首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The adeno-associated virus type 2 (AAV-2) Rep78 and Rep68 proteins are required for replication of the virus as well as its site-specific integration into a unique site, called AAVS1, of human chromosome 19. Rep78 and Rep68 initiate replication by binding to a Rep binding site (RBS) contained in the AAV-2 inverted terminal repeats (ITRs) and then specifically nicking at a nearby site called the terminal resolution site (trs). Similarly, Rep78 and Rep68 are postulated to trigger the integration process by binding and nicking RBS and trs homologues present in AAVS1. However, Rep78 and Rep68 cleave in vitro AAVS1 duplex-linear substrates much less efficiently than hairpinned ITRs. In this study, we show that the AAV-2 Rep68 endonuclease activity is affected by the topology of the substrates in that it efficiently cleaves in vitro in a site- and strand-specific manner the AAVS1 trs only if this sequence is in a supercoiled (SC) conformation. DNA sequence mutagenesis in the context of SC templates allowed us to elucidate for the first time the AAVS1 trs sequence and position requirements for Rep68-mediated cleavage. Interestingly, Rep68 did not cleave SC templates containing RBS from other sites of the human genome. These findings have intriguing implications for AAV-2 site-specific integration in vivo.  相似文献   

2.
Adeno-associated virus type 2 (AAV2) preferentially integrates its genome into the AAVS1 locus on human chromosome 19. Preferential integration requires the AAV2 Rep68 or Rep78 protein (Rep68/78), a Rep68/78 binding site (RBS), and a nicking site within AAVS1 and may also require an RBS within the virus genome. To obtain further information that might help to elucidate the mechanism and preferred substrate configurations of preferential integration, we amplified junctions between AAV2 DNA and AAVS1 from AAV2-infected HeLaJW cells and cells with defective Artemis or xeroderma pigmentosum group A genes. We sequenced 61 distinct junctions. The integration junction sequences show the three classical types of nonhomologous-end-joining joints: microhomology at junctions (57%), insertion of sequences that are not normally contiguous with either the AAV2 or the AAVS1 sequences at the junction (31%), and direct joining (11%). These junctions were spread over 750 bases and were all downstream of the Rep68/78 nicking site within AAVS1. Two-thirds of the junctions map to 350 bases of AAVS1 that are rich in polypyrimidine tracts on the nicked strand. The majority of AAV2 breakpoints were within the inverted terminal repeat (ITR) sequences, which contain RBSs. We never detected a complete ITR at a junction. Residual ITRs at junctions never contained more than one RBS, suggesting that the hairpin form, rather than the linear ITR, is the more frequent integration substrate. Our data are consistent with a model in which a cellular protein other than Artemis cleaves AAV2 hairpins to produce free ends for integration.  相似文献   

3.
The adeno-associated virus (AAV) Rep78 and Rep68 proteins are required for site-specific integration of the AAV genome into the AAVS1 locus (19q13.3-qter) as well as for viral DNA replication. Rep78 and Rep68 bind to the GAGC motif on the inverted terminal repeat (ITR) and cut at the trs (terminal resolution site). A similar reaction is believed to occur in AAVS1 harboring an analogous GAGC motif and a trs homolog, followed by integration of the AAV genome. To elucidate the functional domains of Rep proteins at the amino acid level, we performed charged-to-alanine scanning mutagenesis of the N terminus (residues 1 to 240) of Rep78, where DNA binding and nicking domains are thought to exist. Mutants were analyzed for their abilities to bind the GAGC motif, nick at the trs homolog, and integrate an ITR-containing plasmid into AAVS1 by electrophoretic mobility shift assay, trs endonuclease assay, and PCR-based integration assay. We identified the residues responsible for DNA binding: R107A, K136A, and R138A mutations completely abolished the binding activity. The H90A or H92A mutant, carrying a mutation in a putative metal binding site, lost nicking activity while retaining binding activity. Mutations affecting DNA binding or trs nicking also impaired the site-specific integration, except for E66A and E239A. These results provide important information on the structure-function relationship of Rep proteins. We also describe an aberrant nicking of Rep78. We found that Rep78 cuts predominantly at the trs homolog not only between the T residues (GGT/TGG), but also between the G and T residues (GG/TTGG), which may be influenced by the sequence surrounding the GAGC motif.  相似文献   

4.
The strand-specific, site-specific endonuclease (nicking) activity of the Rep68 and Rep78 (Rep68/78) proteins of adeno-associated virus type 2 (AAV) is involved in AAV replication, and appears to be involved in AAV site-specific integration. Rep68/78 cuts within the inverted terminal repeats (ITRs) of the AAV genome and in the AAV preferred integration locus on human chromosome 19 (AAVS1). The known endonuclease cut sites are 11-16 bases away from the primary binding sites, known as Rep recognition sequences (RRSs). A linear, double-stranded segment of DNA, containing an RRS and a cut site, has previously been shown to function as a substrate for the Rep68/78 endonuclease activity. We show here that mutation of the Rep recognition sequence, within such a DNA segment derived from the AAV ITRs, eliminates the ability of this substrate to be cleaved detectably by Rep78. Rep78 nicks the RRS-containing site from AAVS1 about half as well as the linear ITR sequence. Eighteen other RRS-containing sequences found in the human genome, but outside AAVS1, are not cleaved by Rep78. These results may help to explain the specificity of AAV integration.  相似文献   

5.
We previously demonstrated that the adeno-associated virus (AAV) Rep68 and Rep78 proteins are able to nick the AAV origin of DNA replication at the terminal resolution site (trs) in an ATP-dependent manner. Using four types of modified or mutant substrates, we now have investigated the substrate requirements of Rep68 in the trs endonuclease reaction. In the first kind of substrate, portions of the hairpinned AAV terminal repeat were deleted. Only deletions that retained virtually all of the small internal palindromes of the AAV terminal repeat were active in the endonuclease reaction. This result confirmed previous genetic and biochemical evidence that the secondary structure of the terminal repeat was an important feature for substrate recognition. In the second type of substrate, the trs was moved eight bases further away from the end of the genome. The mutant was nicked at a 50-fold-lower frequency relative to a wild-type origin, and the nick occurred at the correct trs sequence despite its new position. This finding indicated that the endonuclease reaction required a specific sequence at the trs in addition to the correct secondary structure. It also suggested that the minimum trs recognition sequence extended three bases from the cut site in the 3' direction. The third type of substrate harbored mismatched base pairs at the trs. The mismatch substrates contained a wild-type sequence on the strand normally cut but an incorrect sequence on the complementary strand. All of the mismatch mutants were capable of being nicked in the presence of ATP. However, there was substantial variation in the level of activity, suggesting that the sequence on the opposite strand may also be recognized during nicking. Analysis of the mismatch mutants also suggested that a single-stranded trs was a viable substrate for the enzyme. This interpretation was confirmed by analysis of the fourth type of substrate tested, which contained a single-stranded trs. This substrate was also cleaved efficiently by the enzyme provided that the correct strand was present in the substrate. In addition, the single-stranded substrate no longer required ATP as a cofactor for nicking. Finally, all of the substrates with mutant trss bound the Rep protein as efficiently as the wild-type did. This finding indicated that the sequence at the cut site was not involved in recognition of the terminal repeat for specific binding by the enzyme. We concluded that substrate recognition by the AAV Rep protein involves at least two and possibly as many as four features of the AAV terminal repeat.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

6.
Wang H  Lieber A 《Journal of virology》2006,80(23):11699-11709
Random integration of viral gene therapy vectors and subsequent activation or disruption of cellular genes poses safety risks. Major efforts in the field are aimed toward targeting vector integration to specific sites in the host genome. The adeno-associated virus (AAV) Rep78 protein is able to target AAV integration to a specific site on human chromosome 19, called AAVS1. We studied whether this ability could be harnessed to achieve site-specific integration of a 27-kb transgene cassette into a model cell line for human hematopoietic cells (Mo7e). To deliver rep78 and the transgene to Mo7e cells, we used helper-dependent adenovirus (Ad) vectors containing Ad serotype 35 fiber knob domains (HD-Ad). An HD-Ad vector containing the rep78 gene under the control of the globin locus control region (LCR) (Ad.LCR-rep78) conferred Rep78 expression on Mo7e cells. Upon coinfection of Ad.LCR-rep78 with an HD-Ad vector containing a 27-kb globin-LCR-green fluorescent protein (GFP) transgene cassette flanked by AAV inverted terminal repeats (ITRs) (Ad.AAV-LCR-GFP), transduced cells were cloned and expanded (without selection pressure), and vector integration was analyzed in clones with more than 30% GFP-positive cells. Vector integration into the AAVS1 region was seen in 30% of analyzed integration sites, and GFP expression from these integrants was stable over time. Of the remaining integration sites, 25% were within the genomic globin LCR. In almost 90% of sites, transgene integration occurred via the Ad ITR. This indicates that rescue of the AAV ITR-flanked transgene cassette from Ad.AAV-LCR-GFP is not required for Rep78-mediated integration into AAVS1 and that free ends within the vector genome can be created by breaks within the Ad ITRs, whose structure is apparently recognized by cellular "nicking" enzymes. The finding that 55% of all analyzed integration sites were either within the AAVS1 or globin LCR region demonstrates that a high frequency of targeted integration of a large transgene cassette can be achieved in human hematopoietic stem cell lines.  相似文献   

7.
The replication of porcine circovirus type 1 (PCV1) is thought to occur by rolling-circle replication (RCR), whereby the introduction of a single-strand break generates a free 3'-hydroxyl group serving as a primer for subsequent DNA synthesis. The covalently closed, single-stranded genome of PCV1 replicates via a double-stranded replicative intermediate, and the two virus-encoded replication-associated proteins Rep and Rep' have been demonstrated to be necessary for virus replication. However, although postulated to be involved in RCR-based virus replication, the mechanism of action of Rep and Rep' is as yet unknown. In this study, the ability of PCV1 Rep and Rep' to "nick" and "join" strand discontinuities within synthetic oligonucleotides corresponding to the origin of replication of PCV1 was investigated in vitro. Both proteins were demonstrated to be able to cleave the viral strand between nucleotides 7 and 8 within the conserved nonanucleotide motif (5'-TAGTATTAC-3') located at the apex of a putative stem-loop structure. In addition, the Rep and Rep' proteins of PCV1 were demonstrated to be capable of joining viral single-stranded DNA fragments, suggesting that these proteins also play roles in the termination of virus DNA replication. This joining activity was demonstrated to be strictly dependent on preceding substrate cleavage and the close proximity of origin fragments accomplished by base pairing in the stem-loop structure. The dual "nicking/joining" activities associated with PCV1 Rep and Rep' are pivotal events underlying the RCR-based replication of porcine circoviruses in mammalian cells.  相似文献   

8.
Adeno-associated virus (AAV) integrates site specifically into the AAVS1 locus on human chromosome 19. Although recruitment of the AAV nonstructural protein Rep78/68 to the Rep binding site (RBS) on AAVS1 is thought to be an essential step, the mechanism of the site-specific integration, particularly, how the site of integration is determined, remains largely unknown. Here we describe the identification and characterization of a new cellular regulator of AAV site-specific integration. TAR RNA loop binding protein 185 (TRP-185), previously reported to associate with human immunodeficiency virus type 1 TAR RNA, binds to AAVS1 DNA. Our data suggest that TRP-185 suppresses AAV integration at the AAVS1 RBS and enhances AAV integration into a region downstream of the RBS. TRP-185 bound to Rep68 directly, changing the Rep68 DNA binding property and stimulating Rep68 helicase activity. We present a model in which TRP-185 changes the specificity of the AAV integration site from the RBS to a downstream region by acting as a molecular chaperone that promotes Rep68 complex formation competent for 3'-->5' DNA helicase activity.  相似文献   

9.
Adeno-associated virus (AAV) is the only eukaryotic virus with the property of establishing latency by integrating site-specifically into the human genome. The integration site known as AAVS1 is located in chromosome 19 and contains multiple GCTC repeats that are recognized by the AAV non-structural Rep proteins. These proteins are multifunctional, with an N-terminal origin-binding domain (OBD) and a helicase domain joined together by a short linker. As a first step to understand the process of site-specific integration, we proceeded to characterize the recognition and assembly of Rep68 onto the AAVS1 site. We first determined the x-ray structure of AAV-2 Rep68 OBD in complex with the AAVS1 DNA site. Specificity is achieved through the interaction of a glycine-rich loop that binds the major groove and an α-helix that interacts with a downstream minor groove on the same face of the DNA. Although the structure shows a complex with three OBD molecules bound to the AAVS1 site, we show by using analytical centrifugation and electron microscopy that the full-length Rep68 forms a heptameric complex. Moreover, we determined that a minimum of two direct repeats is required to form a stable complex and to melt DNA. Finally, we show that although the individual domains bind DNA poorly, complex assembly requires oligomerization and cooperation between its OBD, helicase, and the linker domains.  相似文献   

10.
11.
High-throughput integration site (IS) analysis of wild-type adeno-associated virus type 2 (wtAAV2) in human dermal fibroblasts (HDFs) and HeLa cells revealed that juxtaposition of a Rep binding site (RBS) and terminal resolution site (trs)-like motif leads to a 4-fold-increased probability of wtAAV integration. Electrophoretic mobility shift assays (EMSAs) confirmed binding of Rep to off-target RBSs. For the first time, we show Rep protein off-target nicking activity, highlighting the importance of the nicking substrate for Rep-mediated integration.  相似文献   

12.
We have developed a system for site-specific DNA integration in human cells, mediated by the adeno-associated virus (AAV) Rep proteins. In its normal lysogenic cycle, AAV integrates at a site on human chromosome 19 termed AAVS1. We describe a rapid PCR assay for the detection of integration events at AAVS1 in whole populations of cells. Using this assay, we determined that the AAV Rep proteins, delivered in cis or trans, are required for integration at AAVS1. Only the large forms of the Rep protein, Rep78 and Rep68, promoted site-specific integration. The AAV inverted terminal repeats, present in cis, were not essential for integration at AAVS1, but in cells containing Rep, they increased the efficiency of integration. In the presence of the Rep proteins, the integration of a plasmid containing AAV inverted terminal repeats occurred at high frequency, such that clones containing the plasmid could be isolated without selection. In two of the five clones analyzed by fluorescence in situ hybridization, the plasmid DNA was integrated at AAVS1. In most of the clones, at least one copy of the entire plasmid was integrated in a tandem array. Detailed analysis of the integrated plasmid structure in one clone suggested a complex mechanism producing rearrangements of the flanking genomic DNA, similar to those observed with wild-type AAV.  相似文献   

13.
It is of great interest for gene therapy to develop vectors that drive the insertion of a therapeutic gene into a chosen specific site on the cellular genome. Adeno-associated virus (AAV) is unique among mammalian viruses in that it integrates into a distinct region of human chromosome 19 (integration site AAVS1). The inverted terminal repeats (ITRs) flanking the AAV genome and the AAV-encoded nonstructural proteins Rep78 and/or Rep68 are the only viral elements necessary and sufficient for site-specific integration. However, it is also known that unrestrained Rep activity may cause nonspecific genomic rearrangements at AAVS1 and/or have detrimental effects on cell physiology. In this paper we describe the generation of a ligand-dependent form of Rep, obtained by fusing a C-terminally deleted Rep68 with a truncated form of the hormone binding domain of the human progesterone receptor, which does not bind progesterone but binds only its synthetic antagonist RU486. The activity of this chimeric protein, named Rep1-491/P, is highly dependent on RU486 in various assays: in particular, it triggers site-specific integration at AAVS1 of an ITR-flanked cassette in a ligand-dependent manner, as efficiently as wild-type Rep68 but without generating unwanted genomic rearrangement at AAVS1.  相似文献   

14.
15.
The single-stranded adeno-associated virus (AAV) genome is flanked by terminal hairpinned origins of DNA replication (terminal repeats [TRs]) that are nicked at the terminal resolution site (trs) by the AAV Rep protein in an ATP-dependent, site-specific manner. Here we determine the minimal trs sequence necessary for Rep cleavage, 3'-CCGGT/TG-5', and show that this 7-base core sequence is required only on the nicked strand. We also identify a potential stem-loop structure at the trs. Interestingly, Rep nicking on a TR substrate that fixes this trs stem-loop in the extruded form no longer requires ATP. This suggests that ATP-dependent Rep helicase activity is necessary to unwind the duplex trs and extrude the stem-loop structure, prior to the ATP-independent Rep transesterification reaction. The extrusion of origin stem-loop structures prior to nicking appears to be a general mechanism shared by plant and animal viruses and bacterial plasmids. In the case of AAV, this mechanism of TR nicking would provide a possible regulatory function.  相似文献   

16.
Chon SK  Rim BM  Im DS 《IUBMB life》1999,48(4):397-404
Adeno-associated virus type-2 (AAV-2) is a helper-dependent parvovirus that has been implicated in the inhibition of replication and oncogenic transformation of bovine papillomavirus type-1 (BPV-1) and other transforming DNA viruses. Previous studies have suggested that the Rep78 protein of AAV-2 is a key player mediating this effect. In this report we have analyzed the effect of AAV-2 Rep78 protein on the regulation of gene expression of a reporter gene under the control of the long control region (LCR) of BPV-1. Our results show that Rep78 is capable of down-regulating the promoter activity of the LCR in vivo in tissue culture cells. Inhibition of LCR activity in vivo suggested the need for Rep78 to bind to a region of the LCR promoter spanning the E2-responsive elements of BPV-1. This observation was further confirmed in vitro with gel shift assays showing specific binding of Rep78 to DNA oligonucleotides containing E2-responsive element 1 (E2RE1) sequences of BPV-1 LCR. Our results expand the understanding of the mechanism of trans-regulation mediated by Rep78 and involving this protein and DNA sequences with complex secondary structure.  相似文献   

17.
Adeno-associated virus (AAV) is a non-pathogenic virus and the only known eukaryotic virus capable of targeting human chromosome 19 for integration at a well-characterized AAVS1 site. Its site-specific integration is mediated by Rep68 and Rep78, viral proteins that bind to both the viral genome and AAVS1 site on ch19 through a specific Rep-binding element (RBE) located in both the viral genome and AAVS1. There are three RBEs in the AAV genome: two identical ones in both inverted terminal repeats (ITR) and another one in a recently discovered region termed the P5 integration efficiency element (P5IEE) that encompasses the viral P5 promoter. In order to identify the viral cis-acting sequence essential for Rep-mediated integration, we tested a series of constructs containing various lengths of P5IEE and compared the two RBEs from ITR (RBE(itr)) and P5IEE (RBE(p5)) in terms of their efficiency in Rep-dependent integration. Methods employed included a colony-forming assay, a PCR-based assay and Southern blotting analysis. We found that 16bp of the RBE cis-element was sufficient for mediating Rep-dependent site-specific integration. Furthermore, RBE(itr) was both more effective and specific than the RBE(p5) in Rep-dependent integration at the AAVS1 site. These findings added new information on the mechanism of Rep-dependent AAV genome insertion at the AAVS1 site and may be helpful in developing new high efficiency vectors for site-specific transgene integration.  相似文献   

18.
The DNA of human parvovirus adeno-associated virus type 2 (AAV) integrates preferentially into a defined region of human chromosome 19. Southern blots of genomic DNA from latently infected cell lines revealed that the provirus was not simply inserted into the cellular DNA. Both the proviral and adjoining cellular DNA organization indicated that integration occurred by a complex, coordinated process involving limited DNA replication and rearrangements. However, the mechanism for targeted integration has remained obscure. The two larger nonstructural proteins (Rep68 and Rep78) of AAV bind to a sequence element that is present in both the integration locus (P1) and the AAV inverted terminal repeat. This binding may be important for targeted integration. To investigate the mechanism of targeted integration, we tested the cloned integration site subfragment in a cell-free replication assay in the presence or absence of recombinant Rep proteins. Extensive, asymmetric replication of linear or open-circular template DNA was dependent on the presence of P1 sequence and Rep protein. The activities of Rep on the cloned P1 element are analogous to activities on the AAV inverted terminal repeat. Replication apparently initiates from a 3'-OH generated by the sequence-specific nicking activity of Rep. This results in a covalent attachment between Rep and the 5'-thymidine of the nick. The complexity of proviral structures can be explained by the participation of limited DNA replication facilitated by Rep during integration.  相似文献   

19.
Many bacterial plasmids replicate by an asymmetric rolling-circle mechanism that requires sequence-specific recognition for initiation, nicking of one of the template DNA strands and unwinding of the duplex prior to subsequent leading strand DNA synthesis. Nicking is performed by a replication-initiation protein (Rep) that directly binds to the plasmid double-stranded origin and remains covalently bound to its substrate 5′-end via a phosphotyrosine linkage. It has been proposed that the inverted DNA sequences at the nick site form a cruciform structure that facilitates DNA cleavage. However, the role of Rep proteins in the formation of this cruciform and the implication for its nicking and religation functions is unclear. Here, we have used magnetic tweezers to directly measure the DNA nicking and religation activities of RepC, the replication initiator protein of plasmid pT181, in plasmid sized and torsionally-constrained linear DNA molecules. Nicking by RepC occurred only in negatively supercoiled DNA and was force- and twist-dependent. Comparison with a type IB topoisomerase in similar experiments highlighted a relatively inefficient religation activity of RepC. Based on the structural modeling of RepC and on our experimental evidence, we propose a model where RepC nicking activity is passive and dependent upon the supercoiling degree of the DNA substrate.  相似文献   

20.
BACKGROUND: There is a risk of insertional mutagenesis when techniques that facilitate random integration of exogenous DNA into the human genome are used for gene therapy. Wild-type adeno-associated virus (AAV) integrates preferentially into a specific site on human chromosome 19 (AAVS1). This is mediated by the interaction of the viral Rep68/78 proteins with Rep-binding elements in the AAV genome and AAVS1. This specificity is often lost when AAV is used as a gene therapy vector due to removal of the sequences coding for Rep. METHODS: Messenger RNA coding for the Rep68/78 proteins was prepared in vitro and co-transfected with a 21 kb DNA plasmid containing the P5 integration efficiency element (P5IEE) from AAV. Single cells were seeded in plates to establish clonal cell lines that were subsequently analysed by dual colour fluorescent in situ hybridisation (FISH) to determine whether site-specific plasmid integration had occurred on chromosome 19. RESULTS: The co-transfection of plasmid DNA with Rep68/78 mRNA gave a 2.5-fold increase in DNA integration when compared to transfection of cells with plasmid DNA alone. Rep68/78 mRNA expression facilitated site-specific plasmid integration to chromosome 19 in 30% (14/44) of all analysed integration sites, while no targeted integration events were observed following transfection of cells with plasmid DNA alone. CONCLUSIONS: These results demonstrate that transient expression of Rep protein using transfected mRNA facilitates site-specific integration of plasmid DNA. This approach allows expression of Rep for only a short time, and may circumvent the toxicity and chromosome instability associated with long-term expression of Rep.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号