geraniaceae. Climate‐driven range expansion in this species is therefore associated with the rapid evolution of biotic interactions and a significant loss of adaptive variation.  相似文献   

10.
Quantitative phylogenetic methods have been used to study the evolutionary relationships and divergence times of biological species, and recently, these have also been applied to linguistic data to elucidate the evolutionary history of language families. In biology, the factors driving macroevolutionary processes are assumed to be either mainly biotic (the Red Queen model) or mainly abiotic (the Court Jester model) or a combination of both. The applicability of these models is assumed to depend on the temporal and spatial scale observed as biotic factors act on species divergence faster and in smaller spatial scale than the abiotic factors. Here, we used the Uralic language family to investigate whether both ‘biotic’ interactions (i.e. cultural interactions) and abiotic changes (i.e. climatic fluctuations) are also connected to language diversification. We estimated the times of divergence using Bayesian phylogenetics with a relaxed‐clock method and related our results to climatic, historical and archaeological information. Our timing results paralleled the previous linguistic studies but suggested a later divergence of Finno‐Ugric, Finnic and Saami languages. Some of the divergences co‐occurred with climatic fluctuation and some with cultural interaction and migrations of populations. Thus, we suggest that both ‘biotic’ and abiotic factors contribute either directly or indirectly to the diversification of languages and that both models can be applied when studying language evolution.  相似文献   

11.
Species’ life history traits, including maturation age, number of reproductive bouts, offspring size and number, reflect adaptations to diverse biotic and abiotic selection pressures. A striking example of divergent life histories is the evolution of either iteroparity (breeding multiple times) or semelparity (breed once and die). We analysed published data on salmonid fishes and found that semelparous species produce larger eggs, that egg size and number increase with salmonid body size among populations and species and that migratory behaviour and parity interact. We developed three hypotheses that might explain the patterns in our data and evaluated them in a stage‐structured modelling framework accounting for different growth and survival scenarios. Our models predict the observation of small eggs in iteroparous species when egg size is costly to maternal survival or egg number is constrained. By exploring trait co‐variation in salmonids, we generate new hypotheses for the evolution of trade‐offs among life history traits.  相似文献   

12.
Hendry  A.P.  Kinnison  M.T. 《Genetica》2001,(1):1-8
This special issue of Genetica brings together a diverse collection of contributions that examine evolution within and among populations (i.e., microevolution), and the role that microevolution plays in the formation of new species and morphological forms (i.e., macroevolution). Many of the papers present evidence of microevolution occuring over contemporary time frames, further validating the near ubiquity of ongoing evolution in the world around us. Several synthetic reviews of empirical work help to define the conditions under which microevolution is or is not likely to occur. Some of the studies speak directly to current controversies in evolutionary biology, such as the relative roles of determinism and contigency, and the nature of the relationship between microevolution and macroevolution. In general, microevolution seems driven largely by deterministic mechanisms, particularly natural selection, but contingency plays a role in (1) determining whether or not suitable conditions are present for evolution to proceed, and (2) guiding the precise manner by which evolution proceeds. Several theoretical treatments and empirical reviews confirm previous research in showing that microevolutionary processes are at least capable of generating macroevolutionary trends. Macroevolution may indeed reflect microevolution writ large but the pattern by which it arises is perhaps best charcaterized as microevolution writ in fits and starts.  相似文献   

13.
A hierarchical view of niche relations reconciles the scale‐dependent effects of abiotic and biotic processes on species distribution patterns and underlies most current approaches to distribution modeling. A key prediction of this framework is that the effects of biotic interactions will be averaged out at macroscales – an idea termed the Eltonian noise hypothesis (ENH). We test this prediction by quantifying regional variation in local abiotic and biotic niche relations and assess the role of macroclimate in structuring biotic interactions, using a non‐native invasive grass, Microstegium vimineum, in its introduced range. Consistent with hierarchical niche relations and the ENH, macroclimate structures local biotic interactions, while local abiotic relations are regionally conserved. Biotic interactions suppress M. vimineum in drier climates but have little effect in wetter climates. A similar approach could be used to identify the macroclimatic conditions under which biotic interactions affect the accuracy of local predictions of species distributions.  相似文献   

14.
Understanding the ecological consequences of evolutionary change is a central challenge in contemporary biology. We propose a framework based on the ~25 elements represented in biology, which can serve as a conduit for a general exploration of poorly understood evolution‐to‐ecology links. In this framework, known as ecological stoichiometry, the quantity of elements in the inorganic realm is a fundamental environment, while the flow of elements from the abiotic to the biotic realm is due to the action of genomes, with the unused elements excreted back into the inorganic realm affecting ecological processes at higher levels of organization. Ecological stoichiometry purposefully assumes distinct elemental composition of species, enabling powerful predictions about the ecological functions of species. However, this assumption results in a simplified view of the evolutionary mechanisms underlying diversification in the elemental composition of species. Recent research indicates substantial intraspecific variation in elemental composition and associated ecological functions such as nutrient excretion. We posit that attention to intraspecific variation in elemental composition will facilitate a synthesis of stoichiometric information in light of population genetics theory for a rigorous exploration of the ecological consequences of evolutionary change.  相似文献   

15.
Understanding the origins of biodiversity has been an aspiration since the days of early naturalists. The immense complexity of ecological, evolutionary, and spatial processes, however, has made this goal elusive to this day. Computer models serve progress in many scientific fields, but in the fields of macroecology and macroevolution, eco-evolutionary models are comparatively less developed. We present a general, spatially explicit, eco-evolutionary engine with a modular implementation that enables the modeling of multiple macroecological and macroevolutionary processes and feedbacks across representative spatiotemporally dynamic landscapes. Modeled processes can include species’ abiotic tolerances, biotic interactions, dispersal, speciation, and evolution of ecological traits. Commonly observed biodiversity patterns, such as α, β, and γ diversity, species ranges, ecological traits, and phylogenies, emerge as simulations proceed. As an illustration, we examine alternative hypotheses expected to have shaped the latitudinal diversity gradient (LDG) during the Earth’s Cenozoic era. Our exploratory simulations simultaneously produce multiple realistic biodiversity patterns, such as the LDG, current species richness, and range size frequencies, as well as phylogenetic metrics. The model engine is open source and available as an R package, enabling future exploration of various landscapes and biological processes, while outputs can be linked with a variety of empirical biodiversity patterns. This work represents a key toward a numeric, interdisciplinary, and mechanistic understanding of the physical and biological processes that shape Earth’s biodiversity.

This study describes a novel mechanistic engine that predicts a realistic global latitudinal diversity gradient, species richness distribution and phylogenies. This approach is a step towards the interdisciplinary numeric understanding of the physical and biological processes that have shaped Earth’s biodiversity.  相似文献   

16.
The 55-million-year fossil record of horses (Family Equidae) has been frequently cited as a prime example of long-term macroevolution. In the second half of the nineteenth century, natural history museum exhibits characteristically depicted fossil horses to be a single, straight-line (orthogenetic) progression from ancestor to descendent. By the beginning of the twentieth century, however, paleontologists realized that, rather than representing orthogenesis, the evolutionary pattern of fossil horses was more correctly characterized by a complexly branching phylogenetic tree. We conducted a systematic survey of 20 fossil horse exhibits from natural history museums in the United States. Our resulting data indicate that more than half (55%) of natural history museums today still depict horse evolution as orthogenetic, despite the fact that paleontologists have known for a century that the actual evolutionary pattern of the Family Equidae is branching. Depicting outmoded evolutionary patterns and concepts via museum exhibits, such as fossils horses exemplifying orthogenesis, not only communicates outmoded knowledge but also likely contributes to general misconceptions about evolution for natural history museum visitors.  相似文献   

17.
Extending social evolution theory to the molecular level opens the door to an unparalleled abundance of data and statistical tools for testing alternative hypotheses about the long-term evolutionary dynamics of cooperation and conflict. To this end, we take a collection of known sociality genes (bacterial quorum sensing [QS] genes), model their evolution in terms of patterns that are detectable using gene sequence data, and then test model predictions using available genetic data sets. Specifically, we test two alternative hypotheses of social conflict: (1) the "adaptive" hypothesis that cheaters are maintained in natural populations by frequency-dependent balancing selection as an evolutionarily stable strategy and (2) the "evolutionary null" hypothesis that cheaters are opposed by purifying kin selection yet exist transiently because of their recurrent introduction into populations by mutation (i.e., kin selection-mutation balance). We find that QS genes have elevated within- and among-species sequence variation, nonsignificant signatures of natural selection, and putatively small effect sizes of mutant alleles, all patterns predicted by our evolutionary null model but not by the stable cheater hypothesis. These empirical findings support our theoretical prediction that QS genes experience relaxed selection due to nonclonality of social groups, conditional expression, and the individual-level advantage enjoyed by cheaters. Furthermore, cheaters are evolutionarily transient, persisting in populations because of their recurrent introduction by mutation and not because they enjoy a frequency-dependent fitness advantage.  相似文献   

18.
Both natural and sexual selection are thought to affect the evolution of bird color. Most studies of the topic have focused on sexually dichromatic taxa and showy plumages, which are expected to be more influenced by social selection and usually result in increased conspicuousness. However, many bird clades display dull brown or gray plumages that vary greatly in brightness (lightness), but little in hue (shade). Here, we examine the macroevolution of brightness in one such clade, the Furnariida. We make comparisons across light environments, body parts, monochromatic lineages, and each sex of dichromatic lineages. We found that support for models including light environments is greater for the dorsum than for the venter, and that brightness evolution is more constrained in the former than in the latter. Plumages in this clade have evolved to be darker in darker habitats, consistent with natural selection for increased crypsis. Finally, the features of brightness macroevolution are broadly similar across the sexes of the dichromatic clade, challenging the view that sexual dichromatism is driven by different evolutionary processes acting in each sex. We conclude that, in the Furnariida, light environments and dorsal–ventral variation are more important than sex as axes of color evolution.  相似文献   

19.
Understanding how and why rates of evolutionary diversification vary is a key issue in evolutionary biology, ecology, and biogeography. Evolutionary rates are the net result of interacting processes summarized under concepts such as adaptive radiation and evolutionary stasis. Here, we review the central concepts in the evolutionary diversification literature and synthesize these into a simple, general framework for studying rates of diversification and quantifying their underlying dynamics, which can be applied across clades and regions, and across spatial and temporal scales. Our framework describes the diversification rate (d) as a function of the abiotic environment (a), the biotic environment (b), and clade‐specific phenotypes or traits (c); thus, d ~ a,b,c. We refer to the four components (ad) and their interactions collectively as the “Evolutionary Arena.” We outline analytical approaches to this framework and present a case study on conifers, for which we parameterize the general model. We also discuss three conceptual examples: the Lupinus radiation in the Andes in the context of emerging ecological opportunity and fluctuating connectivity due to climatic oscillations; oceanic island radiations in the context of island formation and erosion; and biotically driven radiations of the Mediterranean orchid genus Ophrys. The results of the conifer case study are consistent with the long‐standing scenario that low competition and high rates of niche evolution promote diversification. The conceptual examples illustrate how using the synthetic Evolutionary Arena framework helps to identify and structure future directions for research on evolutionary radiations. In this way, the Evolutionary Arena framework promotes a more general understanding of variation in evolutionary rates by making quantitative results comparable between case studies, thereby allowing new syntheses of evolutionary and ecological processes to emerge.  相似文献   

20.
Body size affects nearly all aspects of organismal biology, so it is important to understand the constraints and dynamics of body size evolution. Despite empirical work on the macroevolution and macroecology of minimum and maximum size, there is little general quantitative theory on rates and limits of body size evolution. We present a general theory that integrates individual productivity, the lifestyle component of the slow–fast life-history continuum, and the allometric scaling of generation time to predict a clade''s evolutionary rate and asymptotic maximum body size, and the shape of macroevolutionary trajectories during diversifying phases of size evolution. We evaluate this theory using data on the evolution of clade maximum body sizes in mammals during the Cenozoic. As predicted, clade evolutionary rates and asymptotic maximum sizes are larger in more productive clades (e.g. baleen whales), which represent the fast end of the slow–fast lifestyle continuum, and smaller in less productive clades (e.g. primates). The allometric scaling exponent for generation time fundamentally alters the shape of evolutionary trajectories, so allometric effects should be accounted for in models of phenotypic evolution and interpretations of macroevolutionary body size patterns. This work highlights the intimate interplay between the macroecological and macroevolutionary dynamics underlying the generation and maintenance of morphological diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号