首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Phosphoenolpyruvate carboxylase (PEPC) and citrate synthase (CS) are two key enzymes in organic acid synthesis metabolism. In the present study, a cytoplasmic form of CS from tobacco and a mutant (with reduced sensitivity to organic acid inhibition) PEPC from Synechococcus vulcanus were overexpressed simultaneously using a light-inducible promoter in tobacco leaves. The analysis for enzyme activity showed that CS and PEPC enzyme activities were increased by 235% to 257% and 218% to 236% in the selected cs and pepc (double-gene) overexpression lines, respectively, compared with those in the wild-type plants (WT). The measurement for the relative root elongation rate of the tobacco plants exposed to 30???M aluminum (Al) indicated that Al tolerance in the double-gene overexpression lines was stronger than that of the transgenic cs or pepc lines and WT plants. The 13C-NMR analysis with NaH13CO3 showed that overexpression of CS and PEPC in the transgenic tobacco successfully constructed a new citrate synthesis pathway. Under the conditions with Al stress, the amount of citrate secreted from the double-transgenic tobacco roots was the largest among the tested plants. When grown on sandy soil supplied with a nutritional solution containing 500???M Al, the growth of the double-transgenic tobacco was better than that of the transgenic cs or pepc tobacco and WT, and their root biomass was the highest among the tested plants. These results demonstrated that construction of a new citrate synthesis pathway by simultaneous overexpression of CS and PEPC in the cytoplasm of transgenic plant leaves could enhance Al resistance in plants.  相似文献   

2.
Parvathi  K.  Gayathri  J.  Maralihalli  G.B.  Bhagwat  A.S.  Raghavendra  A.S. 《Photosynthetica》2000,38(1):23-28
PEP carboxylase (PEPC) in leaves of C4 plants is activated by phosphorylation of enzyme by a PEPC-protein kinase (PEPC-PK). We reevaluated the pattern of PEPC phosphorylation in leaf extracts of Amaranthus hypochondriacus. It was dependent on Ca2+, the optimum concentration of which for stimulation was 10 mM. The extent of stimulation was inhibited by 1,2-bis(2-aminophenoxy)ethane-N,N,N,N-tetraacetic acid (BAPTA), a Ca2+ chelator. The inhibition by BAPTA was relieved by the addition of Ca2+ but not by the addition of Mg2+. The stimulation by Ca2+ of PEPC phosphorylation was marginally enhanced by calmodulin (CaM), but not by diacylglycerol (DAG). Phosphorylation was strongly restricted by Ca2+ or Ca2+-CaM-dependent protein kinase inhibitors. Thus phosphorylation of PEPC is Ca2+-dependent in leaves of A. hypochondriacus and a calcium-dependent protein kinase (CDPK) may modulate PEPC-PK and subsequently the phosphorylation status of PEPC.  相似文献   

3.
Polycystin-2 (PC2, TRPP2) is a Ca2+-permeable, nonselective cation channel implicated in Ca2+ transport and epithelial cell signaling. Although PC2 may contribute to Ca2+ transport in human term placenta, the regulatory mechanisms associated with Ca2+ handling in this tissue are largely unknown. In this work we assessed the regulation by Ca2+ of PC2 channel function from a preparation of apical membranes of human syncytiotrophoblast (PC2hst) reconstituted in a lipid bilayer system. Addition of either EGTA or BAPTA to the cis hemi-chamber, representing the cytoplasmic domain of the channel, and lowering Ca2+ to ∼0.6–0.8 nM, inhibited spontaneous PC2hst channel activity, with a time response dependent on the chelator tested. EGTA reduced PC2hst channel currents by 86%, with a t1/2 = 3.6 min, whereas BAPTA rapidly and completely (100%) eliminated channel activity with a t1/2 = 0.8 min. Subsequent titration with Ca2+ reversed the inhibition, which followed a Hill-type function with apparent dissociation constants of 1–5 nM, and 4 Ca2+ binding sites. The degree of inhibition by the cis Ca2+ chelator largely depended on increasing trans Ca2+. This was consistent with measurable Ca2+ transport through the channel, feeding the regulatory sites in the cytoplasmic domain. Interestingly, the reconstituted in vitro translated PC2 (PC2iv) was completely insensitive to Ca2+ regulation, suggesting that the regulatory sites are not intrinsic to the channel protein. Our findings demonstrate the presence of a Ca2+ microdomain largely accessible through the channel that controls PC2 function in human syncytiotrophoblast of term placenta.  相似文献   

4.
Calcium ion (Ca2+) is essential secondary messenger in plant signaling networks. In this study, the effect of Ca2+ on oxidative damage caused by a high irradiance (HI) was investigated in the leaves of two cultivars of tall fescue (Arid3 and Houndog5). Pretreatment of the tall fescue leaves with a CaCl2 solution significantly increased Ca2+ content and intrinsic HI tolerance due to a decreased ion leakage and content of malondialdehyde, hydrogen peroxide, and superoxide radicals. Moreover, the activities of superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase increased in both the cultivars in the presence of Ca2+ under the HI stress. In contrast, treatments with a Ca2+ chelator ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA) or a plasma membrane Ca2+ channel blocker LaCl3 reversed these effects. On the other hand, a pronounced increase in nitric oxide synthase-like activity and NO release by exogenous Ca2+ treatment was observed in the tolerant Arid3 plants after exposure to the HI, whereas only a small increase was observed in more sensitive Houndog5. Moreover, the inhibition of NO production by 2-(4-carboxy-2-phenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide or Nω-nitro-L-arginine blocked the protective effect of exogenous Ca2+, whereas the inhibition of Ca2+ by EGTA or LaCl3 had no influence on the protective effect of NO. The results indicate that NO might be involved in the Ca2+-induced activities of antioxidant enzymes further protecting against HI-induced oxidative damage. This protective mechanism was found to be more efficient in Arid3 than in Houndog5.  相似文献   

5.
Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in the Plasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10Δpepc), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10Δpepc had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using 13C-U-D-glucose and 13C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10Δpepc and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of 13C,15N-U-glutamine was similar in both parasite lines, although the flux was lower in D10Δpepc; it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery.  相似文献   

6.
We tried to determine the mechanisms by which Ca2+ mediated NO-induced programmed cell death (PCD) in tobacco protoplasts. Treatment of tobacco protoplasts with the NO donor sodium nitroprusside (SNP) resulted in a rapid [Ca2+]cyt accumulation and decrease in mitochondrial membrane potential (ΔΨm) before the appearance of PCD. NO-induced PCD could be largely prevented not only by NO scavenger c-PTIO, but also by EGTA (Ca2+ chelator), LaCl3 (Ca2+-channel blocker) or CsA (a specific mitochondrial permeability transition pore inhibitor, which also inhibit Ca2+ cycling by mitochondria). All results suggested that NO-induced PCD is mediated through mitochondrial pathway and regulated by Ca2+.  相似文献   

7.
Specific cellular components have been identified to function in abscisic acid (ABA) regulation of stomatal apertures, including calcium, the cytoskeleton, and phosphatidic acid. In this study, the regulation and dynamic organization of microtubules during ABA-induced stomatal closure by phospholipase D (PLD) and its product PA were investigated. ABA induced microtubule depolymerization and stomatal closure in wide-type (WT) Arabidopsis, whereas these processes were impaired in PLD mutant (pldα1). The microtubule-disrupting drugs oryzalin or propyzamide induced microtubule depolymerization, but did not affect the stomatal aperture, whereas their co-treatment with ABA resulted in stomatal closure in both WT and pldα1. In contrast, the microtubule-stabilizing drug paclitaxel arrested ABA-induced microtubule depolymerization and inhibited ABA-induced stomatal closure in both WT and pldα1. In pldα1, ABA-induced cytoplasmic Ca2+ ([Ca2+]cyt) elevation was partially blocked, and exogenous Ca2+-induced microtubule depolymerization and stomatal closure were impaired. These results suggested that PLDα1 and PA regulate microtubular organization and Ca2+ increases during ABA-induced stomatal closing and that crosstalk among signaling lipid, Ca2+, and microtubules are essential for ABA signaling.  相似文献   

8.
Using pharmacological and biochemical approaches, the signalling pathways between calcium (Ca2+)–calmodulin (CaM), brassinolide (BL), and nitric oxide (NO) for fungal endophyte-induced volatile oil accumulation were investigated in Atractylodes lancea plantlets. Gilmaniella sp. AL12 inoculation elevated the concentrations of BL, CaM, and [Ca2+]cyt, expression of the calmodulin 1 (CaM1) gene, and the levels of volatile oils. Treatment with AL12 or exogenous BL led to significant increases in the levels of cytosolic Ca2+ and CaM and CaM1 expression in plantlets. However, the upregulation of BL was almost completely blocked by pretreatments with CaM antagonists and Ca2+ channel blockers. Pretreatment with a BL inhibitor, brassinazole (BRz), did not influence the increase in levels of CaM induced by the endophyte. CaCl2-induced increases in NO generation, CaM antagonists, and Ca2+ channel blockers were able to suppress NO production, and the NO-specific scavenger was not able to suppress the generation of [Ca2+]cyt in plantlets. Exogenous BL was not able to induce NO generation, and BRz had no effect on NO generation. Our results suggest that Ca2+–CaM induced by this endophyte mediates NO generation and BL concentration, and also functions downstream of BL signalling, resulting in the upregulation of volatile oil accumulation in A. lancea plantlets.  相似文献   

9.
10.
Abstract: The mechanism for hydrogen peroxide (H2O2)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled PC12 cells. In the presence of butanol, H2O2 caused a great accumulation of [3H]phosphatidylbutanol in a concentration- or time-dependent manner. However, treatment with H2O2 of cell lysates exerted no effect on PLD activity. Treatment with H2O2 had only a marginal effect on phospholipase C (PLC) activation. A protein kinase C (PKC) inhibitor, Ro 31-8220, did not inhibit but rather slightly enhanced H2O2-induced PLD activity. Thus, H2O2-induced PLD activation is considered to be independent of the PLC-PKC pathway in PC12 cells. In contrast, pretreatment with tyrosine kinase inhibitor herbimycin A, genistein, or ST638 resulted in a concentration-dependent inhibition of H2O2-induced PLD activation. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands after the H2O2 treatment and tyrosine phosphorylation of these proteins was inhibited by these tyrosine kinase inhibitors. Moreover, depletion of extracellular Ca2+ abolished H2O2-induced PLD activation and protein tyrosine phosphorylation. Extracellular Ca2+ potentiated H2O2-induced PLD activation in a concentration-dependent manner. Taken together, these results suggest that a certain Ca2+-dependent protein tyrosine kinase(s) somehow participates in H2O2-induced PLD activation in PC12 cells.  相似文献   

11.
Calcium (Ca2+) and nitric oxide (NO) are potentially active and multitasking signaling molecules which are known to regulate abiotic stresses in plants, but their interactive role in the acquisition of metal stress tolerance in cyanobacteria remains elusive. In current study the signaling role of Ca2+ (800 μM) and NO (10 μM SNP) on key physiological and biochemical attributes of the agriculturally and economically important cyanobacterium Nostoc muscorum ATCC 27893 subjected to Ni stress (2 μM) was examined. Results revealed that Ni at elevated level caused severe damages to the test organism but exogenous supplementation of Ca2+ and NO efficiently mitigated its toxic effects and up-regulated the growth, pigment contents, rate of photosynthesis (whole cell oxygen evolution and Chl a fluorescence indices: Kinetic traits: ΦP0, Ψ0, ΦE0 and PIABS, along with Fv/F0), nitrogen metabolism (NO3 ̄ and NO2 ̄ uptake, nitrate:NR and NiR; and ammonia:GS and GOGAT; assimilating enzymes), and boosted the enzymatic (SOD, POD, CAT and GST) along with non-enzymatic (proline, cysteine and NP-SH) antioxidants. Whereas the increased values of energy flux traits: (ABS/RC, TR0/RC, DI0/RC and ET0/RC) along with F0/Fv, rate of respiration, oxidative stress biomarkers (SOR, H2O2 and MDA), and activity of GDH enzyme exhibited lowering trends with application of Ca2+ and NO. Further, addition of EGTA (Ca2+ scavenger) and PTIO (NO scavenger) reversed the positive impacts of Ca2+ and NO and worsened the toxicity of Ni on test cyanobacterium, but the damages were more pronounced under PTIO application that demonstrated Ca2+ mediated signaling role of NO in Ni toxicity alleviation.  相似文献   

12.
Regulation of nitric oxide (NO) formation is critical to ensure maintenance of appropriate cellular concentrations of this labile, signaling molecule. This study investigated the role exogenous and endogenously produced NO have in feeding back to regulate NO synthesis in intact cells. Two NO donors inhibited activation of neuronal NO synthase (nNOS) in response to the muscarinic receptor agonist carbachol in Chinese hamster ovary (CHO) cells stably transfected with the M1 muscarinic receptor and nNOS. The presence of the NO scavenger [2-(4-Carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide · potassium salt] (C-PTIO) potentiated carbachol-induced activation of nNOS in transfected CHO cells. C-PTIO also potentiated nNOS activity in response to the Ca2+ ionophore ionomycin. In contrast, the NO scavenger oxyhemoglobin depressed carbachol- and ionomycin-induced NO formation. These discrepant results suggest that it is unlikely that endogenously produced NO induces feed back inhibition at the level of nNOS activation itself. Exogenous sources of NO inhibited carbachol-induced inositol phosphates formation. However, endogenously produced NO did not appear to feed back to regulate phosphoinositide hydrolysis as there was no difference in [3H]inositol phosphates formation between cells that do or do not express nNOS. There was also no change in carbachol-induced [3H]inositol phosphates formation in the presence or absence of a NOS inhibitor or the NO scavenger C-PTIO. A decrease in the carbachol-mediated transient Ca2+ peak was observed in cells that express nNOS as compared to cells lacking the enzyme, suggesting that endogenous NO might inhibit receptor mediated Ca2+ signaling. This conclusion, however, was not supported by the lack of ability of a NOS inhibitor to modulate carbachol-induced Ca2+ elevations. Taken together, these results highlight differences in the regulation of the nNOS activation cascade by endogenous vs. exogenous sources of NO.  相似文献   

13.
《Nitric oxide》2007,16(1):104-109
The potent vasodilator nitric oxide (NO), produced mainly by the endothelium, acts through a BKCa-dependent mechanism to increase the frequency of calcium sparks (Ca2+ sparks) in myocyte isolated from rat cerebral arteries. Our present aim has been to assess the role of endogenous and exogenous NO on the Ca2+ sparks through ryanodine-sensitive channels in the sarcoplasmic reticulum of an intact artery. Calcium sparks, detected with fluo-4 and laser scanning confocal microscopy, were examined in isolated pressurized rat posterior cerebral arteries with (intact) and without endothelium (denuded). Addition of the NO donor, DEA-NONOate (N-(2-aminoethyl)-N-(2-hydroxy-2-nitrosohydrazino)-1,2-ethylenediamine), did not change the amplitude and frequency of Ca2+ sparks in the intact artery. However, inhibition of nitric oxide synthase with N-ω-nitro-l-arginine or removal of endothelium reduced Ca2+ sparks frequency by about 50%. Under these conditions (i.e., absence of endogenous NO production), DEA-NONOate, increased Ca2+ spark frequency 3- to 4-fold. These results suggest that endothelial NO modulates local Ca2+ release events in the arterial smooth muscle and that this mechanism may contribute to the actions of nitrovasodilators.  相似文献   

14.
Globular adiponectin (gAd) induces the generation of reactive oxygen species (ROS) and nitric oxide (NO) in the murine macrophage cell line RAW 264. We investigated the role of Ca2+ in gAd-induced ROS and NO generation. Pretreatment with BAPTA-AM, a selective chelator of intracellular Ca2+ ([Ca2+]i), partially reduced gAd-induced generation of ROS and NO in gAd-treated RAW 264 cells. The lowest [Ca2+]i occurred 30 min after gAd treatment, after which [Ca2+]i increased continually and exceeded the initial level. The mitochondrial Ca2+ ([Ca2+]m) detected by Rhod-2 fluorescence started to increase at 6 h after gAd treatment. Pretreatment with a NAD(P)H oxidase inhibitor, diphenyleneiodonium, prevented the reduction of [Ca2+]i in the early phase after gAd treatment. Calcium depletion by BAPTA-AM had no effect on the gAd-induced [Ca2+]m oscillation. The administration of a specific calmodulin inhibitor, calmidazolium, significantly suppressed gAd-induced ROS and NO generation and NOS activity.  相似文献   

15.
Lateral roots (LRs) play important roles in increasing the absorptive capacity of roots as well as to anchor the plant in the soil. Therefore, understanding the regulation of LR development is of agronomic importance. In this study, we examined the effect of methyl jasmonate (MJ) on LR formation in rice. Treatment with MJ induced LR formation and heme oxygenase (HO) activity. As well, MJ could induce OsHO1 mRNA expression. Zinc protoporphyrin IX (the specific inhibitor of HO) and hemoglobin [the carbon monoxide/nitric oxide (NO) scavenger] reduced LR formation, HO activity and OsHO1 expression. LR formation and HO activity induced by MJ was reduced by the specific NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-oxide. The effects of Ca2+ chelators, Ca2+-channel inhibitors, and calmodulin (CaM) antagonists on LR formation induced by MJ were also examined. All these inhibitors were effective in reducing the action of MJ. However, Ca2+ chelators and Ca2+ channel inhibitors induced HO activity when combining with MJ further. It is concluded that Ca2+ may regulate MJ action mainly through CaM-dependent mechanism.  相似文献   

16.
The mechanisms by which Trpm2 channels enhance mitochondrial bioenergetics and protect against oxidative stress-induced cardiac injury remain unclear. Here, the role of proline-rich tyrosine kinase 2 (Pyk2) in Trpm2 signaling is explored. Activation of Trpm2 in adult myocytes with H2O2 resulted in 10- to 21-fold increases in Pyk2 phosphorylation in wild-type (WT) myocytes which was significantly lower (~40%) in Trpm2 knockout (KO) myocytes. Pyk2 phosphorylation was inhibited (~54%) by the Trpm2 blocker clotrimazole. Buffering Trpm2-mediated Ca2+ increase with 1,2-bis(2-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA) resulted in significantly reduced pPyk2 in WT but not in KO myocytes, indicating Ca2+ influx through activated Trpm2 channels phosphorylated Pyk2. Part of phosphorylated Pyk2 translocated from cytosol to mitochondria which has been previously shown to augment mitochondrial Ca2+ uptake and enhance adenosine triphosphate generation. Although Trpm2-mediated Ca2+ influx phosphorylated Ca2+-calmodulin kinase II (CaMKII), the CaMKII inhibitor KN93 did not significantly affect Pyk2 phosphorylation in H2O2-treated WT myocytes. After ischemia/reperfusion (I/R), Pyk2 phosphorylation and its downstream prosurvival signaling molecules (pERK1/2 and pAkt) were significantly lower in KO-I/R when compared with WT-I/R hearts. After hypoxia/reoxygenation, mitochondrial membrane potential was lower and superoxide level was higher in KO myocytes, and were restored to WT values by the mitochondria-targeted superoxide scavenger MitoTempo. Our results suggested that Ca2+ influx via tonically activated Trpm2 phosphorylated Pyk2, part of which translocated to mitochondria, resulting in better mitochondrial bioenergetics to maintain cardiac health. After I/R, Pyk2 activated prosurvival signaling molecules and prevented excessive increases in reactive oxygen species, thereby affording protection from I/R injury.  相似文献   

17.
Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca2+-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca2+]i increases were likely caused by Ca2+ influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca2+. In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca2+]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals.  相似文献   

18.
Abstract: The mechanism for carbachol (CCh)-induced phospholipase D (PLD) activation was investigated in [3H]palmitic acid-labeled pheochromocytoma PC12 cells with respect to the involvement of protein tyrosine phosphorylation and Ca2+. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol in the presence of 0.3% butanol. Pretreatment of cells with the tyrosine kinase inhibitors herbimycin A, genistein, and tyrphostin inhibited PLD activation by CCh. Western blot analysis revealed several apparent tyrosine-phosphorylated protein bands (111, 91, 84, 74, 65–70, 44, and 42 kDa) in PC12 cells treated with CCh. Phosphorylation of the 111-, 91-, 84-, and 65–70-kDa proteins peaked within 1 min, and their time-dependent changes seemingly correlated with that of PLD activation. Others (74, 44MAPK, and 42MAPK kDa) were phosphorylated rather slowly, and maximal tyrosine phosphorylation was observed at 2 min. Herbimycin A inhibited PLD activity and tyrosine phosphorylation of four proteins (111, 91, 84, and 65–70 kDa) in a preincubation time- and concentration-dependent fashion. In Ca2+-free buffer, CCh-induced [3H]phosphatidylbutanol formation and protein tyrosine phosphorylation were abolished. A Ca2+ ionophore, A23187, caused PLD activation and tyrosine phosphorylation of four proteins of 111, 91, 84, and 65–70 kDa only in the presence of extracellular Ca2+. Extracellular Ca2+ dependency for CCh-induced PLD activation was well correlated with that for tyrosine phosphorylation of the four proteins listed above, especially the 111-kDa protein. These results suggest that Ca2+-dependent protein tyrosine phosphorylation is closely implicated in CCh-induced PLD activation in PC12 cells.  相似文献   

19.
The thick ascending limb of the loop of Henle reabsorbs 30% of the NaCl filtered through the glomerulus. Nitric oxide (NO) produced by NO synthase 3 (NOS3) inhibits NaCl absorption by this segment. Resveratrol, a polyphenol, has beneficial cardiovascular and renal effects, many of which are mediated by NO. Resveratrol increases intracellular Ca2+ (Cai) and AMP kinase (AMPK) and NAD-dependent deacetylase sirtuin1 (SIRT1) activities, all of which could activate NO production. We hypothesized that resveratrol stimulates NO production by thick ascending limbs via a Ca2+/calmodulin-dependent mechanism. To test this, the effect of resveratrol on NO bioavailability was measured in thick ascending limb suspensions. Cai was measured in single perfused thick ascending limbs. SIRT1 activity and expression were measured in thick ascending limb lysates. Resveratrol (100 µM) increased NO bioavailability in thick ascending limb suspensions by 1.3±0.2 AFU/mg/min (p<0.03). The NOS inhibitor L-NAME blunted resveratrol-stimulated NO bioavailability by 96±11% (p<0.03). The superoxide scavenger tempol had no effect. Resveratrol elevated Cai from 48±7 to 135±24 nM (p<0.01) in single tubules. In Ca2+-free media, the resveratrol-induced increase in NO was blunted by 60±20% (p<0.05) and the rise in Cai reduced by 80%. Calmodulin inhibition prevented the resveratrol-induced increase in NO (p<0.002). AMPK inhibition had no effect. Resveratrol did not increase SIRT1 activity. We conclude that resveratrol increases NO production in thick ascending limbs via a Ca2+/calmodulin dependent mechanism, and SIRT1 and AMPK do not participate. Resveratrol-stimulated NO production in thick ascending limbs may account for part of its beneficial effects.  相似文献   

20.
Abstract: We have previously reported that hydrogen peroxide (H2O2) induced a considerable increase of phospholipase D (PLD) activity and phosphorylation of mitogen-activated protein (MAP) kinase in PC12 cells. H2O2-induced PLD activation and MAP kinase phosphorylation were dose-dependently inhibited by a specific MAP kinase kinase inhibitor, PD 098059. In contrast, carbachol-mediated PLD activation was not inhibited by the PD 098059 pretreatment whereas MAP kinase phosphorylation was prevented. These findings indicated that MAP kinase is implicated in the PLD activation induced by H2O2, but not by carbachol. In the present study, H2O2 also caused a marked release of oleic acid (OA) from membrane phospholipids in PC12 cells. As we have previously shown that OA stimulates PLD activity in PC12 cells, the mechanism of H2O2-induced fatty acid liberation and its relation to PLD activation were investigated. Pretreatment of the cells with methylarachidonyl fluorophosphonate (MAFP), a phospholipase A2 (PLA2) inhibitor, almost completely prevented the release of [3H]OA by H2O2 treatment. From the preferential release of OA and sensitivity to other PLA2 inhibitors, the involvement of a Ca2+-independent cytosolic PLA2-type enzyme was suggested. In contrast, to OA release, MAFP did not inhibit PLD activation by H2O2. The inhibitory profile of the OA release by PD 098059 did not show any correlation with that of MAP kinase. These results lead us to suggest that H2O2-induced PLD activation may be mediated by MAP kinase and also that H2O2-mediated OA release, which would be catalyzed by a Ca2+-independent cytosolic PLA2-like enzyme, is not linked to the PLD activation in PC12 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号